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Abstract. Many algorithms for multiobjective optimization have been
proposed in the last years. In the recent past a great importance have
the MOEAs able to solve problems with more than two objectives and
with a large number of decision vectors (space dimensions). The dif-
ficulties occur when problems with more than three objectives (higher
dimensional problems) are considered. In this paper, a new algorithm for
multiobjective optimization called Multiobjective Adaptive Representa-
tion Evolutionary Algorithm (MAREA) is proposed. MAREA combines
an evolution strategy and an steady-state algorithm. The performance
of the MAREA algorithm is assessed by using several well-known test
functions having more than two objectives. MAREA is compared with
the best present day algorithms: SPEA2, PESA and NSGA II. Results
show that MAREA has a very good convergence.

1 Introduction

In the recent years a number of Multiobjective Optimization Evolutionary Al-
gorithms (MOEAs) have been proposed. The interest is now focused on finding
the Pareto front for functions having more than two objectives.

A new algorithm called Multiobjective Adaptive Representation Evolution-
ary Algorithm (MAREA) is proposed in this paper. This algorithm uses a solu-
tion representation similar to the representation used by Adaptive Representa-
tion Evolutionary Algorithm (AREA) introduced in [5]. Used operators are the
same as those used by AREA.

For assessing the performances of the MAREA algorithm a comparison with
some recent algorithms for Multiobjective Optimization is performed. The algo-
rithms used in this comparison are: SPEA2 introduced by Zitzler and al. in [8],
NSGA II introduced by Deb in [2] and PESA introduced by Knowles in [1]. Four
difficult test functions are considered for comparison purposes. The number of
objectives varies between 2 and 8.

The paper is structured as follows: Section 2 describes AREA technique: so-
lution representation and the operators used. In Section 3 the newly algorithm



proposed – MAREA – is presented. In Section 4 the test function used for com-
parison are described. Two performance metrics for compare the results obtained
by these algorithms are presented in Section 5. Numerical experiments with the
algorithms SPEA2, NSGA II and PESA are performed in Section 6 of the paper.
A set of conclusions are mark out in Section 7 of the paper.

2 AREA Technique

The main idea of this technique is to allow each solution to be encoded over
a different alphabet. Moreover, the representation of a particular solution is
not fixed. Representation is adaptive and may be changed during the search
process as effect of the mutation operator. AREA relies mainly on Dynamic
Representation (DR) proposed in [7].

2.1 Solution representation

Within AREA each solution has its own encoding alphabet and can be repre-
sented as a pair(x, B) where B is an integer number, B ≥ 2 and x is a string
of symbols from the alphabet {0, 1, . . . , B-1}. If B= 2, the standard binary
encoding is obtained. The alphabet over which x is encoded may change during
the search process by applying an operator similar with mutation operator and
called transmutation. If no ambiguity arises we will use B to denote the alphabet
B = {0, 1,. . . B-1}.

2.2 Mutation

Each gene is affected by mutation with a fixed mutation probability. The mutated
gene is a symbol randomly chosen from the same alphabet.

Consider the chromosome C represented over the alphabet B = 8: C =
(631751, 8). Consider a mutation occurs on the 3rd position of x. Let be 4 the
value of mutated gene. Then the mutated chromosome is: C1 = (634751, 8).

2.3 Transmutation

The transmutation operator can modify only the value of the alphabet over that
the chromosome is represented. The new value of the alphabet is a randomly
chosen integer value.

When position giving the alphabet B is changed, then the object variables
will be represented using symbols over the new alphabet, corresponding to the
mutated value of B.

Consider a transmutation occurs on the last position of chromosome C and
the mutated value is B2 = 10. Then the mutated chromosome is:

C2 = (209897, 10).
C and C2 encode the same value over two different alphabets (B = 8, B2 =

10).
Remark A mutation generating an offspring worse than its parent is called

a harmful mutation.



2.4 Offspring acceptance

If the offspring obtained by mutation is better than its parent than the parent
is removed from the population and the offspring enters the new population.
Otherwise, a new mutation of the parent is considered.

A mutation generating an offspring worse than its parent is called a harmful
mutation. If the number of successive harmful mutations exceeds a prescribed
threshold (Max Harmful Mutations) the individual representation is changed
and with this new representation it enters in the new population.

3 MAREA Algorithm

Two stages are distinguished to determinate the real Pareto front. At the first
stage the effort is focused on finding the Pareto front. At the second stage the
effort is focused on spreading the individuals along the Pareto front.

