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This paper describes a new approach for function optimization that uses
a novel representation for the parameters to be optimized. By using genetic
programming using, the new method evolves functions that transform initial
random values for the parameters into optimal ones. Moreover, the new approach
addresses the scalability problem by using a representation that, in principle, is
independent of the size of the problem being addressed. Promising results are
reported, comparing the new method with differential evolution and particle
swarm optimization on a test suite of benchmark problems.

1 Introduction

Parameter Optimization (POPT ) problems present themselves in a variety of
important domains ranging from engineering to AI, from mathematics to bi-
ological sciences, in areas such as function optimization, system identification,
AI search, control, machine learning, design and many others. In order to solve
POPT problems using computers, one has to specify a representation for the
parameters of a system and then an algorithm that will perform the optimization
of these parameters.

A lot of research has gone into search, learning and optimization algorithms,
but by no means it can be claimed that a clear understanding of the space
of all such algorithms has been achieved. Also, insufficient research has been
devoted to the question of choosing a good parameter representation for a sys-
tem. Indeed, most of the methods of parameter optimization proposed in the
literature use simple arrays of numbers as a representation for the system’s
parameters. Overall performance differences are then the result of algorithms’
differences/improvements only. This is not satisfactory because major speedup
is often attainable through a change in representation of the solutions rather
than in the search algorithm.

In the area of evolutionary computation there has been some interest in dif-
ferent ways of representing parameters. In most cases the research focus has been
the so-called genotype/phenotype mapping [1, 2, 9], but rarely has this research
considered real-valued mappings.



An issue that also plagues optimization methods is the so called scalability
problem. As the number of parameters to be optimized increases, the size of the
search space increases exponentially, making the problem intractable. To avoid
the exponential growth of the search space, one can impose constraints on the
parameters. However this is not always possible nor desirable.

In this work a new approach for parameter optimization based on Genetic
Programming (GP) [4, 5] is described. The new method introduces a new pa-
rameter representation that is independent of the number of parameters to be
optimized. In Section 2, the new approach is described. In Section 3, results
of experiments are reported. Section 4 concludes with suggestions for further
research.

2 Parameter Mapping Approach(PMA)

The basic idea behind PMA is to use computer programs to represent both the
algorithms and the parameters to be optimized at the same time, and to optimize
such programs using GP. In PMA a population of GP programs represents a set
of trial mapping functions which transform initial sets of parameter values into
adapted ones. Under the guidance of an appropriate performance measure, GP
iteratively improves such functions, until a mapping function is evolved which
can satisfactorily transform a given initial set of parameter values into a good
set of values. The method is illustrated in Figure 1. It must be pointed out that
the initial values assigned to each parameter do not change in the course of the
evolutionary process. They are random constants initialized once and for all.
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Fig. 1. PMA applied to a system with three parameters.

It is interesting to note that, as the same scalar GP function is used to map
each parameter, the result of the evolutionary process performed in PMA can



be interpreted as a non-iterative POPT algorithm that, given the initial set of
random parameters, is able to map it into the target set in one pass. A second
interpretation is to consider the fact that in one way or another the scalar GP
function is a representation for a whole set of parameter values since, given as
input, each component of the initial set of random values produces as output a
corresponding optimum value.

So, in the first interpretation the evolutionary process performed in PMA is
searching the space of possible non-iterative POPT methods for a perfect direct
parameter optimization algorithm. In the second interpretation, the evolutionary
process performed in PMA is searching for a holistic representation for the target
set of parameter values. Naturally, these two viewpoints are entirely equivalent.

In previous research [6, 8], an early version of PMA was applied to the training
of neural networks (NNs). This was inspired by the observation that the process
of training the weights of NNs is simply a (usually iterative) transformation
from a set of initial (typically random) raw weights to a set of trained weights,
and that that transformation does not have to be necessarily implemented in
the iterative gradient-descent way of typical NNs learning rules. If the trained
weights were known in advance, it would be a simple task to build a training
set of pairs (initial-random-weight/trained-weight), and then fit a function to
them by error minimization. However, as the target values are usually unknown,
Genetic Programming was used to evolve a function by using the output error
of the neural network as fitness function. The evolved function was then used
to compute the trained weights by using the initial random weights as input.
The experiments revealed that PMA was more effective than more traditional
approaches.1

The original version of PMA has the following important features that pre-
sumably will also be shared by more general forms of PMA:

1. Within each individual the parameters to be optimized are not individually
encoded: they are represented by a single function. Consequently, the rep-
resentation does not necessarily grow quickly with the size of the problem
of interest (which unavoidably would lead to the exponential growth of the
search space and poor scalability).

