
Navigation Using Inverting Genetic Algorithms: 
Initial Conditions and Node-Node Transitions 

Steven J. Simske1 and David C. Matthews2 

1Hewlett-Packard Company, 3404 East Harmony Road, Mailstop 85 
Fort Collins, CO 80528, USA 
steven.simske@hp.com 

2Colorado State University, Computer Science Department, 
Fort Collins, CO 80523-1873, USA 
davematt@cs.colostate.edu 

Abstract. Navigation path optimization derives its cost function from the total 
cost of travel. These costs can accrue from distance, traffic patterns, preferred 
order of node sequencing, maximum preferred distance between nodes, and 
other pragmatic considerations (node-node costs). For a traveling salesman 
problem (TSP), these costs are usually distances. This paper considers the ef-
fects of the initial states in the “genome”—focusing on the use of rule-based 
and clustering techniques for initial conditions. It also considers the effects of 
weighting the node-node transition costs on algorithm convergence and final 
path cost. The best tested combination of initial states and rules for recombina-
tion involves weighting each by the distances between nodes. In addition to the 
mean of the residual error µ, the metric designated algorithmic efficacy (AE) is 
introduced as a useful comparative metric for navigational optimization algo-
rithms. Four novel and six published TSP problems are investigated: µ is shown 
to improve in every case, while AE has a wide range of results. 

1   Introduction 

The utility of genetic algorithms (GA’s) for solving difficult optimization problems 
efficiently benefits navigational systems [1]. This is due in part to the role of muta-
tion, crossover and inversion in preventing futile iterating around non-global minima 
[2]. However, when large numbers of nodes (positions that are traversed between) are 
involved, or when node-node transitions are difficult to represent with the traditional 
loci set of GA’s [3], GA’s can fail to explore the problem space sufficiently to find 
the global minimum cost. For navigational systems, node-node transitions can rarely 
be viewed in isolation, but instead practical issues around traversing particular node-
node pathways must be accounted for. GA researchers have looked at gene linkage 
[4,5], punctuated crossover [6,7] and “messy” GA’s [8] as means of allowing groups 
of co-adapted genes to be inherited together during the recombination/crossover 
phase of the GA. Multiple recombination strategies [9] also can provide greater vari-
ety in offspring. In this paper, the concept of “relative gene linkage” via weighted 
node-node transition costs is introduced. Relative gene linkage is imposed directly 



(via initial pathway specification) and indirectly (via probabilistic inversion, or cross-
over via reversal of a substring of the gene). A means for comparing the algorithmic 
efficacy (AE) of different initial conditions and node-node probability schemes is 
introduced. 

2   Initial Conditions, Node-Node Transitions and Test Cases 

The experiments performed here are roundtrip traveling salesman problems (TSPs) in 
which the starting node is also the ending node, and every other node in the set is 
traversed. Nodes thus correspond to physical locations (points, or cities in three of the 
examples). Node-node transitions are the costs (herein, simply the distances) associ-
ated with moving between one node and another. A particular node-node transition 
will be called a state, and each experiment limits the number of states to N, the num-
ber of nodes. That is, for each node reached, the next node must be one that has not 
yet been visited, with the exception of the last node visited, for which the subsequent 
state returns to the starting node. 

2.1   Initial Conditions 

Because convergence efficacy is increased when (a) the initial genes are close to the 
optimal genes, and (b) at least some of the initial genes are evaluated (and selected) 
before the first crossover, the following initial conditions were explored: 

1. Naïve. Here the N nodes in a navigational pathway are chosen randomly, one af-
ter the other, until all N are exhausted. This is a reasonable starting point when N is 
small or when node-node distances are relatively similar for all node-node transitions. 

