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Abstract. In this article we present EcoSFERES, a framework that helps ap-
plying learning and evolutionary algorithms to the design of multi-agent sys-
tems (MAS). This framework includes tightly linked abstractions for evolutionary
computing and multi-agent based simulations, and additionally, agent learning
policies can also be included and reused straightforwardly. In particular, EcoS-
FERES makes it possible to implement a variety of learning and evolutionary
techniques in order to compare their results in identical conditions, and it also
facilitates important changes in the simulation setup.
The main added values of this article are, on the one hand, to introduce the first
development framework that provides a generic way of using evolutionary tech-
niques for the design of MAS, and, on the other hand, to show that the tuning of
MAS can be facilitated by a well designed development framework.

1 Introduction

The design of agent-based self-organising systems is now tackling problems of increas-
ing difficulty, as the design of such systems leans toward involving more and more
agents, with increasingly individual capacities, and increasingly interactions. More-
over, such agents are often immersed in a dynamical environment that changes in a
more or less predictable manner, with consequences on the agents that may be im-
possible to foresee. Accordingly, it now becomes extremely difficult for a human to
design such multi-agent systems and several researchers explore the alternative way of
semi-automatic design, in which agents autonomously adapt to each other and to the
environment, so that the overall system exhibits the sought behavior or characteristics.

Basically, such autonomous adaptation can be done through two major processes –
learning and evolution [1] – the former having been more investigated than the latter
as of today. In particular, the major issues raised by learning in a Multi-Agent System
are now acknowledged [2], notably those entailed by the selection of an individual or a
collective learning strategy [3]. Therefore, to facilitate the exploration of the potential-
ities and limits of semi-automatic design through evolution and learning, we developed
a framework called EcoSFERES3, which will be succinctly described in this article.

3 EcoSFERES is an evolution of SFERES [4], which is the acronym of “SFERES is a Framework
Enabling Research on Evolution and Simulation”
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EcoSFERES implements a variety of evolutionary algorithms that are easy to sub-
stitute to each other. Problem dependant parts of the tool,i.e.every part that is involved
in the evaluation of a potential solution, can also be replaced by another, thus taking
advantage of the genericity of such algorithms, that were successfully used in numer-
ous applications [5]. Each part of EcoSFERES, may it concern the selection algorithm,
the genotype or the evaluation part can be changed with one another. Thus different
genotypes can be tested and compared on a same problem in order to search for new
algorithms, or different problems can be tackled with the same genotype and selection
algorithm, thus exploiting available knowledge on new problems.

Section 2 will describe the features common to all evolutionary computing exper-
iments that we used as a starting point in the design of EcoSFERES, while section 3
will describe the structure of EcoSFERES. Section 4 will sketch how some parts of
the framework may be instantiated within the context of a simple agent-based self-
organising application, while section 5 will discuss how the tuning of MAS can be
facilitated by the EcoSFERES development framework.

2 Evolutionary Computing experiments: similarities and
differences

Evolutionary computing experiments work on a population of individuals, that represent
potential solutions. These solutions are progressively optimized thanks to two different
genetic operators: mutation and crossing-over.

Each individual has onegenotype, which is the structure optimized by evolution.
The genotype describes the individual traits, and is the support for the hereditary trans-
mission. A genotype can be instantiated in various structures, depending on the appli-
cation. Such a genotype may be a binary string as in canonical Genetic Algorithms [6],
or it may be a tree-like program as in canonical Genetic Programming [7]. Likewise, it
may encode a direct representation of the system to optimize, or it may indirectly en-
code the sought solution, which will be generated after a developmental step. Genetic
operators depend on the genotype that is used, they have to be defined at the same time
as they directly act on the structure of the genotype.

The generation of a new population from an old one, which is the core of evolu-
tionary algorithms, is actually independant from the genotype. It only needs to be able
to rank individuals and generate new ones. We can further divide it into four different
steps: the selection of the parents, the reproduction, the evaluation and the selection of
the survivors. Every evolutionary algorithm defines its own variant of these steps, but
they are generally used in this order.

