
Breeding Swarms: A GA/PSO Hybrid

Matthew Settles1 and Terence Soule1

Department of Computer Science, University of Idaho,
Moscow, Idaho U.S.A 83844

Abstract. In this paper we propose a novel hybrid (GA/PSO) algo-
rithm, Breeding Swarm, combining the strengths of particle swarm op-
timization with genetic algorithms. The hybrid algorithm combines the
standard velocity and update rules of PSOs with the ideas of selection,
crossover and mutation from GAs. We propose a new crossover operator
(VPAC), incorporating the PSO velocity vector, which actively disperses
the population preventing premature convergence. We compare the hy-
brid algorithm to both the standard GA and PSO models in evolving so-
lutions to four standard function minimization problems. Results show
the algorithm to be highly competitive, often outperforming both the
GA and PSO.

1 Introduction

Genetic Algorithms (GA) and Particles Swarm Optimization (PSO) are both
population based algorithms that have proven to be successful in solving a vari-
ety of difficult problems. However, both models have strengths and weaknesses.
Comparisons between GAs and PSOs have been performed by Eberhart and
Angeline and both conclude that a hybrid of the standard GA and PSO models
could lead to further advances [3] [1]. In previous research, a comparison of the
two algorithms on recurrent artificial neural networks has led us to the same
conclusions [11]. In this paper we present a novel hybrid GA/PSO algorithm,
Breeding Swarms (BS), combining the strengths of GAs with those of PSO. The
hybrid algorithm is compared to the standard GA and PSO models in evolving
solutions to four standard function minimization problems.

The PSO algorithm is conceptually simple and can be implemented in a few
lines of code. PSOs also have memory, whereas in a GA if an individual is not
selected the information contained by that individual is lost. However, without
a selection operator PSOs may waste resources on poor individuals. A PSO’s
group interactions enhances the search for an optimal solution, whereas GAs
have trouble finding an exact solution and are best at reaching a global region
[3]. Hybrid GA models are often used to overcome this problem.

Our hybrid algorithm combines the standard velocity and position update
rules of PSOs with the ideas of selection and crossover from GAs. The algorithm
is designed so that the GA performs a global search and the PSO performs a
local search. Other hybrid GA/PSO algorithms have been proposed and tested
on function minimization problems [8] and [10]. Lvbjerg incorporated a breeding

2 Matthew Settles and Terence Soule

(arithmetic crossover) operator into the PSO algorithm, where breeding occurred
inline with the standard velocity and position update rules. Results using this
implementation yielded little improvement over the standard PSO algorithm.
Robinson tested a hybrid which used the GA algorithm to initialize the initial
population of the PSO algorithm and another in which the PSO initialized the
initial population of the GA. This approach too yielded a small improvement
when a GA was used to initialize the PSO algorithm.

In previous work, a GA and PSO were tested and compared when evolving
the weights for a fixed topology Recurrent Artificial Neural Network (RANN)
[11]. Both the GA and PSO were successful in evolving weights for a RANN that
produced a periodic output in response to a fixed input signal. However, the algo-
rithms produced different results for different network sizes. Thus, demonstrating
that they implement different search strategies. We believe that the correct com-
bination of both models has the potential to achieve better results faster and to
work well across a wide range of problems.

Initial research in designing an algorithm which incorporated elements of
both GA and PSO showed promising results [12]. Here the hybrid algorithm was
able to outperform both the GA and PSO in evolving the weights for the same
fixed topology RANN.

1.1 Genetic Algorithm

Genetic algorithms were first introduced by Holland in the early 1970’s [6] and
have been widely successful in optimization problems, especially in the binary
domain.

In these experiments a real GA, using chromosomes consisting of real values,
was chosen for comparison. Tournament selection is used with a tournament
size of 3. The crossover operator chosen for use in this experiment was blended
crossover (BLX-α) [4]. In blended crossover, two parents are selected using some
selection scheme. Each gene in the offspring is then calculated by randomly
choosing a position in the range [mini − ∆ ∗ α : maxi + ∆ ∗ α]. Where mini =
min(xi, yi), maxi = max(xi, yi) and ∆ is the distance between xi and yi. In this
experiment α was chosen to be 0.1.