2. Weighted Nearest Neighbor. Here, for each node, the costs to each of the other 
N-1 nodes is calculated, and all “#1” choices, where possible, awarded. From the 
remaining pool of node-node transitions, all “#2” choices, where possible, are 
awarded. This continues until all node-node pathways have been assigned. For exam-
ple, in a 4-node problem, if the following node-node transition distances are recorded: 

Table 1. Sample 4-node problem with node-node transition distances as shown 

 Node 1 Node 2 Node 3 Node 4 
Node 1 -- 40 30 35 

Node 2 40 -- 50 55 
Node 3 30 50 -- 70 
Node 4 35 55 70 -- 

 
Node 1-Node 3 is assigned first. Node 4-Node 1 is assigned next. Because Node 1 

is now complete, Node 2-Node 1 cannot occur in an exhaustive complete traversal, 
and so the following traversal is obtained: {Node 4-Node 1-Node 3-Node 2-Node 4}. 



3. Lowest Remaining Distance. Here, the lowest remaining distance between any 
“nonexhausted” nodes is always assigned. This and the preceding method are gener-
ally reasonable when the nodes are relatively evenly spaced; however, when there are 
a small number of outlying points, this can results in extraneous large distances 
to/from/between such outliers. 

4. Centroid + Clockwise/Counterclockwise Traversal. In this method, the starting 
point is selected at random, and then the path follows from one node to the next along 
a clockwise/counterclockwise path around a reference point. The centroid of all nodes 
is the reference point for the rotation. 

5. Clustering + Method 4. If the distances between nodes vary considerably, then 
the nodes themselves are candidates for clustering. Traditional clustering techniques 
(e.g. K-means) can be used to assign the nodes to distinct clusters, along with a 
method found to be useful herein for cluster definition: A cluster C composed of 2 or 
more nodes is valid if the minimum distance of a path between all of its nodes is less 
than the distance to any other nodes in the set of all nodes S. 

2.2   Node-Node Transitions 

Node-node transitions can be differentially weighted to affect the initial generation of 
genes, to impact the location of crossover, or both. Some important means of assign-
ing node-node transition probabilities (or costs, normalized to sum to 1.0 for all pos-
sible transitions from a given node) include: 

1. Naïve. Here, all probabilities are identical, and so each node-node transition 
cost, or probability, is defined as: Pi = 1/(N-1), where N=#nodes. 

2. By Relative Distance. The node-node costs are weighted by relative distance. 
One such method is to use a step size of ∆P, so that Pi = P(Min)+((i-1) * ∆P), where 
P(Min) is the minimum cost, and i=1…N. This is also “ranked” distance. 

3. By Cluster. If nodes are assigned to clusters, then the weighting within the clus-
ters can be higher than the weighting outside of the cluster (many possible methods). 
That is, p(Ci,Cj) > p(Ci,Nj), where C is the cluster, and N = S-C is the set of all other 
nodes (outside the cluster C). 

4. By Direction. If a clockwise/counterclockwise traversal is occurring, then the 
next nodes in the direction being traversed can be weighted more highly. This Bayes-
ian technique is advantageous for determining dynamically the probabilities for cross-
over (however, due to space limitations and its modest benefits, this is not considered 
further herein). 

5. By Distance. An inverse weighting scheme is used here, where the 
weight/probability Pi = Ci/dij for all nodes i to all other nodes j. Since the weighting is 
inversely proportional to distance, then dij/dji = Pj/Pi, and thus Cj/Ci = 1, Pi = k/ dij, 
and since Σi=1…NPi = 1.0, then k = 1/(Σj=1…N(1/dij)), and so: 

Pi = 1 / (di * Σj=1…N(1/dij)). (1) 

This can be extended to any power X of distance readily as given here: 

Pi = 1 / (di
X * Σj=1…N(1/dij

X)) (2) 



It can also be readily extended to any function f(i): 

Pi = f(i) / Σj=1…N(f(i))) (3) 

In real-world applications, these node-node transition costs are based on, among 
other things, distance and traffic patterns between nodes, and intelligent clustering of 
nodes based on similarity in the navigator’s intents at each destination (e.g. cities to 
visit may be clustered by language in Europe), maximum distance preferred between 
nodes, and other pragmatic considerations. 

2.3   Test Cases Investigated 

First we describe four novel test cases we designed to provide a wide gamut of tests. 
We developed a Java-based toolkit allowing for control of: (1) number of genes, (2) 
crossover rate and type, (3) mutation rate and type, (4) test for performance asymp-
tote, (5) test for optimal fitness intransigence, (6) fitness (cost), (7) selection rate, (8) 
initial conditions, and (9) node-node transition costs. 

