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Abstract: The ant systems optimization approach is a new method of solving 

combinatorial optimization problems. It was originally introduced as a 

metaheuristic approach for the well-known traveling salesman problem. But it 

was subsequently shown to be an equally effective algorithm for solving other 

optimization problems. In this paper, we present an ant colony algorithm for 

data-centric routing in sensor networks. In each pass of the proposed algorithm, 

ants are placed at the terminal nodes of the tree to be computed. They are then 

allowed to move towards one another, along the edges of the graph, until they 

merge into a single entity. In this process, the paths taken by the ants define a 

data distribution tree. Edges receive reinforcement in the form of pheromone 

deposits along the paths taken by the ant. Pheromones eventually accrue most 

along better edges. In addition to forward and backwork ants, we also use 

random ants whose purpose is to enable sharing of information pertaining to a 

node potential with neighboring sensors. Since ant algorithms perform 

computations solely through local interactions between ant-like agents by 

means of pheromones, they scale well for large-scale applications, and are 

particularly attractive for real world systems. The algorithm can easily be used 

in several practical applications. 

 

 

1. Data-centric Routing in Sensor Networks  
 
Sensor networks are networks of nodes capable of sensing and tracking in different 

contexts such as factory floors, transportation systems and hospitals. As these 

networks are deployed and sensor applications are developed, algorithms for control 

and management will be necessary. For example, consider a network of sensors 

deployed in a city to monitor traffic. Example usage of data from such a network 

involves queries such as "What is rate at which cars are passing a given intersection 

X?" or "What is the number of vehicles waiting at traffic light Y?" Moreover, 

different clients may be interested in knowing this information at different sampling 

rates. This, for instance, may require a data-centric routing tree in which data can be 

efficiently aggregated at intermediate points or may require a minimum rate tree in 

which data is sent at different rates over the edges to satisfy requirements of each 

destination [1]. 
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The data-centric routing in sensor networks can be formalized as follows. Assume that 

the network is represented by a graph G = (V, E), where V is the set of nodes and E is 

the set of edges. In Multi-source Single-destination Data-Centric routing (MSDC), 

there exist a set of source sensors and a single destination node, which are included in 

a subset T of V. For example, the destination may be interested in a particular 

phenomena and a set of sensors in the vicinity or related to this phenomena may 

subsequently send information to this sink). In this case, all sensors are assumed to be 

sending the same information. Hence, data can be aggregated at intermediate nodes 

(and duplicate data can be suppressed). The task is to construct an optimal tree that 

contains the source nodes and the destination such that the tree performs optimal 

aggregation. Since the source nodes may not be directly connection to the destination 

there may be nodes other than the source and destination that are part of the tree. 

However, these intermediate nodes receive and forward the information along the tree 

(that is, they do not consume or process the information other than maybe eliminating 

duplicates). This problem was first defined in [1] by Krishnamachari et al, which 

proposed and evaluated some sub-optimal schemes for generating aggregation trees 

(including a greedy incremental tree approach). 

 

2. The Ant colony approach 
 

Real ants, in spite of their extremely simple behavior, are known to trace out an 

optimal path from their nest to a food source and back, by means of cooperative 

activity. Communication between the ants is achieved through the deposition of trail 

pheromones. While negotiating a path to the destination, each ant deposits a trail 

along its path for other ants to follow. Each ant also tries to follow the trail left by 

previous ants, but does so in a highly stochastic manner, using the trail only as a 

rough indicator of the eventual trajectory. The trail that the numerous ants in the nest 

leave, also keep evaporating with time. Eventually, the pheromone level gets 

concentrated most along an optimal path from the source to the destination. 

 

Ant colony algorithms are particularly suitable for large-scale distributed systems. 

Among the advantages they offer over traditional methods are (i) scalability, (ii) 

robustness, and (iii) suitability for dynamic environments [2]. These algorithms are 

highly scalable because all computations are solely in the form of local interactions 

alone, carried out in a purely distributed environment and without any centralized 

control. Robustness arises not only as ants, which are very simple agents, are less 

likely to fail, but also because an ant’s failure will not seriously affect the 

performance of the algorithm. Ant algorithms have been shown to carry out 

computations very effectively in dynamic environments [3,4]. A number of 

advantages of distributed ant colony algorithms are listed in [5]. 

 
Algorithms based on this approach have rapidly gained popularity in network-based 

applications [6,7,8]. Amongst the earliest of such approaches were ABC and CAF, 

which assumed symmetric costs across links and were useful in telephone and packet-

switching networks [3,6]. Another class of approaches, including Ant-net has begun 

to appear that consider the case of asymmetric costs [10,11]. Two types of ants are 

employed - forward ants and backward ants that travel in opposite directions. Forward 
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ants originate from the source nodes in the network and migrate towards the 

destinations, collecting information concerning path costs between edges along the 

way. Backward ants take the information collected by the forward ants and retrace 

their paths, updating the local parameters at each node based on this information. 

