
Determining the Best Parent Selection Method for a
Genetic Algorithm through Varying Problem Sizes and

Complexities

Daman Oberoi1, Bart Rylander1

1 School of Engineering, University of Portland,

5000 N. Willamette Blvd. Portland, OR 97203, U.S.A.
{doberoi, rylander }@up.edu

Abstract. We conduct an experiment to investigate which of three parent
selection methods (elitism, fitness proportionate, and tournament) generates the
greatest fitness in the fewest number of generations using a genetic algorithm
(GA). The parent selection methods were applied to the problems of Maximum
Ones, 3-Processor Scheduling, and Sorting, while in each case the problem size
varied from 4 to 22. We show that for nearly all problem sizes and types,
Tournament selection produces the best results.

1 Introduction

The purpose of this research is to identify a parent selection algorithm independent of
problem size, type, and complexity that produces the greatest fitness in the fewest
number of generations. Typically a practitioner will use an algorithm with which he is
most familiar, but it may not produce the best results. The hope of this experiment is
to declare a universally superior parent selection method.

It is important to distinguish the difference between a problem and a problem
instance. A problem is a mapping from problem instances onto solutions. For example,
the GA is applied to three types of problems in this experiment: Maximum Ones, 3-
processor scheduling, and Sorting. These are merely three types of problems to which
a GA can be applied. A problem instance is a particular version of a problem with a
specific set of parameters. This experiment is being performed on 19 instances of each
type of problem, where the varying parameter is the number of tasks (from 4 to 22).
Problem instance and problem size are used interchangeably throughout this paper.

2 Test Parameters

The GA was applied to three types of problems: Maximum Ones, 3-Processor
Scheduling, and Sorting. Maximum Ones is a problem in which the population
achieves optimal fitness when all alleles are 1. The 3-Processor Scheduling problem
assigns a scheduling duration to each task for each processor. In this experiment, the
schedule values were arbitrarily assigned for the first four tasks. All schedule values
were repeated after four tasks. Sorting is a problem in which the optimal population
contains integers represented in binary in a pre-determined order (ascending order for

this research). For this experiment, the binary values were matched bit-by-bit to the
pre-determined order (as opposed to matching a set of binary values representing one
integer to the pre-determined order).

While the number of tasks varied for each problem type from 4 to 22, the
following parameters remained constant throughout the experiment: 100
chromosomes, at least 90% convergence, survival of the fittest 50% of chromosomes,
and 1% mutation rate. The 90% convergence requirement means the algorithm exited
its loop when the fitness was within 90% of the optimal value. The survival rate
indicates that the best 50% of chromosomes according to fitness carried on to the next
generation. A bit was mutated from 0 to 1 or vice versa 1% of the time for all newly
created chromosomes in a generation.

Crossover was performed on every generation with parents selected from the top
50% of chromosomes according to greatest fitness. Each crossover event produced
one chromosome of the next generation for each selected pair of parents. The
crossover point, where the influence of one parent ended and the other parent began,
was randomly chosen between 0 and one less than the problem size.
The method of selecting parents was the point under investigation. One hundred trials
were conducted for each selection method given the problem size and problem type;
hence, 17,100 trials were conducted all together (19 problem sizes x 3 selection
methods x 3 problem types x 100 trials = 17,100 trials). Elitism selection refers to the
method by which two parents, not necessarily distinct, per crossover event were
randomly selected from the top 50% of chromosomes. Fitness Proportionate selection
refers to the process by which two parents, not necessarily distinct, per crossover
event were randomly selected from the top 50% of chromosomes, but the
randomization was weighted proportionately according to the fitness of each
chromosome. Tournament selection refers to the method in which two parents, not
necessarily distinct, per crossover event were randomly selected from the top 50% of
chromosomes through a “tournament face-off.” This face-off involves selection of
three distinct parents from the top 50% of parental chromosomes through which the
chromosome with the greatest fitness emerges as the parent.

3 Results
Upon completion of the experiment, the results were tabulated and grouped by
problem type. Although data was collected on a variety of parameters (including
minimum, maximum, median, and average values for fitness, generations, and
mutation), we have chosen to report only on median values for fitness and generations
because they seem most representative of the overall results.