Of the four custom test cases, the first is the “Iceland” challenge, wherein 9 cities 
in Iceland (Anglicized to: Akranes, Akureyri, Borgarnes, Egilstaddir, Hofn, Isafjor-
dur, Reykjavik, Selfoss and Vik, distances garnered from [10]) were traversed in a 
roundtrip TSP path as described above. For this type of problem, the number of pos-
sible “optimum pathways” is at least 2N, where N=#nodes, since the optimum single 
traversal optimum pathway can start and end at any node, and traverse either clock-
wise or counterclockwise. Thus, the odds of randomly selecting an optimum pathway 
are 2N/N! = 2/(N-1)! For the Iceland case, this is 1/20160. 

The second case used 20 cities in the United States and the reported distances be-
tween them. The cities were selected to ensure that no obvious optimal pathway could 
be obtained (unlike the Iceland case, in which it is in hindsight obvious that the “Cen-
troid + Clockwise/Counterclockwise Traversal”, among others, provides the optimal 
path). For the “USA” case, the odds of randomly selecting an optimum pathway are 
2/19! = 1/(6.082255x1016). 

These two (“Iceland” and “USA”) test cases were used to explore the effects of 
initial conditions and node-node transitions. The optimal set of initial condition and 
node-node transitioning methods were then applied to two further cases. The 
“Europe” test case uses 30 cities in Europe and the distances between them. The cities 
are all on the continent and north of the Alps in an attempt to prevent obvious outliers 
and increase the complexity of the overall task. For the “Europe” test case, the odds 
of randomly selecting an optimal pathway are 2/29! = 1/(4.42088x1030). Finally, a 
synthetic case (“Grid”) was considered. The “Grid” case consists of a four-by-four 
grid of “squares”, simulating the inner and bordering intersections of a 3x3 set of city 
blocks. Because of the geometry of the grid, the odds of randomly selecting a mini-
mum pathway is 192/16! = 1/(1.08973x1011). 

For all of the test cases, except where noted otherwise, the following specifications 
were employed: (1) 50 genes were used. (2) Crossover rate was set at 90%, with 
crossover consisting of a roulette-wheel selection of two splicing locations (that is, 
two intra-loci transitions), followed by reversal of the pathways between the nodes. 



This is known as inversion. For example, if the original pathway was: 1234567891 
for cities 1-9, and the splicing transitions were found to be 2-3 and 6-7, then our 
“crossed-over” result is 1265437891. The Java Math.random() function was used for 
determining the splicing locations; therefore, the true inversion rate was 80% = 
(0.889*90%) due to the possibility of identical splice points for the “Iceland” case, 
and 85.5%, 87% and 84.4% for the “USA”, “Europe” and “Grid” cases, respectively, 
for the same reason. (3) Mutation rate was set at 2%, and employed as a swap of two 
loci. For the previous example, this results in 1264537891. True mutation rate was 
1.78%, 1.9%, 1.93% and 1.88%, respectively, for the “Iceland”, “USA”, “Europe” 
and “Grid” cases. (4) Rapidly-converging (asymptotic) runs of the algorithm were 
determined by comparing after each iteration of the GA the standard deviation (STD) 
of the fitness (or “cost”, which was total distance) for the first half of the iterations to 
the STD of the fitness over the last half of the iterations. If the ratio was greater than 
four, then the particular run of the algorithm was declared “converging”. (5) If con-
verging, the run was either terminated and the optimal fitness and path/s recorded or 
else the mutation rate was increased to 5% for one iteration and the run allowed to 
proceed. This “spot” increase in mutation rate was termed “jiggling.” (6) Fitness cost 
was simply the sum of all node-node distances. (7) Selection rate was based on rela-
tive cost for each gene. Suppose two genes G1 and G2 had cost 2500 and 3000, re-
spectively. Then, the survival weight for G1 was proportional to 1/2500 and that for 
G3 proportional to 1/3000. Summing these for all genes and normalizing to 1.0 al-
lowed selection of survival using iterations of Math.random(). For example, if G1 
ended up with 3% of the total fitness, then, for example, in the 50 iterations of 
Math.random(), each value in the interval [0.00, 0.03) would select for one G1 off-
spring (expected value 1.5 offspring out of 50). (8) Initial conditions could be as-
signed by any of the means discussed above. (9) Finally, node-node transition costs 
offered a unique opportunity to improve the expected fitness and performance of the 
GA. An example of the “naïve” assignment of these transitional probabilities is 
shown here (Probability, P, = 0.125 for all 8 Transitions from “Hofn”): 