Other similar techniques have begun to make their appearance [12,13,14,15]. 

 

Defining ant movements for problems that involve establishing an optimal path from 

one single source to a destination is accomplished relatively easily. Establishing ant 

movements for the TSP problem and some other permutation problems is also 

straightforward as each ant simply executes a cyclic path covering all nodes before it 

reaches its starting nodes. However having ants define a tree from a given graph is 

more complex and was studied recently [7,8,9], where the ant colony paradigm was 

applied to the Steiner tree problem, a problem of significance in many algorithms, 

which involves tree computations.  

 

A distributed version of the algorithm for data-centric routing was proposed in [16]. 

The algorithm proposed in this paper improves upon the algorithm by adding a third 

class of ants to it, called random ants, and making appropriate changes in the 

algorithm. Tests have been performed on the algorithm to show its effectiveness. 

 

3. Outline of the algorithm 
 

This section describes the distributed ant colony algorithm. The input to this algorithm 

is again a weighted graph ),( EVG =  where each edge has a cost. The terminal nodes 

VT ∈  have both the source as well as the destination sensors. The destination node is 

called d . A direct edge ),( ji  between two sensors (nodes) i  and j  exists if the two 

sensors can communicate, in which case, the cost of the edge is the Euclidean distance 

between them, ).,( jidist   

 

The algorithm makes use of three kinds of ants, forward ants that travel from the 

sources to the destination, exploring new paths and gathering information, backward 

ants, that travel back to the sources from the destination to update the information in 

each sensor node as they move, and random ants who dissipate information collected 

at the nodes among other neighboring nodes. Ants traveling in such a manner have 

been explored previously for establishing routes in computer networks. In the present 

method, a tree is obtained from the graph G when the paths traced by forward ants as 

they merge into each other or reach the destination. This tree defines the paths along 

which data is to be transmitted from the sources to the destination. Because the 

forward ants move from the sources to the destination, ,d they can also carry packets 

of data. 

 

When the forward ants move across the network, the movement is governed by two 

factors, the pheromone trails that are deposited along the edges, and the potential of 

the nodes. The potential of a node is a heuristic that provides an estimate of how far 

an ant will have to travel from any the node to either reach the destination d or to 

aggregate data with another node. In other words, this node potential of each node is a 
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measure of the distance of the node to the tree. 

 

Each sensor node i contains two tables, the pheromone trails, iτ  and the node 

potential, iΨ , each of size equal to inbd , the number of sensors in the 

neighborhood of i (assumed to be known a priori). Therefore, ji,τ , the j
th

 entry of the 

pheromone table is the pheromone concentration from the trail leading from i to a 

neighboring sensor j. Similarly, each ji,Ψ  is the node potential of sensor j stored at 

node i .  

 

The pheromone trails are all initialized to a sufficiently high value 
0

τ  to make the 

algorithm exploratory, and the initial node potentials are based on heuristic estimates. 

Each sensor node also maintains a variable itag , which is initialized to zero, and 

contains information about how many ants have visited the node. 

 

Forward Ant Movement: The total number of forward ants is equal to the number of 

source sensors, and each ant begins its path from a source sensor in }{dT − . Each 

such forward ant m maintains the tabu list )(mT  of nodes already visited, as well as a 

variable )(mpCost , the path cost, that indicates the partial cost contributed by the 

ant’s own path to the Steiner tree. The list )(mT is initialized to the source sensor 

where the ant is located, while )(mpCost  is set to zero. 

 

The probability of an ant moving from any current node i to another one j in inbd  is 

given by,  

 

∑
∈

Ψ

Ψ
=

inbdk

kiki

jiji

jip βα

βα

τ

τ

)()(

)()(

,,

,,

,                                                  (1) 

 

where α and β  are the two constant exponents associated with the algorithm. In 

order to prevent the formation of cycles, nodes in )(mT  that are already visited are 

excluded. The next location for ant m is chosen based on this probability, the new 

location j is pushed into )(mT , and jtag  is examined. If jtag  is zero, indicating that 

location j is previously unvisited, the cost of the path ji → , ),( jidist is added to 

)(mpCost . A non-zero value indicates that another ant has already visited the node, 

and therefore the cost of the path ji →  is already incorporated in another ant’s 

pCost . Under these circumstances, the forward ant m has already merged into an 

already existing path. It simply follows the previous ant’s path to the destination node.  