At stage I, MAREA uses a population containing few individuals (usually one
individual). These individuals are mutated until no improvement of solution’s
quality occurs for a specified number of iterations. That means that this solution
is near Pareto front (the real Pareto front or a local Pareto front). Stage II
begins at this moment. At this stage the spread of solution on the Pareto front
is realized. The aim of this stage is to obtain a good distribution along Pareto
front. An enlarged population is permitted at this stage in order to obtain a
good coverage of Pareto front. A detailed description of the MAREA’s stages is
given bellow.

3.1 Stage I – Convergence to the Pareto front

MAREA uses a single population of individuals that are evolved using two varia-
tions operators: mutation and transmutation. The evolutionary model used here
is similar to (1+1) ES.

At this stage the population has only one individual. Initial population (initial
individual) is randomly generated. Mutation is the unique variation operator.
The offspring and parent are compared. Dominance relation guides the survival.

If the offspring dominates the parent then the offspring replaces the parent.
If the parent dominates the offspring obtained for Max Harmful Mutations suc-
cessive mutations then another alphabet is chosen and the parent is represented
in symbols over this alphabet.

A parameter called Max Steps To Front is used on order to find when this
stage is over. If no improvement occurs for Max Steps To Front iterations it
is likely that this solution is near Pareto (global or very good local) front. As
the search process gets near Pareto front the first stage stops here and at this
moment the second stage starts.



3.2 Stage II – Dispersion on the Pareto front.

After first stage the population contains one individual only. This individual is
near Pareto (local or global) front. The evolutionary model used here is similar
with Steady-State.

During this stage the population size is variable and can increase and de-
crease also. Mutation operator is applied to each solution from population.
Max Harmful Mutation parameter is used to determinate when the alphabet
representation for a solution is changed. At each step a randomly chosen in-
dividual is mutated. The offspring is added to the population. All dominated
solutions are removed. If all solutions are nondominated and the population size
exceeds a prescribed treshold then some solutions are removed. For computing
which solutions will be removed from the population the following mechanism is
used: the nearest solutions are chosen from population. One of them is removed.

The size of final population can be smaller than maximum size allowed. This
situation is likely if the Pareto front consist of a very small number of points.

4 Test Functions

Test functions used in these experiments were introduced in [3]. Each of them is
described in the Table 1. These test functions are M – objective problems.

5 Performance metrics

In this study a convergence metric proposed by Deb and Jain in [4] are used to
determinate the algorithms performances.

This convergence metric represents the distance between the set of converged
non-dominated solutions and the global PO front.

Let P* be the reference or target set of points on the PO front and let F be
the final non-dominated set obtained by a multiobjective evolutionary algorithm.

Then from each point i in F the smallest normalized Euclidian distance to
P* will be:

di =
|P∗|
min
j=1

√√√√
M∑

k=1

(
fk(i)− fk(j)
fmax

k − fmin
k

)2

where fmax
k and fmin

k are the maximum and minimum function values of k-th
objective function in P* and M represent the number of objective functions.

Remark

Lower values of convergence metric represent good convergence ability.



Table 1. Test functions.

Test function Domain Global minimum

DTLZ1

f1(x) = 1
2
x1x2 . . . xM−1(1 + g(xM )),

f2(x) = 1
2
x1x2 . . . (1− xM−1)(1 + g(xM )),

...
fM−1(x) = 1

2
x1(1− x2)(1 + g(xM )),

fM (x) = 1
2
(1− x1)(1 + g(xM )),

where

g(xM ) = 100


|xM |+

∑
xi∈xM(xi−0.5)2−cos(20π(xi−0.5))


 .

0 ≤ xi ≤ 1
for i = 1,2,. . . ,n

xi* = 0.5
(xi*∈ xM )

M∑
m=1

f∗m = 0.5

DTLZ2

f1(x) = (1 + g(xM )) cos(x1π/2) . . . cos(xM−1π/2),
f1(x) = (1 + g(xM )) cos(x1π/2) . . . sin(xM−1π/2),
fM (x) = (1 + g(xM )) sin(x1π/2),
where
g(xM ) =

∑
xi∈xM

(xi−0.5)2.

0 ≤ xi ≤ 1
for i = 1,2,. . . ,n

xi* = 0.5
(xi*∈ xM )

M∑
m=1

(f∗m)2 = 1

DTLZ3 The test functions are the same that test functions used
in DTLZ2 and g function is one used in DTLZ1.

0 ≤ xi ≤ 1
for i = 1,2,. . . ,n

xi* = 0.5
(xi*∈ xM )

M∑
m=1

(f∗m)2 = 1



6 Numerical experiments

In order to mark out MAREA performances some numerical experiment are
performed. Three algorithms are used for comparisons: SPEA2, NSGA II and
PESA.

