
Constraint Handling of an Optical Components Selection
Problem using a new Genetic Crossover Scheme

Mohammad Amin Dallaali and Malin Premaratne

Advanced Computing and Simulation Laboratory (AXL)
Department of Electrical and Computer System Engineering

P.O. Box: 35 Monash University, Clayton Victoria 3800 Australia
{Amin.Dallaali and Malin.Premaratne}@eng.monash.edu.au

Abstract. This paper proposes a new crossover scheme called Controlled
Content Crossover (CCC). CCC is applied to solve a commercially important
optimization problem associated with the selection of the optimum set of
components in optical network. CCC searches for the optimized solution and
at the same time controls the value of the constrained parameter. This
parameter is the optical component dispersion value in this paper. Therefore,
by preserving the feasibility of the search points, CCC performs a genetic
search over the feasible space. The simulation results show that the
performance of the CCC is comparable with the answers obtained from
CPLEX software and is better than the simple repair-based Genetic Algorithm
proposed in the paper.

Keywords: Genetic Algorithms, Controlled Content Crossover, Feasibility,
Dispersion Compensation, Optical Networks.

1 Introduction

The size and the complexity of the current and perceived future optical
communication systems have forced us to look for efficient but effective ways for
designing and subsequently supporting them. However, due to the limitations in
availability of specialists relative to the demand and the associated cost,
telecommunications carriers are looking for ways of automating the design of optical
networks using computer aided design (CAD) tools. Building CAD tools in large
optical networks design has become a major challenge because most of the algorithms
associated with the device placement and subsequent configuration tasks belong to
NP-complete or NP-hard complexity classes, which are in the category of the
toughest problems in computer science. It is well known that no exact methods for
solving such problems in polynomial time can be found using conventional serial
computing techniques. However, reasonably accurate solutions for such NP-hard
problems can be found by using techniques that mimics the biological evolutionary

Dallaali and Premaratne 2

path such as Genetic Algorithms (GAs). Therefore, GAs have found increasing
usages in such massive optimization problems. The basic rules of the genetic
algorithms are very simple and hence provide the opportunity for a wide range of the
applications to use the algorithms [1]. This robustness however, does not remove the
necessity of designing specific genetic operators. These operators for example are
used in constraint handling methods.

 Using special operators was considered by Michalewicz [2] as one of the
classified constrained handling approaches for mathematical programming problems.
In [2], Michalewicz highlighted that in the area of nonlinear programming,
evolutionary computations did not address the issue of constraints in a systematic
way. For the penalty-based method, Genetic Algorithm penalized unfeasible solutions
, although there is no guideline to design penalty function and any generalization
effort may cause computational overhead [2]. In [3] Koziel and Michalewic classified
the “constraints handling methods” and counted one of their category as “the
techniques based on preserving feasibility of solutions”. They also talked about
techniques where a “chromosome” gives instructions on how to build a feasible
solution”. It continued: “for example, a sequence of items for the Knapsack problem
can be interpreted as: “take an item if possible”; such interpretation would lead
always to a feasible solution.” A classification of the methods for handling unfeasible
solutions for continuous numerical optimization problem was made by Richardson
(1989) and reported by Michelawicz [4]. Richardson considered two different
paradigms: modifying the genetic operators and penalizing the strings that fail to
satisfy all the constraints. In [5], Hinterding and Michelawicz claimed that: “to
maintain feasibility of an individual, a specialized operator (which incorporates the
knowledge about problem-specific constraints) should be used. Furthermore, Sakawa
et al. [6] used double string coding in their work for integer programming problem.
They used a double string coding mainly to overcome the difficulties associated with
the Partially Matched Crossover scheme. Chu and Beasley [7] dealt with a similar
situation when they developed a binary representation that had the same concept as
the double string coding. They used this coding scheme for solving the Knapsack
problems.