The mutation operator chosen for this experiment was similar to one used
in Bek’s masters thesis and shown to work well with real coded GAs [2]. Each
individual which is mutated is subject to one of three possible types of mutation
defined in equations 1, 2 and 3.

With a probability of 85%

genemutated = genecurrent + Xmax ∗ ϕ/3 (1)

With a probability of 10%

genemutated = genecurrent ∗ (MA)ϕ (2)

where MA is a parameter called mutation altering and ϕ is a uniform random
number in the range [0:1].

Breeding Swarms 3

With a probability of 5%

genemutated = genecurrent ∗ ρ (3)

Where ρ is a uniform random variable in the range [-1:1].
All tests used a population size of 20. The two best individuals are copied

into the next generation (elitism). The mutation rate is 0.5 and the mutation
altering parameter was set to 1.5.

The parameters used for each algorithm are shown in 1.

Table 1. Parameters for GA, PSO and BS

Parameter GA PSO BS

Population size 20 20 20
Max iterations varies varies varies
Selection type elitism & tournament N/A tournament
Tournament size 3 N/A 2
Crossover rate 0.8 N/A N/A
Mutation Rate 0.5 N/A N/A
Mutation Altering 1.5 N/A N/A
Social N/A 2.0 2.0
Xmax varies varies varies
Vmax Xmax Xmax Xmax

1.2 The Particle Swarm Optimizer

As described by Eberhart and Kennedy, the PSO algorithm is an adaptive al-
gorithm based on a social-psychological metaphor; a population of individuals
(referred to as particles) adapts by returning stochastically toward previously
successful regions [7].

During each generation each particle is accelerated toward the particles pre-
vious best position and the global best position. At each iteration a new velocity
value for each particle is calculated based on its current velocity, the distance
from its previous best position, and the distance from the global best position.
The new velocity value is then used to calculate the next position of the particle
in the search space. This process is then iterated a set number of times, or until
a minimum error is achieved.

The PSO implementation used here is that of Clerc’s, PSO with constriction
factor.[9]. The governing equation are defined in 4 and 6.

vid(t) = K[vid(t − 1) + c1 ∗ rand() ∗ (pid − xid(t − 1)) (4)

+c2 ∗ rand() ∗ (pgd − xid(t − 1))]

4 Matthew Settles and Terence Soule

K =
2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , whereϕ = c1 + c2, ϕ > 4 (5)

xi(t) = xi(t − 1) + vi(t) (6)

vid - The particle i’s velocity at dimension d.
xid - The particle i’s position at dimension d.
c1,c2 - Social parameter.
pid - Particle i’s previous best position at dimension d.
pgd - Global best particles position at dimension d.

Clerc, et al., found that by modifying ϕ, the convergence characteristics of
the system can be controlled. For this test ϕ was set to 4.1, thus K = 0.73. Using
the recommendations of Shi [13], A limit on the velocity parameter, Vmax, was
set to Xmax.

1.3 Breeding Swarm

Both Angeline [1] and Eberhart [3] have suggested that a hybrid combination of
the GA and PSO models could produce a very effective search strategy. Our goal
is to introduce an adjustable hybrid model that makes it possible to optimize
the GA/PSO hybrid. Our results show that with the correct combination of GA
and PSO, the hybrid can outperform, or perform as well as, both the standard
PSO and GA models.

The hybrid algorithm combines the standard velocity and position update
rules of PSOs with the ideas of selection, crossover and mutation from GAs.
An additional parameter, the breeding ratio, determines the proportion of the
population which undergoes breeding in the current generation. The generic
hybrid algorithm is as follows.