2. The use of a parameter mapping function does not impose strong constraints
on the value of the parameters and, consequently, GP can discover and use
arbitrary or nearly arbitrary regularities in the parameter values appropriate
for a problem.

3. The representation exploits this ability in conjunction with a good set of
search operators to beneficially bias the search (with the result of speeding
it up and making it scale up well).

1 The authors were quite aware of the fact that PMA was not limited to the training
of neural networks, and that it could be applied to other POPT problems. However,
due to the lack of financial support, further research could not be carried out. As
funding has now become available, the exploration of PMA was resumed.



3 Experiments

3.1 GP implementation

A steady state form of GP was implemented, with tournament selection and
a non-destructive headless chicken crossover [10]. In this form of crossover, a
standard subtree crossover is performed between a parent selected from the
population and a randomly created individual. The resulting offspring is inserted
in the population if it is superior to the parent, otherwise it is discarded.

The GP function set included four 4-arity operators: SUM=x × y+u × v,
SUB=x×y−u×v, MUL=(x+y)×(u+v) and PDV(x+y,u+v), where x, y, u and v
are the numerical values computed at the root nodes of subtrees. PDV(num,den)
is the protected division, which returns num if den is zero. The reason for using 4-
arity functions is that this breaks the symmetry of the addition and multipication
arithmetic operators, thus reducing the possibility of the so-called permutation
or competing convention problem [16, 15]. The ideia of using these operators was
also inspired by neural networks, as for the first two operators, the values of
nodes y and u may be seen as weights of nodes x and y (or vice-versa).

In the current version of PMA, a sparse encoding for the initial untrained
parameter values was used, where each parameter is actually represented by a
specified number of random constants. When executing a GP tree to map the
untrained parameter into an optimized one, the random numbers representing
that parameter are fed into a set of variables used as inputs (terminals) to
the tree. The values for these variables are changed when a different parameter
is processed. Note that the number of these variables has nothing to do with
the number of parameter being optimized. Depending on the problem, in order
to improve performance, one can use a single variable, 10, 100 or even more, to
represent each parameter. The terminal set also included some random constants
that were initialized in generation zero.

3.2 Test functions

To explore the potential of the new method, it was applied to minimize a set
of benchmark functions, the well-known De Jong set. This set of functions was
chosen because it has been extensively used as a test suite for optimization algo-
rithms. In addition, it includes functions of varying degrees of difficulty, so that
one can compare the performance of different optmization methods. Two other
functions taken from [14] were also included. The whole test suite is as follows:

1)First De Jong function. F1(x) =
∑3

j=1 x2
j , where xj ∈ [−5.12, 5.12] . Mini-

mum is F1(0) = 0.

2) Second De Jong function. F2(x) = 100 × (x2
1 − x2)2 + (1 − x1)2, where

xj ∈ [−2.48, 2.48] . Minimum is F2(1) = 0.

3) Third De Jong function. F3(x) = 30 +
∑5

j=1bxjc, where xj ∈ [−5.12, 5.12] .



Minimum is F3(−5.12 ≤ xj < −5) = 0.

4) Fourth De Jong function modified according to [14]. F4(x) =
∑30

j=1(x
4
j × j +

ν),where xj ∈ [−1.28, 1.28]. Minimum is F4(0) ≤ 30×ν = 15, where ν ∈ [0, 1) is
a random variable with a uniform distribution, and ν = 0.5 is its expected value.

5) Fifth De Jong function.

F5(x) =
1

0.002 +
∑25

i=1
1

i+(x1−ai1)6+(x2−ai2)6

,

where xj ∈ [−65.536, 65.536]
ai1 = [−32,−16, 0, 16, 32,−32,−16, . . . , 0, 16, 32]
ai2 = [−32,−32,−32,−32,−32,−16,−16, . . . ,
32, 32, 32]
Minimum is F5(−32,−32) ≈ 1.

6) Corona’s parabola [14]. F6(x) =
∑4

j=1 fj ,

where fj = 0.15× (zj − 0.05× sign(zj))2 × dj , if ‖xj − zj‖ < 0.05
otherwisefj = dj × x2

j ; xj ∈ [−1000, 1000]
with zj =

⌊∥∥ xj

0.2

∥∥ + 0.49999
⌋
× sign(xj)× 0.2 and dj = {1, 1000, 10, 100}

Minimum is F6 (x)=0, with ‖xj − zj‖ < 0.05.

7) Griewangk’s function [14]. F7(x) =
∑10

j=1

x2
j

4000 −
∏10

j=1 cos( xj√
j+1

) + 1,

where xj ∈ [−400, 400]. Minimum is F7(0)=0.