 In this paper, we present Controlled Content Crossover (CCC), a new crossover
method that maintains the feasibility of the solutions in genetic algorithm
implementation of configuration problem in optical network design. The algorithm
has been designed so that it looks for the optimal solution inside the feasible region.
The concept of double string coding is used for the indexing of the bit strings so that
the labeled elements maintain the same position when they pass through the algorithm
operators. As the result, the identities of the components are saved and they are
trackable in any stage of the process. Although there is a penalty based cleaning phase
at the end of the selection part of the algorithm, but it is not used frequently and
therefore it does not make a major effect on the whole process. This cleaning phase
removes the strings with the dispersion values less than the minimum limit. Because
of the small effect of this part on the whole algorithm, CCC does not cause the
latency that the death-penalty type methods cause for the algorithms. In this paper, the

 Constraint Handling of an Optical Components Selection Problem

3

proposed crossover scheme is implemented to solve the problem of selection of
components for a point-to-point optical network. Dallaali and Premaratne [8] studied
such a problem using genetic algorithms where they examined several features of
their genetic processor. However, in that paper, the implemented idea was a penalty-
based method that could not perfectly find the optimized target. By using CCC
method, we show that the results in [8] can be improved dramatically. The rest of the
paper is organized as follows: In Section 2, formulation of the problem is given. In
Section 3 details of the Controlled Content Crossover scheme is described for the
optical network component allocation problem. Section 4 presents the simulation and
results. In section 5 conclusions are provided and in section 6 further work is outlined.

2 Problem Definition

The problem is to find the optimal selection of the available off-the-shelf optical
network components so that this selection satisfies the problem constraints. The
constraints are defined as limitations over the parameters such as dispersion and
attenuation values of the optical components. These components include the
Dispersion Compensation Modules (DCM) and amplifiers. This has the mathematical
form of an Integer Programming problem, which can be formulated as:

Minimize:
1

n
c xi ii

�
=

 (1)

Subject to: maxmin 2 21

nD DD D d x D Di ii

∆ ∆= − ≤ ≤ + =�
=

 (2)

1

n
xi ii

γ ≤ Γ�
=

 (3)

1

n
x Nii

<�
=

 (4)

 Where ix is an integer number that represents the number of times that the
component type i is selected. ic , id and iγ are respectively the cost, dispersion and
attenuation values of the component i . n is the number of different component types
are selected and N is a maximum limit for the total number of the components. Γ is
the maximum value used for the upper bound limit of the total attenuation and D is a
constant dispersion value which is symmetrically centered between the upper limit

maxD and the lower limit minD . D∆ is the difference of the upper and the lower limits
compared to D . In this paper however, the algorithm is developed and performed
with one constraint which is the dispersion value. Therefore, all explanations are
provided with the constraints on the dispersion value and hence the problem can be
rewritten without considering formulas (3) and (4). More constraints can be added as
needed for future work.

Dallaali and Premaratne 4

3 The Algorithm

Figure 1 shows an overview of the algorithm. It starts with an initial population
selection phase and then enters the iterative loop which is the genetic mating part of
the algorithm. The exchange unit is the main part of the algorithm which is designed
to control the constraint on the dispersion value.

Initial Population

Bitwise Ordering

Exchange Unit

Selection

Fig. 1. The overall flowchart of the algorithm

3.1 Initial Population

As it is shown in figure 1 the algorithm starts with an initialization phase where the
initial population is randomly selected. The initial population composed of 12 strings
each with 63 bits. Bits are integer numbers representing the number of times that each
component type is selected. One of these strings is shown in figure 2. The number of
the initial strings, 12, and the number of the bits that they have, 63, are arbitrarily
selected for the test purposes.

3.2 Coding and Data Binding

The initial 12 strings make the first group of parents of the genetic generations. They
are the first chromosomes of the genetic process that are consequently followed by
the chromosomes generated during the mating iterations. These strings must be
accompanied by some supplementary information in order to enter the genetic
iteration loop. The supplementary information consists of the two new types of
strings: the attached indexes of the elements of the array and the proportion of the
dispersion value that each bit contributes to the total dispersion value of the string.
The index of the components must be attached to the other values and must
accompany the rest of the information during the genetic process. As formula (5)
shows, the proportion of the dispersion value for each bit in the total dispersion value
of the string is calculated for all the bits in all of the strings and therefore there will be

 Constraint Handling of an Optical Components Selection Problem

5

12 strings of 63 bits accompanying their counterparts. These values are shown in
figure 2 with the notation of iPD . Later in the exchange section, it will be explained
that how these values will be the deterministic factors for sorting the bits of the
strings.