For 1 to Elite
x <- copy(x_best)

For 1 to (pop_size-Elite)*Breed_Ratio
x <- Select an Individual
x <- Update Velocity
x <- Update Position

For 1 to (pop_size-Elite)*(1-Breed_Ratio)
x1 <- Select an Individual
x2 <- Select an Individual
Crossover(x1, x2)
Mutate(x1, x2)

Breeding Swarms 5

First, Breeding Swarm copies the n best individuals into a temporary pop-
ulation, Elitism. Next, (pop size − n) ∗ Breed Ratio individuals are selected,
using some selection scheme, to undergo the standard velocity and position up-
date rules of PSO. Third, the remaining individuals needed to fill the population
are selected, again by some selection scheme, for crossover and mutation (the
selection scheme may or may not be the same scheme as in the previous step).
Finally, the temporary population is copied into the working population, fitness
is calculated and the process is repeated for some number of iterations. Values
for the breeding ratio parameter range from [0.0:1.0] and can be set at either
run time (static), stochastic, or adaptive.

In this implementation of Breeding Swarms we chose not to include elitism,
elitism of 0, or mutation. The use of the global best individual can be described as
a type of elitism and the velocity update rule as mutation. The breeding ratio was
set to 0.5. As with any GA the crossover, selection and mutation operators can be
modified to suit the problem. Here Tournament selection, with a tournament size
of 2, was used to select individuals for velocity and position update and to select
parents for crossover. The crossover operator developed for these experiments is
a new crossover which incorporates the PSO velocity vector, Velocity Propelled
Averaged Crossover (VPAC). The goal is to create two new child particles whose
position is between the parents position, but accelerated away from the current
direction in order to increase the diversity of the population. Equations 7 and
8 show how the new child position vectors are calculated using VPAC. Towards
the end of a typical PSO run, the population tends to be highly concentrated in
a small portion of the search space, reducing the effective search space. With the
addition of the VPAC crossover operator, a portion of the population is always
pushed away from the group, increasing the diversity of the population and the
effective search space.

c1(xi) = (p1(xi) + p2(xi))/2.0 − ϕ1 ∗ p2(vi) (7)

c2(xi) = (p1(xi) + p2(xi))/2.0 − ϕ2 ∗ p1(vi) (8)

Where ϕ is a uniform random variable in the range [0.0:1.0]. Positions which
fall outside the maximum range are then clipped to Xmax. The children’s velocity
vectors are averaged and the previous best vector is set to the new position
vector, effectively restarting the children’s memory.

The velocity and position update rules remain unchanged from the standard
implementation of the PSO. The social parameter is set to 2.0, inertia is linearly
decreased from 0.8 → 0.2 and Vmax is set to Xmax.

2 Test Problems

Four numeric optimization problems were chosen to compare the relative perfor-
mance of the Breeding Swarm algorithm to GA and PSO. These functions are
standard test functions used in other evolutionary studies. The first two func-
tions are unimodal, while the remaining two are multimodal. All functions are
designed to have a global minima near the origin.

6 Matthew Settles and Terence Soule

The first test function is the Ellipsoidal function given by the equation:

f0(x) =
n∑

i=1

ix2
i (9)

x is a real-valued vector if dimension n and xi is the ith element in the vector.
The second function is the Rosenbrock function given by:

f1(x) =
n∑

i=1

(100(xi+1 − x2
i) + (xi − 1)2) (10)

The third test function is the generalized Rastrigin function given by the
equation:

f2(x) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10) (11)

The final function is the generalized Griewank function given by:

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 (12)

These functions have been widely used in a number of different studies in-
volving evolutionary optimization (see [1], and others.)

2.1 Initialization Method

Often in comparative experiments, researchers choose to set the initial popula-
tion uniformly distributed about the search space and usually symmetric about
the origin. Furthermore, many test functions have global optima at the origin,
including those used in this experiment. Fogel and Beyer has shown that this
method of initialization can give a false impression in relative performance [5].
Given that the location of the global optima is generally not known, they suggest
that the initialization range not include the global optima. A detailed description
of the initialization parameters for all test function are shown in Table 2.