The performance of the PMA approach was tested on these functions, and the
results were compared to those obtained with the two other methods: Differential
Evolution (DE ) and Particle Swarm Optimization (PSO), as described in [12,
13]. These two algorithms were chosen because they have been reported to be
effectively the state of the art in function optimization.

The size of the population for the PMA runs was 100 individuals, except for
the third test function, where the population was 50 individuals. The tournament
size to select the parent was equal to the size of the population. The terminal set
included 100 variables to encode the initial untrained values of the parameter
being optimized (see Section 3.1). The variables and the random constants of
the terminal set were randomly initialized in the range (-1,+1). The GP trees
were initialized by using a grow strategy [4], where each node had a 50% chance
of becoming an internal or a leaf node. In each experiment, the value of the
parameters controlling the performance of each method was selected to obtain
the best performance.

The results of these experiments are discussed in the next section.



3.3 Experimental results

To evaluate the performance of the three methods, 100 independent runs were
carried out. The 100 runs were divided into 10 batches of 10 runs each. For
each batch, average values for the number of successful runs (HITS) and for the
number of fitness evaluations (NFE) to achieve that result were obtained. The
results for the 10 batches were then used to compute standard deviations.

First set of experiments In the first set of experiments, when the value of
a parameter generated exceeded the boundaries defined for the function being
optimized, the closest boundary value was assigned to the parameter. The results
of this set of experiments are summarized in Table 1, 2 and 3.

In terms of number of fitness evaluations to find a solution, PMA outper-
formed DE in 5 out of 7 of the test set functions, and was superior to PSO in 6
of them. The three methods converged to a solution in almost all runs. However,
for functions F6 and F7, PSO did not converge to any solution at all, and for
function F4, DE had a poor convergence rate.

Although outstanding, these results should not lead one to jump to conclu-
sions. For most of the functions optimized, the minimum values are either 0 or
1, and these values are extremely easy to generate by using the PMA representa-
tion. For example, a GP tree encoding the algebraic expression x-x, will always
produce 0 as a result. Similarly, the algebraic expression x/x will always produce
1, provided that x is greater than zero. Although this is a characteristic of the
parameter mapping approach, it might be considered an unfair advantage (for
other problems this might be a hindrance). Therefore, to eliminate this advan-
tage, modifications were introduced in the original benchmark functions, and a
second set of experiments was carried out.

Second set of experiments In the second set of experiments, the degree
of difficulty was increased by introducing a random shift in each dimension of
the function F (x) being optimized. A different random shift was applied to
each dimension. So that the functions are now F (x1 − r, . . . , xi − r, . . . , xN − r),
where r is a random constant in the range (-1,1), generated by using a uniform
distribution. As a consequence, the optimal values are not 0s and 1s anymore,
but are shifted by the amount provided by the random constant. The boundaries
constraining the search were also shifted by -1 or 1, depending on whether the
random shift was negative or positive. This way, the boundaries were shifted to
guarantee that a solution could be found, without actually giving information
about the value of the random shifts. The results of this set of experiments are
summarized in Table 4, 5 and 6.

As expected, things were harder for PMA this time. In terms of fitness eval-
uations it was outperformed by DE in the optimization of 4 out of 7 of the test
set functions. Moreover, it was also outperformed by PSO in two cases.

Although slower in some cases, PMA seems to be more robust, since conver-
gence was still achieved in 100% of the cases, irrespective of the problem, while



for DE and PSO, there were problems where the performance was poor or they
simply failed to converge to any solution at all.

Third set of experiments For problems where the parameters to be optimized
have completely different ranges, it might be useful to use a scaling procedure.
To investigate whether this might bring any benefit to the optimization of the
current test set, the hyperbolic tangent was used to squash the output of the
GP tree to the range (-1,+1). The results were then rescaled to the appropriate
parameter range by using a linear transformation. This transformation was not
beneficial to neither DE nor PSO, and so these algorithms were not modified.
The benchmark functions were shifted as in the second set of experiments. The
results for PMA are summarized in Table 7.

By comparing Tables 6 and 7, one can see that the results for function F3 and
F5 improved, whereas things got worse for function F7. For the other functions
the results were basically unchanged. So, by considering the PMA results only,
it is up to the user to apply a scaling procedure to the output of the GP tree or
not. However, PMA now beat DE in 4 out of 7 cases and was superior to PSO
in all test functions in terms of number of fitness evaluations.

4 Conclusion and further research

In this paper, a new approach for parameter optimization has been presented.
The results of the experiments have shown that the new paradigm can be more
robust and more efficient than the best function optimization methods. It should
be pointed out that the ideas presented here should be further explored. For
example:

1. The GP function set may include functions that affect particular parameters
but not others. This may help the evolutionary process to reduce or increase
the interaction between parameters, as necessary.