<Transition Source="Hofn" Destination="Akranes" Value="493" P="0.125"/> 
The weighting scheme of Eq. 1 is shown here (Probability, P, = 0.23 from Boston 

to nearby New York, but is only 0.01 to far-away Seattle): 
<Transition Source="Boston" Destination="New York" Value="211" P="0.23"/> 
<Transition Source="Boston" Destination="Seattle" Value="3088" P="0.01"/> 
In addition to these four novel test cases, we then performed tests on 2 symmetrical 

and 4 asymmetrical cases published on [11]. The asymmetrical tests can have differ-
ing distances from A to B than from B to A, thus complicating the effects of inver-
sion. 

3   Results and Discussion 

For the “Iceland” and “USA” cases, three sets of 1000 runs (computing time: 1-15 
min/set) of the genertic GA software were performed, and the following data com-
puted: (1) minimum (Cmin), maximum (Cmax) and range (Cr) of “lowest cost”, or “op-
timal” pathways obtained in each run; (2) mean (µ) of the optimal pathways obtained 



(or “error”), and the standard deviation (σµ) of the means for the three sets of 1000 
runs; and (3) the number of iterations (Ni) to converge on the optimal value so ob-
tained (along with the standard deviation of Ni, σN). Since the true (global) optimum 
cost (Copt) was known (2009 km for the “Iceland” case, 9271 miles for the “USA” 
case), Cmin, Cmax, Cr, µ and σµ were normalized by Copt (and are thus presented as 
percentages of the optimal cost) and 100% subtracted from them (excepting Cr and 
σµ) so that they show incremental percentage over the optimum. For the “Europe” 
and “Grid” tests, sets of 10,000 (1-6 hours) or 100,000 (1-4 days) runs were per-
formed, affording a very accurate set of data. For the published cases [11], sets of 
1,000 (1-4 days) runs were performed. The data reported here represent more than a 
year’s worth of 733 MHz CPU time altogether. 

3.1   Iceland Case 

Node-node probability regimens were used to determine the initial set of genes (Table 
2). The first was a naïve assignment in which the next node was randomly selected 
from the remaining (legitimate) pool. The second used relative distance weighting for 
all nodes (normalized to 1.0 after each assignment for the remaining nodes) where 
step size ∆P=0.05 and P(Min)=0.02, so P(Max)=0.23. The third used the results of 
clustering to pool together the nodes (Akranes, Borgarnes, Reykjavik and Selfoss) 
and thus exclude the other five nodes (within cluster weighting was increased to 3, 5, 
15 and 30 times the extra-cluster weighting, with peak effectiveness at 15X, the re-
ported value in Table 2). The fourth used inverse distance weighting (Eq. 1). 

Table 2. Results for the “Iceland” case using different node-node transition methods for deter-
mining the initial genome. All groups are significantly different (p<.01) comparing (µ +/- σµ) 
and (Ni +/- σN). Cmin = 0.00 for all sets of runs, and so CT=Cmax 

 Naïve Rel. Dist  Cluster Distance 
Cmax (%) 11.50 8.41 6.57 8.16 
µ (%) 0.247 0.085 0.130 0.054 

σµ (%) 0.012 0.021 0.029 0.017 
Ni 8.049 5.930 6.434 4.592 
σN 0.027 0.076 0.165 0.116 