Table 2. Initialization Ranges for Test Problems

Asymmetric
function Initialization Range

f0 (50, 100)

f1 (15, 30)

f2 (2.56, 5.12)

f3 (300, 600)

Each function is ran for 50 trials. Tests using 10 dimensions were allowed
to run for 1000 generations. Tests using 20 dimensions were allowed to run for

Breeding Swarms 7

1500 generations. Finally tests using 30 dimensions were allowed to run for 2000
generations.

3 Results

Figure 1 show the results of each function in 10 dimensions, using asymmetric
initialization. Here the BS algorithm was able to find the exact optima (in every
trial) in 8 of the 12 test cases (see Table 3). The GA and PSO algorithms were
unable to find the exact optima consistently for any test case.

Table 3 show the mean best fitness value along with the variance for each
test case using asymmetric initialization. a t-test performed for each case shows
the BS algorithm to be statistically significantly better than the GA and PSO
in all test cases. The GA algorithm was able to outperform the PSO algorithm
in the unimodal test function f2

Table 3. Asymmetric Initialization. Summary of mean best results in the final gener-
ation for each test. t-scores are all significant.

Real GA PSO BS t-score t-score
Problem Dims Gens Mean Best Mean Best Mean Best BS BS

(variance) (variance) (variance) GA PSO

11.637 3.577e-043 0
10 1000 (34.403) (1.139e-042) (0) 14.029 15.702

f0 261.971 3.436e-021 0
20 1500 (11569.1) (2.388e-020) (0) 17.222 7.194

2476.92 2.812e-010 0
30 2000 (954655) (1.317e-009) (0) 17.925 10.676

493.004 22.685 8.801
10 1000 (496721) (48.079) (0.014) 4.857 14.443

f1 2971.7 43.291 18.915
20 1500 (3.194e+006) (62.746) (0.028) 11.682 19.433

12741 70.114 28.996
30 2000 (2.221e+007) (76.726) (0.003) 19.072 26.796

4.272 12.138 0
10 1000 (4.551) (7.021) (0) 14.160 86.441

f2 42.458 60.095 0
20 1500 (116.344) (20.520) (0) 27.834 146.430

122.984 134.538 0
30 2000 (600.81) (35.421) (0) 35.478 189.913

0.676 0.095 0
10 1000 (0.0287) (0.038) (0) 28.200 125

f3 1.824 0.057 0
20 1500 (0.124) (0.166) (0) 36.627 17.169

5.729 0.193 0.005
30 2000 (1.627) (0.333) (0.001) 31.711 28.313

8 Matthew Settles and Terence Soule

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Generation

Mean Fitness of f0 in 10 diminesions Over 50 Trials. Symmetric Initialization

best fitness GA
best fitness PSO

best fitness BS

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Generation

Mean Fitness of f1 in 10 diminesions Over 50 Trials. Symmetric Initialization

best fitness GA
best fitness PSO

best fitness BS

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Generation

Mean Fitness of f2 in 10 diminesions Over 50 Trials. Symmetric Initialization

best fitness GA
best fitness PSO

best fitness BS

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Generation

Mean Fitness of f3 in 10 diminesions Over 50 Trials. Symmetric Initialization

best fitness GA
best fitness PSO

best fitness BS

Fig. 1. PSO, GA and BS Results for the test problems over 50 Trials.

Breeding Swarms 9

In many test cases the PSO algorithm was able to find near optimal solutions
in a majority of trials. For the majority of these cases the population would
converge on a suboptimal solution preventing the population from improving.
BS did not have this problem, the GA inspired VPAC operator prevented the
population from converging on a suboptimal solution by consistently pushing
members of the population away from the global best particle.

4 Conclusions

As the results above demonstrate, the performance of Breeding Swarms is com-
petitive with both the GA and PSO, in this test performing better than both.
The breeding swarm algorithm was able to locate a optimal, or near optimal,
solution significantly faster than either GA or PSO. This is most likely due to
the VPAC crossover actively dispersing the population, allowing the population
to cross greater distances in the search space faster.