To make a comparison fair the same number of function evaluations is used
by all considered algorithms.

The parameters used by each of the considered algorithms are presented in
the Table 2.

The values of parameters used by PESA, SPEA2 and NSGA II have taken
from [6].

Table 2. The values of parameters used by MAREA, SPEA2, NSGA II and PESA.
The parameters for SPEA2, NSGA II and PESA are taken from [6].

Parameter MAREA PESA SPEA2 NSGA II

Crossover probability - 0.8 0.7 0.7

Distribution Index (DI) for SBX - 15 15 15

Mutation Probability
(if n = number of variables) 1/n 1/n 1/n 1/n

DI for polynomial mutation - 15 15 20

Ratio of internal population size
to archive size

- 1:1 1:1 1:1

Number of grids per dimension
(PESA)

- 10 - -

MAX HARMFUL MUTA-
TIONS (MAREA) 3000 - - -

The values corresponding to population size for each considered objectives
numbers are presented in Table 3.

The number of generations and the number of functions evaluations corre-
sponding to objectives number for each test functions are presented in Tables 4
and 5.

The results obtained by applying convergence metric are presented in Table
6. Results are averaged over 30 runs. Resutls obtained by NSGA II, SPEA2 and
PESA are taken from [6].

We can see from this table MAREA outperforms the considered algorithms
for comparison in almost all situations. PESA is better than NSGA II and SPEA
2. MAREA strongly outperforms NSGA II and SPEA 2 for all considered test
functions. For a small number of objectives PESA and MAREA give closed



Table 3. Population size corresponding to objectives number. The values are taken
from [6].

Number of objectives Population size

2 20
3 50
4 100
6 250
8 400

Table 4. Number of generations used in experiments for each test functions. The values
are taken from [6].

Test function
Number of generations
For 2, 3 and 4 objectives For 6 and 8 objectives

DTLZ1 300 600
DTLZ2 300 600
DTLZ3 500 1,000

Table 5. Number of functions evaluations used for all considered algorithms. The
values are taken from [6].

Test function
Number of functions evaluations
2 obj 3 obj 4 obj 6 obj 8 obj

DTLZ1 6,000 15,000 30,000 150,000 360,000
DTLZ2 6,000 15,000 30,000 150,000 360,000
DTLZ3 10,000 25,000 50,000 250,000 600,000



Table 6. Results obtained by applying convergence metric. Results are averaged over
30 runs.

Test function
Convergence metric

MAREA PESA SPEA2 NSGA II

DTLZ1

2 objectives 0.57292 2.8694 3.088 2.2766
3 objectives 0.04299 0.0441 0.0484 0.3836
4 objectives 0.01546 0.0231 0.2992 3.1028
6 objectives 0.001604 0.0017 5.999 120.191
8 objectives 0.00391 0.004 498.27 465.301

DTLZ2

2 objectives 0.000091 0.00008 0.00026 0.00180
3 objectives 0.00014 0.00035 0.00663 0.010003
4 objectives 0.001304 0.00170 0.03369 0.04529
6 objectives 0.00195 0.00301 2.00216 1.67564
8 objectives 0.008084 0.00689 2.35258 2.30766

DTLZ3

2 objectives 0.12605 0.79397 0.77622 0.6369
3 objectives 0.1591 0.20528 0.29271 0.2451
4 objectives 0.0293 3.60430 5.07137 6.3261
6 objectives 0.1822 5.30454 10.5368 9.4875
8 objectives 0.1734 6.32247 10.6293 10.273

results. But for a greater number of objectives MAREA is able to converge to
the global Pareto front while PESA not in all situations.

7 Conclusions and further work

In this paper a new evolutionary algorithm for multiobjective optimization was
proposed. This algorithm uses solution representation introduced by AREA tech-
nique. The particularity of this algorithm is his structure. Initially only one in-
dividual is considered. The algorithm tries to situate this individual near Pareto
front. Mutation and transmutation operators are used in order to improve the in-
dividual. If no improvement appear after a specified number of mutations means
that this solution in near Pareto front. (Sometimes this can be a local Pareto
front). When this unique solution is near Pareto front the population can be
extended by considering the others nondominates solutions. These solutions are
obtained by applying mutation and transmutation operator also over these new
solutions considered. After a specified number of iteration the last population
obtained is considered the final population.

The two parameters for determining when the alphabet over which a solu-
tion is represented is changed and the other parameter determining when the
first stage is finish (i.e. determining when population size can increase) are very



important. By considering different values of these parameters the final result is
different.

An adaptation of these parameters for each problem is the work of the other
paper.
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