There are however evolutionary computing applications (e.g.Echo[8]) where these
operations (parents selection, reproduction, evaluation and survivors selection) do not
take place in sequence, but all at the same time, as in an ecosystem model: individ-
ual “live” in the environment, reproduce, and die. These applications are often used to
model and observe the evolution of self-organizing dynamical distributed systems, that
are subject to changes according to environmental selection pressure.

The evaluation part, which is crucial for evolutionary experiments, is the only part
that is entirely problem dependant. If evolutionary methods can be used to optimize
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functions, they can also be used to evolve the behaviors of agents. The main difference
between the two situations lies in the dependence of the agent’s behavior to spatial and
temporal contexts. The fitness of an agent acting in response to sensory stimuli and to
its history cannot be evaluated in a one-step function evaluation, and the corresponding
behavior must be assessed during a minimal period of time, long enough to be rep-
resentative of the agent’s capacities. This entails using a simulation of the agent and
its environment, or an interface to a real agent like a robot, in combination with the
evolutionary algorithm.

3 EcoSFERES structure

In EcoSFERES, a Simulation package, an Evolution package, an Environment package
and an Agent package are tightly coupled to simulate and let evolve the behavior of
multiple agents (see figure 1). Although some frameworks solely devoted to evolution
[9] or to multi-agent simulation [10] already exist, no other framework, as far as we
know, combines generic evolutionary computing traits with the design of multi-agent
systems.

Fig. 1.Overview of EcoSFERES pack-
ages. Fig. 2.Simulation Package.

3.1 Simulation Package

The Multi-Agent Simulation part (see figure 2) allows the simulation of Multi-Agent
Systems, where agents can be tuned by evolution, by hand, or in both ways.

TheSimulation class is at the core of the simulation and schedules the use of evo-
lution with regards to simulation timesteps. This is a generic class that is sufficient for
the vast majority of applications. The implementation of either a classical, generational
Evolutionary Algorithm, or a non-generational “ecosystem-like” Evolutionary Simu-
lation, relies on the kind of Evaluation and evolutionary operations that were chosen.
The control of events occurring during the simulation is under the responsability of the
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Fig. 3.Agent Package.

Scheduler. It can handle punctual or repetitive events and triggered events can be any
method of any class of the system.

The Evaluation class controls the policy of the evaluation of the agents during a
simulation cycle. Before or during the simulation, Evaluation sets the EvaluationSet of
Agents for each Specie (see figure 4), which corresponds to the set of Agents that are
currently evaluated.

3.2 Agent Package

The simulation includes a list ofAgents. Agents can be predefined or tuned by evolution
and, in the course of an experiment, they can be dynamically added or removed.

Each agent is made up ofSensors, Architectures andEffectors that can be linked
together as shown on figure 3. Sensors provides informations to the agent that are rel-
evant to the behavior to be exhibited. It may concern informations about agent’s own
state, about the environment or about other agents. Effectors correspond to the active
part of the agent relative to the environment. Any part of the agent that will have an ef-
fect on the environment will be derived from this class. Architecture contains the control
part of the agent. From sensory values, it has to decide the behavior to exhibit and then
transmit corresponding orders to its outputs, may it be Effectors or another Architec-
tures. The whole control system of the agent is then a collection of such Architectures,
appropriately linked together and to Sensors and Effectors. Sensors and Effectors are
dependant on a given Environment, but not Architectures that can be reused from one
Environment to another.

Every component of an agent can be designed by evolution, but generally only the
Architecture part is concerned.