The Breading Swarm algorithm developed here is highly customizable in or-
der to allow future researchers large latitude in implementing the algorithm. Fu-
ture research will include investigation into elitism and its effect on performance.
Different selection and crossover types and different values for the breeding ratio
parameter and its effects on performance. The use of a mutation operator also
needs to be investigated.

An additional advantage of the Breeding Swarm algorithm may be the ability
to implement a variable length string to represent potential solutions, a trait not
available in the standard PSO implementation. Through the crossover operator,
the individual may be allowed to grow or shrink depending on its needs, such as
in GAs. Further research will look into this possibility.

Acknowledgment

This work is supported by NSF EPSCoR EPS-0132626. These experiments were
performed on a Beowulf cluster built with funds from NSF grant EPS-80935
and a generous hardware donation form Micron Technologies. Thanks to Dr.
Hiromoto of the University of Idaho for a conversation that sparks many of
these ideas.

References

1. Peter J. Angeline. Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences. In V. William Porto and et al., editors,
Evolutionary Programming, volume 1447 of Lecture Notes in Computer Science,
pages 601–610. Springer, 1998.

2. Morten Bek, Troels Grosbll-Poulsen, and Mads Ulrik Kristofferson. Evolutionary
trained kohonen networks as classifiers for human utterances. In Master’s Thesis.
Department of Computer Science, University of Aarhus, 2002.

10 Matthew Settles and Terence Soule

3. Russell C. Eberhart and Yuhui Shi. Comparison between genetic algorithms and
particle swarm optimization. In et. al. V. William Porto, editor, Evolutionary
Programming, volume 1447 of Lecture Notes in Computer Science, pages 611–616.
Springer, 1998.

4. Larry J. Eshelman and J. David Schaffer. Real-coded genetic algorithms and
interval-schemata. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms
2, pages 187–202. Morgan Kaufmann, San Mateo, CA, 1993.

5. David B. Fogel and Hans-Georg Beyer. A note on the empirical evaluation of
intermediate recombination. Evolutionary Computation, 3(4):491–495, 1996.

6. J.H. Holland. Adaptation in natural and artificial systems: 2nd edn. The University
of Michigan Press, Ann Arbor, MI, 1992.

7. J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 2001.

8. M. Lvbjerg, T. Rasmussen, and T. Krink. Hybrid particle swarm optimiser with
breeding and subpopulations. In Proceedings of the Genetic and Evolutionary
Computation Conference – GECCO-2001, LNCS. Springer-Verlag, 2001.

9. Clerc M. The swarm and the queen: Towards a determininistic and adaptive
particle swarm optimization. In Congress on Evolutionary Computation (CEC99),
pages 1951–1957, 1999.

10. J. Robinson, S.Sinton, and Y. Rahmat-Samii. Particle swarm, genetic algorithm,
and their hybrids: Optimization of a profiled corrugated horn antenna. In IEEE
Antennas and Propagation Society International Symposium and URSI National
Radio Science Meeting, San Antonio, TX, 2002.

11. Matthew Settles, Brandon Rodebaugh, and Terence Soule. Comparison of genetic
algorithm and particle swarm optimizer when evolving a recurrent neural network.
In E. Cantú-Paz and et. al., editors, Genetic and Evolutionary Computation –
GECCO-2003, volume 2723 of LNCS, pages 148–149, Chicago, 12-16 July 2003.
Springer-Verlag.

12. Matthew Settles and Terence Soule. A hybrid ga/pso to evolve artificial recurrent
neural networks. In C. Dagli and et. al., editors, Intelligent Engineering Systems
Through Aritificial Neural Networks (ANNIE-2003), volume 13, pages 51–56, St.
Louis, 2-5 Nov. 2003. ASME Press.

13. Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.
In V. William Porto and et al., editors, Evolutionary Programming, volume 1447
of Lecture Notes in Computer Science, pages 591–600. Springer, 1998.