 

The destination node, d contains a variable cost, the total cost of the tree path from the 
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sources to d. When a forward ant m  enters the destination node, d it increments cost 

by an amount )(mpCost . In the present version of the online algorithm, it is assumed 

that the total number of source nodes is known by the destination at the beginning of 

the computation. When all forward ants have arrived at the destination, backward ants 

are generated at the destination. There is a one-to-one correspondence between the 

forward and the backward ants, and a backward ant, also indexed as m acquires the 

list )(mT  of the corresponding forward ant m. Algorithm 1 outlines the algorithm for 

controlling the movement of forward ants through the network. 

 

 
Algorithm 1: Forward-Ant 

//forward ant m  move from a source }{)( dTsrc m −∈  to d  

forwardAnt(m , 
)(msrc , d ) 

begin 

 FALSEf =  

 
)(msrci =     

{})( =mT     

push( iT m ,)(
)    

0)( =mcost     

while di ≠  

 if FALSEf =  

)(m

i Tnbdj −∈∀ , compute 

∑
∈
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Ψ
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inbdk

kiki

jiji

jip βα
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τ

τ
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,,

,,

,  

   select j  based on probability 

   jnexti =  

  else 

   inextj =  

  endif 

  move to j  

 if FALSEf =  

  ),()()( jidistpCostpCost mm +=  

 endif 

  if ( 0)( >jtag )   

   TRUEf =  

  endif 
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  1)()( += jj tagtag  

ji =     

 endwhile 

end 

 

Backward Ant Movement: Each time a backward ant moves, it pops )(mT  to obtain the 

next destination. The backward ants carry a copy of the destination variable cost. This 

information is used to update the pheromones. A backward ant that moves from node j 

to node i updates the pheromones of node i in the following manner, 

 

cost

Q
jiji ρτρτ +−= ,, )1( .                                             (2) 

 

In the above equation, the quantities ρ  and Q are the usual parameters of the ant 

colony optimization. The second term in the right of the above equation depends 

inversely on the total cost. If the path from i to j eventually leads to a low cost Steiner 

tree, then the pheromone concentration is incremented by a higher amount.  All other 

entries, jk ≠ , of the pheromone table are subject to evaporation as before, 

 

kiki ,, )1( τρτ −= .                                                       (3) 

 

Updating the tables of node potentials is somewhat more complex. A node’s potential 

is considered low if it is either close to the destination, or brings a forward ant closer 

to the rest of the Steiner tree. In order to detect the cost of a node to d, each backward 

ant m maintains a variable )(mpCost , the path cost, similar to a forward moving one, 

initially zero at the destination d , that gets incremented by an amount equal to 

),( jidist  whenever a backward ant moves from j to i. When a backward ant is in any 

node, )(mpCost is the cost of the path joining the node to d. In order to compute the 

cost of joining a node to another route, i.e. only a branch of the Steiner tree, another 

variable )(mrCost , called the route cost, is used by backward ants, which is updated in 

the same manner. However, )(mrCost  is reset to zero each time a backward ant 

detects a split in a path leading to more than one branch of the Steiner tree. A split, 

leading to another branch is detected by examining the itag  variable of a node i. If 

the previous node of the backward ant was j, then node i is a separate branch if itag  < 

jtag . A backward ant m  leaving a node j  decrements the jtag  variable such that at 

the end of the first set of backward ants travel back to the sources in S, these variables 

are reset to zero for future ants. The updating rule for ji,Ψ  is, 

 
)()(

,
mm

ji pCostrCost ×+×=Ψ λγ                                  (4) 
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where γ and λ are two additional parameters. Since from equation (8), the forward 

ants are biased towards preferring nodes with lower potentials, the second term in the 

above equation allows them to hop closer to the destination d  while the first term lets 

the forward moving ants prefer towards nodes that have already been included in the 

route of another ant. This updating is carried out only if the node potential gets 

lowered. The objective here is to identify the least expensive way to get to the 

destination, if a previous ant has found a lower potential for a node then updating it as 

in equation (4) is not applied.  

 

Algorithm 2 outlines the describes the movement of backward ants through the 

network. 

 
Algorithm: Backward-Ant 

//backward ant m  move from destination d  to source 
)(msrc  

Backward Ant(m , d , 
)(msrc ) 

begin 

0)( =mpCost     

0)( =mrCost     

while 
)(msrci ≠    

j = pop(
)(mT ) 

  move to j  

if ( ji tagtag ≠ )       

   ;0)( =mrCost  

  else 

   ),()()( jidistrCostrCost mm +=  

endif 

),()()( jidistpCostpCost mm +=  

  
cost

Q
TT ijij ρρ +−= ,, )1(      

  ljlj TTl ,, )1( , ρ−=∀  

if 
)()(

,
mm

ji pCostrCost ×+×>Ψ λγ  

)()(
,

mm
ji pCostrCost ×+×=Ψ λγ  

endif 

  ji =  

endwhile 

end 
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For simplicity, we have not provided an outline of the overall algorithm. It is clear 

however that the task of the destination is to gather information from each arriving 

forward ant, to compute the total cost of the tree. The backward ants are released only 

after all of the forward ants arrive at the destination. Likewise, each source sensor can 

only send forth a new forward ant only after the arrival of the backward ant in a 

previous iteration. It is clear that in our present version, even in the distributed 

environment, the sensors operate with a certain degree of synchrony. At any instance, 

the network is filled with either forward traveling ants, or with backward ones, but not 

both. The random ants, on the other hand, are free to move about in an asynchronous 

manner. 