3.1 Maximum Ones Problem

Fitness. For the Maximum Ones problem, the higher the fitness, the greater the
performance. Therefore, Figure 1 shows that Elitism performs better than Fitness
Proportionate roughly half of the time (9 instances). However, the amount by which
Elitism performs better is much more consistent than the amount by which Fitness
Proportionate performs better. There does not appear to be any pattern regarding the
problem size in which one selection method performs better than the other.

Fitness Difference for Maximum Ones:
Elitism - Fitness Proproportionate

-10

-8

-6

-4

-2

0

2

4

6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 1. Comparison of Elitism to Fitness Proportionate regarding their effects on fitness for
Maximum Ones

Figure 2 and Figure 3 show that, with one exception, Tournament selection
always performs better than Elitism and Fitness Proportionate. Interestingly, there
appears to be some correlation between the rising and falling trends between the two
graphs, with a notable dip at 14. Also, the minimum on both figures occurs at 4 and
the maximum occurs at 18.

Fitness Difference of Maximum Ones:
Tournament - Elitism

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 2. Comparison of Tournament to Elitism regarding their effects on fitness for Maximum
Ones

Fitness Difference of Maximum Ones:
Tournament - Fitness Proportionate

-5

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 3. Comparison of Tournament to Fitness Proportionate regarding their effects on fitness for
Maximum Ones

Generations Resulting from Elitism for
Maximum Ones

0

2

4

6

8

10

12

14

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 4. The number of generations resulting from Elitism applied to Maximum Ones

Generations Resulting from Fitness
Proportion for Maximum Ones

0

2

4

6

8

10

12

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 5. The number of generations resulting from Fitness Proportionate applied to Maximum
Ones

Generations Resulting from Tournament for
Maximum Ones

0

1

2

3

4

5

6

7

8

9

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Ones Possible

Fig. 6. The number of generations resulting from Tournament applied to Maximum Ones

3.2 3-Processor Scheduling

Fitness. For 3-Processor Scheduling, a smaller fitness value suggests a stronger
performance because the goal is to minimize the time required to complete the set of
tasks by each processor. Accordingly, Figure 7 shows that Elitism and Fitness
Proportionate outperform each other approximately half of the time. However, with a
couple of exceptions, Elitism typically outperforms Fitness Proportionate by a greater
amount than Fitness Proportionate outperforms Elitism.

Fitness Difference for 3-Processor
Scheduling: Elitism - Fitness Proportionate

-40

-30

-20

-10

0

10

20

30

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Tasks

Fig. 7. Comparison of Elitism to Fitness Proportionate regarding their effects on fitness for
3-Processor Scheduling

Out of the 38 charted instances between Tournament selection and the other two
selection schemes, Tournament performs better in all but 10 scenarios. Moreover, the
amounts by which Tournament typically performs better is significantly greater than
the amounts by which it does not. See Figure 8 and Figure 9.

Fitness Difference for 3-Processor
Scheduling: Tournament - Elitism

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Tasks

Fig. 8. Comparison of Tournament to Elitism regarding their effects on fitness for 3-Processor
Scheduling

Fitness Difference for 3-Processor Scheduling:
Tournament - Fitness Proportionate

-50

-40

-30

-20

-10

0

10

20

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Tasks

Fig. 9. Comparison of Tournament to Fitness Proportionate regarding their effects on fitness for
3-Processor Scheduling

Generations. For every problem size, Tournament selection resulted in the fewest
number of generations, while Elitism produced the second fewest. There were no
instances in which the number of generations were equal for any of the selection
methods. See Figure 10, Figure 11 and Figure 12.

Generations Resulting from Elitism for
3-Processor Scheduling

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Tasks

Fig. 10. The number of generations resulting from Elitism applied to 3-Processor Scheduling

Generations Resulting from Fitness
Proportion for 3-Processor Scheduling

0

5

10

15

20

25

30

35

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Tasks

Fig. 11. The number of generations resulting from Fitness Proportionate applied to 3-Processor
Scheduling

Generations Resulting from Tournament for
3-Processor Scheduling

0

2

4

6

8

10

12

14

16

18

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of Tasks

Fig. 12. The number of generations resulting from Tournament applied to 3-Processor
Scheduling

3.3 Sorting Problem

Fitness. Since a higher fitness value is beneficial for the Sorting problem, Fitness
Proportionate had a slight edge in the number of times it performed better than Elitism.
However, the amounts by which Fitness Proportionate performs better are not very
large in most instances. Moreover, the amounts by which Elitism and Fitness
Proportionate outperform each other are pretty similar for most problem sizes.