 
The naïve assignment (random gene sequencing) results in 0.247% expected in-

crease in best solution cost over true optimum (“error”), with a mean of 8.05 itera-
tions (representing 50*8.05 ~ 402 genes) to reach convergence. For the simple clus-
tering technique, the mean optimal cost is 0.130% above true minimum (a 47.4% 
relative decrease) with a concomitant decrease to 6.434 (a 20.1% relative decrease) 
iterations (~ 322 genes) to reach convergence. Further improvement is obtained by 
the “Relative Distance” method, in which longer distances from a node are incremen-
tally weighted less (for probability): the mean optimal cost is only 0.085% above true 
optimum (a 65.6% relative decrease from “Naïve”) while reducing further (to 5.950, 
or ~298 genes, a 26.1% relative decrease from “Naïve”) the iterations to reach con-



vergence. Lastly, the “Distance” mean optimal cost reduces to 0.054% above true 
optimum (a 78.1% relative decrease from “Naïve”) and iterations to reach conver-
gence reduce to 4.592 (~ 230 genes, a 42.9% relative decrease from “Naïve”). To 
compare these results relatively, “Algorithmic Efficacy” (AE) can be defined as: 

AE = k/(µ * Ni) (4) 

where k is a normalizing constant for the particular case (k=1 for the “Iceland” case). 
AE (not shown in Tables) for the “Naïve”, “Rel. Distance”, “Cluster”, and “Distance” 
algorithms is 0.50, 1.98, 1.20 and 4.03, respectively. This value indicates that the 
“Distance” method is eight times as effective as the “Naïve” method. 

Due to the simplicity of the “Iceland” case, the “Naïve” and “Clustering” initial 
conditions were the only ones that did not produce the global optimum immediately. 
“Naïve” results are presented above, and for the “Clustering” a maximum AE of only 
0.56 was obtained, obviating any significant advantage of clustering for a set of 9. 

The last set of experiments on the “Iceland” case focused on the utility of the four 
node-node probability schemes described earlier (Table 2) when deployed for inver-
sion locations in addition to determining the initial genome (Table 3). 

Table 3. Results for the “Iceland” case using different node-node transition methods for deter-
mining both the initial gene set and the inversion loci. “Rel. Distance” and “Distance” groups 
are statistically significantly different from all other groups in comparing (µ +/- σµ) and (Ni +/- 
σN). Cmin = 0.00 for all sets of runs, and so CT=Cmax 

 Naïve Rel. Dist  Cluster Distance 
Cmax (%) 8.46 8.16 8.51 4.74 
µ (%) 0.261 0.121 0.329 0.0066 

σµ (%) 0.058 0.010 0.040 0.0056 
Ni 8.167 5.371 6.196 3.056 
σN 0.052 0.068 0.130 0.138 

 
The “Cluster” method (AE=0.49) applied to initial gene set and crossover provides 

no improvement in mean optimal cost compared to “Naïve” (AE=0.47 or 0.50 in 
Tables 2 and 3). For “Rel. Distance”, AE = 1.54, slightly worse than when it is used 
in determining the initial genome only. However, the AE for the “Distance” technique 
is 49.6, or 100 times the “Naïve” value (and 25 times the value obtained when “Dis-
tance” is used for the initial gene set only). Thus, the “Distance” technique is the most 
effective of the techniques investigated. Because σµ and σN are relatively small for all 
of the other cases investigated, they will be shown no further. In Tables 2-5, Cmin = 
0.00 for all sets of runs, and so CT=Cmax. 

3.2   USA Case 

For relative distance weighting of the “USA” case, the step size ∆P=0.05 and 
P(Min)=0.00763, so P(Max)=0.09763. The clustering technique pooled the nodes 
(Los Angeles, San Diego), (Dallas, Houston, San Antonio), (Atlanta, Charlotte) and 



(Boston, New York, Philadelphia and Washington D.C.), thus excluding the other 9 
cities (a relative cluster-to-noncluster weighting of 25X is reported in Table 4). The 
values for the more complicated “USA” are higher for Cmax, Cr, µ and Ni than for 
“Iceland” (Table 4). As a consequence, for AE (Eq. 4) in the “USA” case, k was set 
to 1000. For the “Naïve” initial gene set assignment, AE = 1.58. “Rel. Distance” AE 
= 1.66, “Cluster” AE = 1.60, and “Distance” AE = 1.62. These values are similar, and 
indicate that for more complex cases, initial genome assignment by these methods 
does not significantly affect AE. 