 

Random Ant Movement: The information collected by the forward ants is used by the 

backward ants to update the local information stored at the nodes. However backward 

ants are restricted to follow the paths of the forward ants only. The purpose of the 

random ants is to share this information pertaining to a node potential with 

neighboring sensors. 

 

The movement of random ants is not driven by heuristics. In order to move, these ants 

simply select a location drawn at random from the neighborhood list of their current 

node. When a random ant leaves any sensor i , it records the minimum node potential 

at that sensor as )( ,ikkmin Ψ . When it hops from one sensor to another node j , the 

node potential of i recorded there is updated as, 

 

( ))(),(, ,,, ikkjiji minijdistmin Ψ+Ψ=Ψ                                            (5) 

 

The algorithm provided below depicts the movement of random ants. 
Algorithm: Random-Ant 

//random ant m   

Random Ant(m , i ) 
begin 

compute )( ,kikmin Ψ  

select j  from inbd  

move to j  

( ))(),(, ,,, ikkjiji minijdistmin Ψ+Ψ=Ψ  

ij =  

end 

 

 

4. Simulation Results 

 
The algorithm was evaluated using discrete event simulation with Java as the 

programming language. The inputs to the simulation program are the following three 
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files:  

1. Node.txt contains N, the number of nodes, node number for the destination 

node, and the node number of the sources.  

2. Coordinate.txt contains the coordinates for the nodes. This file is generated by 

randomly dispersing nodes over a certain range.  

3. Graph.txt contains the egde costs.  

The simulation program is an event-driven program where the program is initialized 

with events to start the movement of the forward ants at the source node and the 

random ants at randomly selected nodes. The program is subsequently driven by the 

events occurring in the algorithm. The simulation program simulates the local nature 

of the algorithm (that is, only local information is available to the ants and any data 

structure used are only for the purpose of collecting performance results). Initially, the 

algorithm was simulated for small sized graphs to enable manual checking of the 

results to ensure correctness of the program. Subsequently, the algorithm was 

simulated for larger graphs with the total number of nodes, N = 50, 100 and 200.  

 

The nodes in the simulation were placed randomly using uniform distribution across a 

1 X 1 sized area. Instead of creating a fully connected graph, nodes were connected to 

each other probabilistically, with the probability of connection being inversely 

proportional to the Eucilidean distance between the nodes. For nodes that were 

connected, the cost of the edge was simply equal to the distance between them. 

Exactly 20% of the nodes were selected as destination nodes. The trail evaporation 

rate ρ  was set to 0.1, and the parameters γ and λ were set to 5 and 2 respectively.  

 

The results for a 50-node and a 200-node network are shown in Figure 1 and Figure 2 

respectively. The experiments were carried out with different number of random ants. 

For example, with 5% random ants, random ants are started at 5% of the nodes. As 

can be seen, as the number of random ants is increased, trees with lower costs are 

obtained.  For the 50-node network, the tree cost converges to 3.87, 3.41 and 3.05 for 

0%, 5% and 10% random ants respectively. For the 200-node network, the tree cost 

converges to 9.6, 8.57 and 7.7 for 0%, 5% and 10% random ants respectively. With 

random ants, we find that during the initial iterations, the tree cost varies significantly 

(in fact, some of the initial tree costs may be higher). This is due to the fact that 

random ants allow more paths to be explored, which may sometimes lead to higher 

cost trees. However, these paths are not taken in subsequent iterations.  
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Figure 1: Simulation results for a 50 node network 

 

 

5. Conclusion  

 
In this paper, we proposed an application of ant colony algorithms to the problem of 

data centric routing in sensor networks. The problem involves establishing paths from 

multiple sources in a sensor network to one or more destinations.  When only a single 

destination is involved, the set of optimal paths amount to a minimum Steiner tree, 

which is an NP-complete problem. We presented an online algorithm for data centric 

routing. The algorithm uses forward ants, backward ants and random ants. The 

purpose of the random ants is to spread node potential information among 

neighboring nodes. We show that this enables ants to explore new lower cost paths, 
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Figure 2: Simulation results for a 200-node network 

                                                            

resulting in more efficient distribution trees. The performance of the algorithm was 

evaluated using discrete event simulation.  
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