As mentioned previously, Sensors and Effectors are the only interface between the
Architectures and the simulated world. It should be noted that if Sensors and Effectors
are generally linked to a simulated environment, it is possible to use them as an interface
with “real” sensors and actuators (e.g.with another information system or with a real
robot). This way, it is possible to evolve a controller either directly on a real robot, or
on a simulated robot. In the latter case, it is also possible, at the end of the simulated
evolution, to replace the virtual sensors and effectors by real ones and to test the solution
thus discovered on a real robot.
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In EcoSFERES, a population is made of agents the structure of which is given in
figure 3. An agent’sGenotypecontains the information that is manipulated by the evo-
lutionary process together with the genetic operators that will modify it,e.g. mutation
and crossing-over operators. It is made of chromosomes the structures of which are eas-
ily tailored to the problem to solve. In particular, as already mentioned, such structures
may be simple strings of bits, or tree-like programs, for instance. A Genotype may even
be a set of such structures in cases where several parts of an Agent are to be simul-
taneously designed. This is the case in some experiments with so-called animats [11],
when evolution has to design both the morphology and the nervous system of a simu-
lated animal or a real robot [12, 13]. In such circumstances, a robot’s morphology may
be encoded in a first chromosome as a string of bits, while the nervous system may be
encoded in a second chromosome as a developmental program that generates a neural
network controlling the animat.

To be evaluated a genotype must be first decoded and transformed into a phenotype
that will be used for the evaluation. Then the performance of the phenotype is deter-
mined thanks to aFitnessfunction provided by the experimenter. The Environment and
the Fitness are separated within EcoSFERES, thus making it possible to test different
variations of the Fitness on the same Environment.

The computation method associated with a fitness function, and the fitness value it
generates, are grouped in a same class. The fitness value assesses the performance of
an individual with respect to the objectives of the experiment. It is used to rank the phe-
notypes and to apply selection algorithms on the corresponding genotypes. Although it
may be of any type, as long as an order can be defined on it, the most commonly used
value is a real value.

Fitness objective is only to rank individuals for the selection algorithms. It is thus
completely independent from the other part of the evolutionary algorithm, thus facil-
itating the design step of such a function, which plays a critical role in evolutionary
algorithms.

3.3 Evolution Package

The general organization of the Evolution module in EcoSFERES is described on fig-
ure 4.

The evolutionary computing operations – parents selection, survivors selection and
reproduction – are reified into independent abstract classes that will implement each of
the corresponding aspect of the evolutionary algorithm. The selection algorithms, both
parents and survivors selection, act as a filter on a population to keep individuals that
have exhibited a good behavior according to the fitness function. The reproduction class
generates new individuals from models and from previously chosen parents. These three
parts are associated with aSpeciethat represents a specific kind of Agents, following a
given model.

This makes it possible to evolve multi-agent systems with heterogeneous agents that
may have different objectives. For instance, several types of individuals may evolve at
the same time on concurrent tasks as in co-evolution experiments involving both preys
and predators[14, 15], where the goal is to simultaneously evolve preys that must es-
cape from the predators and predators that must catch the preys. To simulate such sys-
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Fig. 4.The Evolution package of EcoSFERES.

Fig. 5.Environment Package.

tems, two Species instantiations are required because agents are heterogeneous and do
not share the same goals, and because the selection algorithm must perform a selec-
tion of opponents during evaluation. Increasing the complexity of such an experiment
is straightforward in EcoSFERES, adding for instance a third species – like a super-
predator – requires only to add such a species and to adapt the selection mechanism to
take it into account.

3.4 Environment Package

The environment package is only composed of an Environment class, that reifies the
environment of the Agents. During the evaluation phases, the Environment only takes
into account the EvaluationSet of Agents for each Specie of the system. The Effectors
status of these Agents are read by the Environment and taken into account in order
to update information about the Agent (e.g. its position in a physical world), and then
update the Agents’ Sensors status, according to the environmental perceptions of the
Agent.
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Fig. 6. Overview of the system. The robot visual
perceptions is grabbed as a pixel matrix from the
camera, and is used by the system to decide what
to do next, by aggregating agents votes. The hu-
man teacher interacts with the system by distribut-
ing scalar rewards, that have an influence on the sur-
vival of the agents that participated in the previous
actions.
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Fig. 7. Illustration of the environment and
the agents. Agents live, reproduce and die
in the environment formed by the pixel
matrix. They are fed thanks to the exter-
nal scalar reward, distributed by the human
teacher. Their actions consist in voting for
an action for the robot to take.