Table 4. Results for the “USA” case using different node-node transition methods for deter-
mining the initial genome. All groups are statistically significantly different in comparing (µ 
+/- σµ) and (Ni +/- σN). 

 Naïve Rel. Dist  Cluster Distance 
Cmax (%) 33.00 29.08 28.63 28.51 
µ (%) 9.866 8.094 7.108 6.234 

Ni 63.99 74.57 87.69 99.04 
 
The effect of initial conditions (“Naïve”, “Weighted Nearest Neighbor”, “Lowest 

Remaining Distance”, “Centroid + Clockwise / Counterclockwise Traversal” and 
“Clustering”) were considered. When the “Lowest Remaining Distance” initial condi-
tion was used, the values for (µ +/- σµ) and (Ni +/- σN) obtained were (6.223+/-
0.095%) and (99.61+/-3.76), respectively, yielding an AE of 1.61. However, the first 
noticeable improvement in algorithmic efficacy for the “USA” case occurred when 
the “Centroid + Clockwise / Counterclockwise Traversal” initial condition was used 
for 10% of the initial gene set. When this pathway (which has a supra-optimal tra-
versal distance of 11100 miles, or +19.7%) was used together with “Naïve” node-
node probabilities, the values for (µ +/- σµ) and (Ni +/- σN) obtained were (3.107+/-
0.089%) and (52.45+/-2.73), respectively, yielding an AE of 6.14, or a four-fold 
improvement over the previous methods. In the next set of runs, this pathway was 
used together with “Distance” node-node probabilities, and the values for (µ +/- σµ) 
and (Ni +/- σN) obtained were (2.270+/-0.016%) and (81.69+/-0.97), respectively, 
yielding an AE of 5.39, with a significantly lower µ than for any previous methods. 

For inversion loci determination, the same set as described in Table 3 was used 
(Table 5). Note that the first columns in Tables 4 and 5 (as for Tables 2 and 3) should 
be statistically similar/equivalent (and are), since they represent the same “Naïve” 
protocols. Unlike the results in Table 4, the results in Table 5 show compelling 
changes in µ without offsetting increases in Ni. Thus, AE (with k=1000) is 1.64, 3.99, 
4.63 and 11.87, respectively, for the four columns, and the “error” µ improves sig-
nificantly by 2.46, 2.81 and 6.48 times for the last three columns, respectively, when 
compared to the “Naïve” results. 



Table 5. Results for the “USA” case using different node-node transition methods for deter-
mining both the initial genome and the inversion loci. All groups are statistically significantly 
different from all other groups in comparing (µ +/- σµ); and the “Distance” group is statistically 
significantly lower than the other groups for (Ni +/- σN).  

 Naïve Rel. Dist  Cluster Distance 
Cmax (%) 52.00 23.55 17.58 11.50 
µ (%) 9.557 3.886 3.407 1.475 

Ni 63.97 64.52 63.46 57.11 
 
The “USA” case was also investigated for its convergence sensitivity to mutation 

rate and to survival of the “best” initial state on the value for AE (using the “Naïve” 
method for node-node transitions). Mutation rate was varied from 2% to 40%, with 
AE very stable at 2%, 3%, 4% and 5% (AE=1.60-1.63 for runs of 10,000 in this 
range). Above 6%, the mutation rate deleteriously affected AE, reducing it to 1.42 at 
8%, 1.00 at 20% and 0.58 at 40%. From this it was validated that a low mutation rate 
(2-6%) is appropriate for a task the size of the “USA” problem. When the “Distance” 
method for node-node transition is used, however, even modestly increased rates of 
mutation are more deleterious. When the mutation rate is 2%, AE varies from 11.27-
11.87; when it is increased to 4%, AE varies from 7.31-7.63, a decrease of more than 
35% (mean error also increased from approximately 1.5 to 1.85, a 23% increase). 
Thus, mutation rate should be set lower for “Distance” than other methods. 