Interestingly, there are groupings of problem instances where Fitness Proportionate
performs better and where Elitism performs better. Refer to Figure 13.

Fitness Difference for Sorting:
Elitism - Fitness Proportionate

-10

-8

-6

-4

-2

0

2

4

6

8

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 13. Comparison of Elitism to Fitness Proportionate regarding their effects on fitness for
Sorting

Apparent from Figure 14 and Figure 15, Tournament selection produces greater
fitness values over Elitism and Fitness Proportionate for all problem sizes. However,
there seems to be little correlation between the two graphs regarding the rising and
falling trends or locations of minimums and maximums.

Fitness Difference for Sorting:
Tournament - Elitism

0

2

4

6

8

10

12

14

16

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 14. Comparison of Tournament to Elitism regarding their effects on fitness for Sorting

Fitness Difference for Sorting:
Tournament - Fitness Proportionate

0

2

4

6

8

10

12

14

16

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 15. Comparison of Tournament to Fitness Proportion regarding their effects on fitness for
Sorting

Generations. Figure 16, Figure 17, and Figure 18 combine to show that Tournament
selection always had the fewest number of generations for all problem sizes. Elitism
and Fitness Proportionate produced the same number of generations on more than half
(11) of the occasions. In nearly all the instances where Elitism and Fitness
Proportionate did not result in the same number of generations, Fitness Proportionate
had fewer generations. The only exception occurs at problem size 22.

Generations Resulting from
Elitism for Sorting

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 16. The number of generations resulting from Elitism applied to Sorting

Generations Resulting from
Fitness Proportion for Sorting

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 17. The number of generations resulting from Fitness Proportionate applied to Sorting

Generations Resulting from
Tournament for Sorting

0

5

10

15

20

25

30

35

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Integers to Sort

Fig. 18. The number of generations resulting from Tournament applied to Sorting

4 Conclusions
The goal of this experiment was to find a parent selection method that would perform
better than any other method regardless of the problem type, size, or complexity to
which it was applied. Although none of the three methods investigated here emerged
as the best in every scenario, it seems warranted to declare Tournament selection as
the best overall method. It resulted in the best fitness values and by the greatest
margins than either of the other two selection methods. At the same time, Tournament
selection always completed with the fewest generations.

Declaring the second best overall method is a much more formidable task. For
Maximum Ones and 3-Processor Scheduling, the fitness graphs indicate a draw
between Elitism and Fitness Proportionate. In addition, Fitness Proportionate holds
only a slight edge in the fitness for Sorting. With regard to generations, Fitness
Proportionate performs very slightly better for Sorting, a little better for Maximum
Ones, and significantly worse for 3-Processor Scheduling. Further research is required
to distinguish these two selection methods.

This experiment opens up avenues for further research in a variety of related
areas. One idea is to alter the current algorithms slightly and see if the results still hold.
For example, instead of applying the parent selection schemes on only the top 50% of
the chromosomes, investigate the effects of applying the methods to the entire
population. Another possibility is to introduce other selection methods and compare
them to those researched here in an experiment similar to this one. The results of this
type of research could lead to a decisive conclusion on whether a superior selection
method exists without regard to problem size, type, and complexity.

References

1. Goldberg, D. E., Deb, K., A Comparative Analysis of Selection Schemes
used in Genetic Algorithms. Foundations of Genetic Algorithms, pp. 69-93,
Morgan Kaufman, 1991.

2. Holland, J., Adaptation in Natural and Artificial Systems, Ann Arbor, MI,
University of Michigan Press, 1975.

3. Hancock, P., An Empirical Comparison of Selection Methods in
Evolutionary Algorithms. Evolutionary Computing: AISB Workshop Leeds,
U.K. April 1994, Selected Papers, Springer-Verlag, 1994.

4. Rawlins, G.J.E. (1991). Introduction. Foundations of Genetic Algorithms,
Morgan Kaufman. pp. 1-10.

5. Bovet, D., and Crescenzi, P. (1994). Computational Complexity, Prentice
Hall.

6. Vose, M., The Simple Genetic Algorithm, Morgan Kaufman, 1999.
7. Mitchell, M., An Introduction to Genetic Algorithms, Prentice Hall, 1996.
8. Rylander, B., Foster, J., GA-hard Problems, Proc. on Genetic and

Evolutionary Computation Conference, 2000.