Fig. 8.ATNoCells Simulation Package.

4 Example

This section will describe an instantiation of several elements of EcoSFERES within the
context of a simple self-organising multi-agent based application. In this application,
called ATNoCells [16], evolution has to design the behaviors of several lightweight
agents, that collectively control a Pioneer P2DX mobile robot by analysing the visual
information grabbed from its camera, and by outputing speed instructions for each of
the two wheels of the robot. This general functioning is sketched on figure 6. The goal
is to endow the robot with the ability to learn a behavior by demonstration, as shown by
a human teacher.

4.1 ATNoCells Simulation Package

The Simulation used is the generic one (see section 3.1), with the EcoEvaluation. The
EcoEvaluation just imposes to every Specie an EvaluationSet consisting in all the avail-
able population. The Scheduler and Event classes are also the generic ones. Finally, the
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Fig. 9.ATNoCells Evolution package.

Fig. 10.ATNoCells Environment Package.

Statistics that are used are plain, common statistics, like the Best Fitness Statistic that
records the best fitness.

4.2 ATNoCells Evolution Package

The Specie class used is the generic one, while, on the other hand, all the evolutionary
operations are specialized in order to implement the reinforcement learning and evolu-
tionary algorithms as detailed in [16]. In particular, the parents selection take into ac-
count the “age” of agents and their fitness; the reproduction generates children in empty
cells next to parents’ ones; and the survivors selection takes into account the fitness, and
a level of participation of the agents in the previous collective decision taken.

4.3 ATNoCells Environment Package

The environment is specific to the application, since it must feed agents sensors with
the pixel value of their position cell, grabbed from the camera of the robot, and must
aggregate the agents votes in order for the robot to take action.

4.4 ATNoCells Agent Package

The agent used in this application just has some attributes that are used for the reinforce-
ment learning and evolutionary algorithm (e.g.participation measure, age). The sensors
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Fig. 11.ATNoCells Agent Package.

and effectors are also specialized for the application, the sensor being able to read the
pixel value associated to the cell the agent is located on, and the effector transmitting
information of the direction votes for this agent. The architecture is more generic. It is
based on a finite state automaton (namely, an ATN4), and was already used for other
applications [17, 18]. Its reuse in different contexts is straightforward, as well as its de-
coding from the binary string chromosome (like in standard Genetic Algorithms). This
decoding has been one of our points of interest in these previous works. The genotype
used is a generic and standard one, a plain vector of chromosomes, and, finally, the
fitness was designed according to the learning and evolutionary algorithms used.

5 Discussion

Most of the time, the targets of adaptive techniques will be the architectures of the
agents, that govern their behaviors. However, it might happen that one rather wishes
to tune a set of parameters or behaviors that control theorganizationallevel of the
agents [3]. In this case, the target of the adaptive techniques would rather be specialized
instances of the species.

We will now describe how the tuning using adaptive techniques can be achieved
within our framework, by describing how straightforward it is to implement them, or
apply them to different experimental protocols. We emphasize that the reuse of an al-
ready available adaptive technique is straightforward, since it just involves modifying a
XML configuration file5.

5.1 The Use of Different Evolutionary Techniques

Once one has decided whether a generational or a non-generational algorithm should
be used – and therefore, chosen to use the corresponding generic subclass of Simulation
(see section 3.1) – the use of an evolutionary technique is most of the time a matter of
derivating some classes.

If a non-generational algorithm was chosen, the generic EcoEvaluation will do, but
in the case of a generational algorithm, the generic EAEvaluation might need to be
sligthly modified (e.g. for algorithms using tournament evaluations). This is done by
just modifying the method that sets the EvaluationSet of the species for each evaluation
cycle.