Selecting the 4% mutation rate (mid-optimal band), the “Centroid + Clockwise 
Traversal” initial state was then preserved for from 2%-100% of the initial states 
while using the “Distance” method for node-node transitions and the rest of the initial 
genome determination (3 separate sets of 10,000 runs were performed at each per-
centage). For this set of conditions, a very high AE was obtained for the “USA” set—
nearly twice as high as the 11.87 value for the 0% preservation of this initial state 
shown in Table 5. For 2%, 4%, 6%, 8% and 10% preservation, AE values were 20.3, 
20.8, 21.5, 22.3 and 23.3, respectively. The value for AE continued to climb until 
approximately 30% preservation of the original state, after which values from 28-31 
were obtained. This series of tests emphasizes that, if possible to estimate effectively, 
initial state can significantly enhance even the “Distance” method for initial genome 
and node-node transitions thereafter. 

3.3   Europe and Grid Cases 

The “Europe” and “Grid” cases were tested on multiple runs of 100,000 (Table 6), 
comparing the naïve GA to the use of distance w. For the “Europe” case, the “Dis-
tance” technique provided a 3.5-fold improvement in mean error (µ), a moderate in 
iterations (Ni), and thus the ratio of AE(“Distance”)/AE(“Naïve”)=3.037. For the 
“Grid” case, the value of µ improved by a factor of 6.09, the value of Ni decreased by 
12.1%, and thus the ratio of AE(“Distance”)/AE(“Naïve”)=6.83. 



Table 6. Results for the “Europe” [E] and “Grid“ [G] cases using “Naïve” or “Distance“ node-
node transition methods for determining the initial genome. Paired groups are significantly 
different (p<.01) comparing (µ +/- σµ) and (Ni +/- σN) 

 [E]-Naïve [E]-Distance [G]-Naïve [G]-Distance 
Cmin (%) 1.52 0.0 0.0 0.0 
Cmax (%) 54.79 29.56 37.5 25.0 
µ (%) 26.6 7.6 11.18 1.94 

Ni  202.7 233.7 28.2 25.1 
 
The “Europe” Naïve case did not reach the minimum value in 800,000 runs of the 

GA (Cmin = % in Table 6), while the “Distance” case reached Cmin 22 times in 
800,000 runs. This corresponds to 200*50*800,000, or 8x109, genes evaluated, a 
large number but still far less than the 4.42088x1030 ratio of super-optimal to optimal 
paths. The extraordinary power of the “Distance” GA is evidenced by the ratio of 
(22x4.42088x1030)/(8x109), which means the GA was 1.2x1022 times more effective 
than random pathway assignment at finding an optimal pathway for the “Europe” 
case. 

3.4   TSPLIB Cases 

Table 7. Results for the symmetrical (upper two data rows) and asymmetrical (lower 4 data 
rows) TSP problems [11]. 

 µ-Naïve Ni-Naïve µ-Distance Ni-Distance 
ei151 56.2% 360.7 24.6% 423.7 
ei1101 102.9% 1323.6 53.4% 999.9 
br17 43.7% 39.2 31.2% 79.4 
ft70 27.3% 166.5 24.7% 1636.3 
p43 4.39% 532.3 1.65% 1109.6 
ry48p 49.6% 310.5 24.4% 466.4 

 
We have also tested large sets (1000 runs each) of the “Naïve” and “Distance” cases 
on 2 symmetrical (ei151 and ei1101) and 4 asymmetrical (br17, ft70, p43 and ry48p) 
published TSPs [11]. The symmetrical problems show results (Table 7) consistent 
with those of our large novel cases: significant (2X) reduction in mean error using the 
“Distance” method compared to the “Naïve” method, with a modest change one way 
or the other in iterations. The asymmetrical problems, however, show less predictabil-
ity: mean error drops by a mere 9.5% for ft70; 28.6% for br17; 50.8% for ry48p; and 
62.4% for p43. Number of iterations (Ni) to converge, however, increases when using 
the “Distance” method compared to the “Naïve” method, such that for br17 and ft70, 
the value for AE actually increases. The poorer relative performance of the “Dis-
tance” method on the asymmetrical problems is likely due in part to the fact that in-



version of sub-paths may result in unpredictable changes in distance, removing some 
of the effectiveness of the “Distance” method. 