1

_ (,) k k
N

i i
i

d x
Perc Disp str k

d x
=

×
=

×�

 Where the _Perc Disp (Percentage of Dispersion) value is calculated for the
 thk bit of the thstr string. As it is shown in figure 2 the _Perc Disp array, the

array containing the component indexes and the array containing the number of the
selected items are attached together and make three attached arrays of 63 bits for each
chromosome. Therefore, at the end of the coding phase, there will be 12 packs of the
complex shown in figure 2.

N

2P D 3PD NP D

1x 3x Nx

1P D

2x

1 2 3 N

2P D 3PD NP D

1x 3x Nx

Component
 Index

Numbers

Perc_Disp 1P D

2x

Fig. 2. The initial arrangement of a parent string

3.3 Mating and Breeding Iterations

3.3.1 Ordering

Single run of the genetic iteration is explained in this section. Procedure described
here is executed iteratively until the satisfactory solution is obtained. A bit-wise
sorting is performed on the input strings so that the 63 bits in each of the three arrays
are sorted based on the descending order of _Perc Disp .

28x46x
19x3xisx { }1...i N∀ ∈

iPD

19

28x46x =4 =4 19x3x =0

0.244 0.197 0.195 0

Reordered

isx 1...i N∀ ∈

iPD
Descending
Order of

Fig. 3. Reordering of the string and its affiliates before the exchange phase

(5)

Dallaali and Premaratne 6

As the result, the elements with more dispersion values are awarded higher ranks.
This reordered input data set is considered as a parent for the next generation. Larger
number of selected items and a bigger dispersion value per item are the two factors
that cause a larger _Perc Disp value. Figure 3 illustrates the arrangement of the three
arrays of one string that have been sorted according to the _Perc Disp values.

3.3.2 The Exchange Unit

The exchange unit is the main part of CCC. First, strings are randomly selected for
mating. For example as it is shown in the figure 4, string number one and string
number 12 make a family and produce two offspring. The first bits of the parents are
allocated to the children respectively so that child x′ get the first bit of the parent x
and child y′ get the first bit of the parent y .

7y 54y19y46x 3x 19x28x
30y

46x′ 19y′

46x′ 19y′

1
xA D 1

yA D

30x′

7x′

7y′

28y′

2
xA D 2

yA D

46x′ 7x′ 19y′ 28y′
3x′ 54y′

3
xA D 3

yA D

46x′ 7x′ 3x′

6 3
xA D 6 3

xA D

19y′ 28y′ 54y′

7y 54y19y46x 3x 19x28x
30y

46x 19y

46x 19y

1
xA D 1

yA D

30x

7x

7y

28y

2
xA D 2

yA D

46x 7x 19y 28y
3x 54y

3
xA D 3

yA D

46x 7x 3x

6 3
xA D 6 3

xA D

19y 28y 54y

Parent x Parent y

Offspring x Offspring y

The First Exchange

The Second Exchange

The Third Exchange

The Last Exchange

Fig. 4. The exchange procedure of the CCC

 Constraint Handling of an Optical Components Selection Problem

7

The exchange procedure starts from the second bits. In order to do that, a new
parameter called _Acu Dsip (Accumulated Dispersion) is defined for all of the bit

positions and noted as iAD . There is a unique _Acu Dsip value for each bit in all
strings of the offspring that formulated as:

1

_ (,)
k

i i
i

Acu Disp str k rd rx
=

= ×�

 where ird and irx are respectively the reordered dispersion values and the
reordered bits that contain the integer number of selected items. Both of these arrays
have been already ranked based on the descending order of the iPD values. For the

second turn of the exchange process, the iAD value of the i th position is calculated

first and then the 1i + th bit with the greater 1iPD + value is allocated to the offspring

with the smaller iAD . Simultaneously, the 1i + th bit with the smaller 1iPD + value is

allocated to the offspring with the greater iAD . With this allocation, it is tried to
equally distribute the total dispersion values of the two parents over the two children.
Accordingly, as it is shown in figure 4, for the second turn of the exchange phase, the
second bit of the x parent goes to the y′ offspring and the second bit of the

y parents sits at the second position of the x′ offspring. Besides the balancing of the
dispersion values over the two offspring, there is another rule that should be
considered while swapping the bits: the rule was mentioned above is valid if
swapping the bits doesn’t create the situation that two integers from the same type of
component are located in one string. In order to avoid this situation, the algorithm
compares the index of the bit which is going to sit in the i th position of the offspring
with all of the bits from the first to the 1i − th position. If the exchanging integer is
equal to one of the settled bits, the destination is changed. This means that CCC
sacrifices the equality of the dispersion values in the two offspring in order to prevent
the state of having same component type in one string. This case can be seen for the
last exchange turn in figure 4.

3.4 Mutation

Two cascaded turns of mutation are performed on the offspring obtained from the
exchange phase. Based on the mutation algorithm, any bit greater than zero is
replaced by zero and any bit equal to zero is replaced by a random number between
zero to five. Experiments show that the minimizing procedure is not done properly
without mutation. Therefore, it can be concluded that the mutation here is the
optimizing engine of the algorithm and at the same time provides the diversity over
the search space while the exchange scheme performs the search over the feasible
space.

(6)

Dallaali and Premaratne 8

3.5 Selection

The 12 strings with the best fitness function or equally with the smallest cost value
are selected. A penalty based cleaning phase is performed before the selection phase
in order to remove the offspring with the total dispersion value less then the limit.
This is achieved by increasing the cost of the string with the dispersion value less than
the limit to a reasonably large value more than the cost values of all of the strings.
Therefore such a string is ignored in the selection process.

4 Simulations and Results

CCC has been applied to several test data sets. Among them, the results of three
experiments are presented and analyzed here. In figures 5 to 7 the results of the
simulations with a random array of 63 components are shown. The cost and the
dispersion values of the test components are selected randomly, although the random
values are generated within some limits. In order to create realistic data, these limits
have been adopted from the commercial datasheets. Figure 5 shows how the cost
function gets minimized by CCC and achieves its final stability after passing through
the decreasing transient phase. Figure 5 also compares the final result of the CCC
with the result obtained from the CPLEX software. The reason that CCC can not
obtain the same result as CPLEX is because the last rule of the exchange scheme
described in the section 3.3.2 is not respected perfectly. The implemented scheme can
not avoid the situation when the similar integers of both of the exchanging bits
(coming from the parents) are in a same offspring string. Therefore the algorithm pays
off the similarity of the integers in one string in order to save the balance of the
dispersion values over the offspring.

Fig. 5. CCC performance and the target line obtained from CPLEX

 Constraint Handling of an Optical Components Selection Problem

9

 Figure 6 shows another comparison between the result of the CCC and a penalty-
based GA from our previous work [8]. This method is composed of a simple single-
point crossover, a mutation scheme and a selection phase. After mutation, the total
dispersion value of each offspring is calculated and if it violates the dispersion
constraint, the algorithm adds a penalty value to the total cost of the string. This
decreases the fitness of the infeasible strings and consequently their ranks for
selection phase. As it is seen CCC outperforms the penalty-based method.

Fig. 6. The output of the CCC and the Penalty-Based genetic algorithm

 Figure 7 clears that after the GA passes the transient phase, the dispersion values
of the generations satisfy the goal of the algorithm regarding the feasibility of the
solutions. In order to show that, the minimum and the maximum total dispersion
values of all 12 selected parents have been recorded for each generation and are
sketched as a function of the generations. As it is seen, it converges toward a value
very close and greater than the minimum dispersion limit.