4 Augmented Transition Network
5 see http://www-poleia.lip6.fr/˜landau/EcoSFERES/ecosferes.dtd for its DTD
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With respect to the evolutionary operations, since they have been reified and are
connected to the remaining of the framework in a generic fashion, the implementation
of a different one just consists in deriving the corresponding class (e.g.using an elitist
mating algorithm rather than a roulette wheel).

Finally, if the focus is rather on the genetic code, the only classes that need to be
derived are the specific kind of chromosomes and architectures to be used (e.g. our
Stack-Based Gene Expression genetic code [19]), and eventually a specific genome if
the generic VectorGenome is not satisfactory.

5.2 The Use of Different Learning Techniques

We stress that the use of evolutionary techniques is not mandatory in EcoSFERES. In
this case, the EcoEvaluation and dumb evolution operation classes are used, and no
evolution occurs.

In particular, learning techniques can be applied (be it in conjunction with evolution
or not). As a matter of fact, learning at the architecture level is achieved by imple-
menting a virtual method that updates architecture parameter values, with regard to the
information available to the owning agent (if needed this method can be disabled, for
example if a satisfactory level of performances is reached). This way, most of the in-
dividual learning techniques can be implemented. Learning can also be applied at the
organizational level, to whole populations, by deriving an appropriate specie. At each
simulation time step, the specie would update the relevant parameters according to the
chosen learning algorithm.

5.3 Application to Different Multi-Agent Simulations

The application of the evolutionary and learning techniques are quite independent from
the experimental protocol (environment and simulation settings). Therefore, the appli-
cation of these techniques to different multi-agent simulations is, once the supporting
classes are implemented, just a matter of setting a configuration file.

Besides, the implementation of a new experimental protocol most of the time relies
on the implementation of an adequate environment and the corresponding sensors and
effectors. Sometimes, deriving a specific agent can be required.

5.4 Benefits of the framework for the tuning of MAS

The developpement framework might be used as follow for the tuning of a MAS. During
a preliminary study, the behaviors of the agents might be designed at hand and fixed, so
that one can inspect the problem to be solved, and determine where adaptive and self-
organized processes should intervene. This first phase would involve no evolutionary
computing, and would only use the multi-agent simulation subset of EcoSFERES. In
particular, the agent architectures are not subject to modifications by any evolutionary
or learning algorithm. Thanks to the interactive mode of EcoSFERES, the behavior of
the system can be observed, paused, restarted, executed step-by-step or even modified
online. On the other hand, the statistics also help the designer to have a clue about the
relevance of the different set of parameter values he is trying.
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Then, having acquired some experimental knowledge on the cause and consequence
of the complexity of the collective task to be realized, the designer can use or reuse
adaptive techniques by just specifying in the configuration file which architectures
should become adaptive thanks to which evolutionary and/or learning technique. Free
parameters governing the collective behavior of the system are then modified during
this second phase, according to the algorithms chosen, and their effect can be evaluated
thanks to the same statistics set used during phase one.

6 Conclusion

We have presented the EcoSFERES framework, which provides a generic way of us-
ing evolutionary and learning techniques to multi-agent based simulations. This tool
increases the flexibility of use of different adaptive techniques for the tuning of multi-
agent systems, and is therefore a good candidate as a tool for the design of agent-based
self-organising systems.

We have exploited the implementation of SFERES, the preliminary version of this
framework for more than 4 years at the AnimatLab team of the LIP6 and have started
to exploit the EcoSFERES version. It has supported many of the published research
on adaptive systems at the AnimatLab,e.g.the ATNoSFERES project[17] (study of a
genetic encoding) and the ALPhA project [20] (study of the control of a lenticular blimp
by evolved neural networks). It was also used to design controllers for a simulated
helicopter using neural networks [21] or using classical PID-like controllers together
with optical flow exploitation to implement an obstacle avoidance strategy [22]. Many
generic components were already developped. An extension of the framework to the
design of neural networks in which the ModNet encoding has been implemented [21],
an environment for 3D-realistic engine (taking physics into account) based on the ODE
engine6 and several simulators of flying robots, ranging from blimps to helicopters, are
among the modules that are available now.
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