4   Summary and Future Work 

This paper introduces a metric useful for making comparisons between different GA 
strategies: “Algorithmic Efficacy”, AE, which incorporates both the (residual) error 
and the number of iterations required for convergence. For all of the cases presented 
herein, the use of “Distance” weighting of node-node transitions for both initial gene 
sequencing and for dictating inversion splicing locations results in compelling im-
provements in “error” and lesser so iterations. Initial conditions can also significantly 
improve the value of AE. The relative value of the other (simpler) distance-based 
methods depends on the nature of the case: the “Iceland” case, for example, is opti-
mized by a clockwise traversal around the centroid while the other cases are not. 
From these data, it appears that the inversion distance weighting is a significant 
means of optimizing both the initial genome and the inversion decisions. Mean error 
µ is improved by 3.5 to 37.4 times for our novel cases, decreasing as the complexity 
of the case increases, and AE is improved by from 3 to 99 times for the “Distance” 
compared to “Naïve” method. In the most complex case, “Europe”, the “Naïve” 
method did not reach the minimum value in 800,000 runs, while the “Distance” 
method reached the minimum value 22 times. Clearly, if minimizing the cost of the 
path is important, the “Distance” method for both initial conditions and node-node 
transitions is preferable to any other methods investigated here. The modest increase 
in Ni observed for the “Europe” case need be tempered by the fact that after an equal 
number of runs (203) the value for µ was improved by 3.4 for the “Distance” com-
pared to “Naïve” method—in other words, the additional 31 runs contributed only 
another 3% to the improvement in µ of the “Distance” method. 

On the standard symmetrical and asymmetrical problems we explored [11], the in-
verse distance weighting generally reduced mean error appreciably, except in an 
extremely asymmetrical case (ft70), in which the node-node distances were highly 
bimodal, and so “naïve” methods were roughly equally effective. AE actually in-
creased for inverse distance weighting techniques on several asymmetric problems 
(br17, ft70), but for similar reasons to those cited above for the “Europe” case: limit-
ing the “Distance” method to the same number of runs as the “Naïve” method, in each 
case, resulted in less than a 5% change in mean error, µ. 

The results are applicable to many broad areas of navigation: visiting a set of des-
tinations, finding best paths when a particular destination must be replaced or a par-
ticular node-node transition is missing (e.g. detours, closed roads, traffic jams, etc.), 
and even extra-navigational process optimizations. Detours can be represented in at 
least two ways: (1) implicitly as prohibitively high node-node costs (or, equivalently, 
zero-valued node-node probabilities), and (2) explicitly as “missing” transitions. 

Gene linkage and related co-inheritance techniques [4-7] can be viewed as similar 
to the clustering techniques described herein where p(Ci,Nj) = 0.0 for all nodes i in 
the cluster C and all nodes j in the nonclustered space S = N-C (N is the set of all 
nodes). However, the work presented here automates the linkage of loci/genes in a 



non-binary and adaptive fashion, and its performance is significantly enhanced com-
pared to clustering schemes. Loci pairs with lower costs of transition are innately 
linked to a greater degree than loci pairs with higher transition costs. In other words, 
the “gene linking” comes for free. 

Future work includes the need for separate testing of the effect of inversion rate, 
mutation rate, and more advanced “jiggling” strategies and cost functions. Condi-
tional (Bayesian) methods of assigning initial state and crossover splicing locations 
were introduced but not evaluated here. It is likely that in many navigational prob-
lems error and convergence rate improvements can be garnered applying these meth-
ods to the initial state, crossover, and mutation parameters. Rule-based direction of 
initial state and selection (e.g. spectacularly unlikely genes are discarded) should also 
be evaluated. Finally, since the technique described here is innately related to cost 
optimization, a more mature cost representation than simple node-node transition 
weighting is appropriate. When non-roundtrip TSP pathways are legitimate, the nodes 
themselves must be weighted, and cost optimization will involve several (often com-
peting) factors: node value, node-node transition cost, replacement node value, multi-
node value schema (i.e. where visiting a particular set of nodes sequentially or during 
the entire pathway increases their summed value), and possible additional value for 
re-visiting a node, among others. 
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