Fig. 7. The maximum and the minimum total dispersion values

Dallaali and Premaratne 10

Therefore, such a performance can be accepted for any double-bound constrained
problem with an upper bound more than the final stabilized dispersion value. In the
performed test experiment the lower limit is 6000 and the final obtained value is
6172. Considering the grain size of the dispersion values of the test data which are
random numbers between 100 and 1000, this performance is acceptable and
satisfying. The performance with smaller grain size data will be considered in future.

 Finally figures 8 and 9 show two more experiments with other test data sets. In the
figure 8 a relatively small size data set of 10 components is examined. The lower
dispersion limit is still 6000 and the values of the input data are arbitrary selected. For
figure 9 a data set of 63 components is tried but the lower dispersion limit is 3000 and
the dispersion values are changing as a row-tooth function of the cost values. The
comparison of the CCC results with the CPLEX answers are shown that for both of
the experiments CCC minimizes the cost to a value close to the CPLEX answers.
There is a higher difference for the first experiment comparing to the second one. It
can be because of the large number of the selected items which may increase the
effect of the problem which was explained for the figure 5.

Fig. 8. Fig. 9.

5 Conclusions

A new crossover scheme called Controlled Content Crossover (CCC) was introduced
and applied to a commercially significant optical component allocation problem. The
simulations showed that it searched for the optimum answer while maintaining the
feasibility conditions of the underlying equations. This was achieved by specifically
designing the genetic operators to satisfy the constraints while searching for the
answer. The total dispersion values of the chromosomes considered as the constraint
of the problem and CCC kept them more than the lower boundary with a reasonably
small offset. This was shown in the simulation results and it meant that by defining a
double-sided constraint, CCC is able to follow the procedures toward the optimum
answer and at the same time satisfy the constraints.

CCC is implemented on the
data set of 10 components

CCC is implemented on the
Third type of data set

 Constraint Handling of an Optical Components Selection Problem

11

 The results of simulations for three different sets of data and parameters were
shown and compared with the answers obtained from CPLEX software. Furthermore,
the performance of the CCC was compared with the performance of a penalty-based
and CCC outperformed the penalty-based scheme.

6 Further Work

Solving the problem of the exchange scheme is first task to follow for the future. As it
was already explained, when two similar integers which are going to be replaced from
the parents to the offspring are in a same destination string, both of the two bits tend
to go to the opposite string which does not contain their twins. If this happens, one
string will receive two bits and the other one does not receive any bit. Performing
CCC with several constraints is the second ossible idea for the further work. It is also
interesting to perform an accurate analysis for the different offset errors of the test
data sets with different grain sizes.

7 References

[1] Goldberg, D. E.: Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Pub. Co. (1989)

[2] Michalewicz, Z.: Genetic Algorithm, Numerical Optimization, and Constraints. Proceedings
of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann Publisher
(1995), 151-158

[3] Koziel, S. and Michalewicz, Z: Evolutionary Algorithms, Homomorphous Mapping, and
Constrained Parameter Optimization, Evolutionary Computation, Vol. 7. No.1 (1999) 19-44.

[4] Michelawicz, Z.: A survey of the Constraint handling techniques in Evolutionary
Computation Methods, Proc. of the 4th Annual Conf. on Evolutionary Programming, MIT
Press (1995). 135-155

[5] Hinterding, R. and Michelawicz, Z.: Your Brains and My Beauty: parents matching for
Constrained Optimization, Proc. of the 5th Int. Conf. on Evolutionary Computation (1998) 810-
815

[6] Sakawa, M. and Kato, K.: Integer programming through Genetic Algorithms with Double
Strings Based on Reference Solution Updating, Industrial Electronics Society, IECON 2000.
26th Annual Conference of the IEEE, Vol. 4. (2000) 2744 - 2749

[7] Chu, P.C. and Beasley, J.E.: A Genetic Algorithm for Multidimentional Knapsack Problem,
Journal of Heuristics, Vol. 4. Kluwer Academic Publisher (1998) 63-86

[8] Dallaali, M.A. and Premaratne, M.: Configuration of optical network using Genetic
Algorithm, Proceeding of ONDM2004, (2004) 279-292