2. Context information can be provided to the mapping function so that the
value of the updated parameter can be made sensitive to context informa-
tion, such as the value of neighboring or otherwise related parameters. In
conventional learning methods a similar strategy is beneficially used. For
example, for training neural networks, where the updating of a particular
weight depends on the value of the others.

3. Although for the problems addressed in this paper the GP function set
used has produced good results, for other classes of problems it might be
interesting to include functions of different arities. The evolutionary process
will then evolve the appropriate combination of them.

In any case, the parameter mapping approach need to be better understood
and positioned in terms of other POPT algorithms. This can be achieved through
comparative experimentation involving a range of optimization algorithms ap-
plied to a variety of interesting test problems, exhibiting various levels of com-
plexity.



Table 1. Results of the application of differential evolution to the optimization of the
benchmarck functions. SF is the scaling factor, and CP is the crossover probability.

Fi DE

i SF CP NFE(σ) HITS(σ)

1 0.5 0.3 937(23) 10(0)
2 0.9 0.5 961(64) 10(0)
3 0.8 0.3 157(13) 10(0)
4 0.2 0.2 892,622(93,531) 2.2(1.8)
5 0.9 0.3 2,097(121) 10(0)
6 0.4 0.2 2,413(39) 10(0)
7 0.2 0.2 62,875(2,451) 10(0)

Table 2. Results of the application of particle swarm optimization to the benchmarck
functions. MS is the maximum speed. σ is the standard deviation.

Fi PSO

i MS NFE(σ) HITS(σ)

1 0.01 4,378(251) 10(0)
2 0.01 6,193(604) 10(0)
3 10 49(2.9) 10(0)
4 0.01 99,291 (2,128) 0.1(0.3)
5 1.0 2,638(224) 10(0)
6 0.01-5 2,000,000(0) no hit
7 0.01-5 2,000,000(0) no hit

Table 3. Results of the application of the parameter mapping approach to the op-
timization of the benchmarck functions. FC is the fraction of terminals initialized as
random constants. σ is the standard deviation.

Fi PMA

i FC NFE(σ) HITS(σ)

1 0.5 360(88) 10(0)
2 0.9 2,070(729) 10(0)
3 0.9 29(9) 10(0)
4 0.5 17,775(5,847) 10(0)
5 0.9 20,763(5,530) 10(0)
6 0.5 972(254) 10(0)
7 0.5 541(159) 10(0)



Table 4. Results of the application of differential evolution to the optimization of
the benchmarck functions randomly shifted. SF is the scaling factor, and CP is the
crossover probability.

Fi DE

i SF CP NFE(σ) HITS(σ)

1 0.5 0.3 500(29) 10(0)
2 0.9 0.5 902(44) 10(0)
3 0.8 0.3 142(11) 10(0)
4 0.2 0.2 902,137(69,548) 1.9(0.8)
5 0.9 0.3 1,309(61) 10(0)
6 0.4 0.2 3,613(42) 10(0)
7 0.2 0.2 63,153(1,930) 10(0)

Table 5. Results of the application of particle swarm optimization to the benchmarck
functions randomly shifted. MS is the maximum speed. σ is the standard deviation.

Fi PSO

i MS NFE(σ) HITS(σ)

1 0.01 4,083(339) 10(0)
2 0.01 5,828(556) 10(0)
3 10 49(3.4) 10(0)
4 0.01 95,186(3,349) 1.1(0.5)
5 1.0 2,7333(230) 10(0)
6 0.01-5 2,000,000(0) no hit
7 0.01-5 2,000,000(0) no hit

Table 6. Results of the application of the parameter mapping approach to the opti-
mization of the benchmarck functions randomly shifted. FC is the fraction of terminals
initialized as random constants. σ is the standard deviation.

Fi PMA

i FC NFE(σ) HITS(σ)

1 0.5 1,685(167) 10(0)
2 0.9 5,798(1,552) 10(0)
3 0.9 85(44) 10(0)
4 0.5 18,068(3,874) 10(0)
5 0.9 53,078(14,929) 10(0)
6 0.5 10,528(4,406) 10(0)
7 0.5 11,896(1596) 10(0)



Table 7. Results of the application of the parameter mapping approach to the opti-
mization of the benchmarck functions randomly shifted, by using a scaling procedure.
FC is the fraction of terminals initialized as random constants. σ is the standard de-
viation.

Fi PMA

i FC NFE(σ) HITS(σ)

1 0.5 1,656(245) 10(0)
2 0.9 5,319(1,418) 10(0)
3 0.9 28(7) 10(0)
4 0.5 20,012(4,507) 10(0)
5 0.9 1,092(535) 10(0)
6 0.5 12,778(2,071) 10(0)
7 0.5 20,887(7,858) 10(0)
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