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Abstract. Neural Logic Network (Neulonet) learning has been success-
fully used in emulating complex human reasoning processes. One recent
implementation generates a single large neulonet via genetic program-
ming using an accuracy-based fitness measure. However, in terms of hu-
man comprehensibility and amenability during logic inference, evolving
multiple compact neulonets are preferred. The present work realizes this
by adopting associative-classification measures of confidence and support
as part of the fitness computation. The evolved neulonets are combined
together to form an eventual macro-classifier. Empirical study shows
that associative classification integrated with neulonet learning performs
better than general association-based classifiers in terms of higher accu-
racies and smaller rule sets. This is primarily due to the richness in logic
expression inherent in the neulonet learning paradigm.

1 Introduction

Neural Logic Network (Neulonet) learning is an amalgam of neural network and
expert system concepts [1, 2]. Its novelty lies in its ability to emulate human
decision logic via rudimentary net rules that represent the core human logic op-
erations. These richer logic operations can be used to represent common human
decision making processes such as a priority operation that depicts the notion
of assigning varying degrees of bias to different decision factors, and a major-
ity operation that involves some strategy of vote-counting. Within the realm of
pattern classification, human logic operations supplement the standard boolean
logic operations of conjunction, disjunction and negation, so as to allow for a
neater and more elegant expression of complex logic in a given problem domain.

Different approaches have been devised for neulonet learning. These include
the resolution of a set of inequalities [1], learning via neural network back-
propagation training [1, 2], and more recently, neulonet evolution using genetic
programming (GP) [3, 4]. In particular, GP neulonet learning facilitates the gen-
eration of a more effective pattern classifier as compared to the genetic evolution
of logic based neural networks representing the standard boolean logic opera-
tions [5]. Another motivating factor for advocating the evolutionary approach as
compared to back-propagation in neulonet learning is the fact that the weights
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of the network are kept unchanged throughout the genetic evolution process,
thereby facilitating the straightforward extraction of logic rules.

For the genetically-programmed neulonet learning methodology to qualify as
an ideal classification system in data mining, it needs to satisfy the data mining
goals of prediction and description as prescribed in the article by Fayyad [6].
Prediction pertains to the ability of the system in finding patterns or rules that
accurately forecast the future or unseen behaviour of related entities. On the
other hand, these discovered patterns would be deemed to fulfill the descriptive
goal if they can be represented in a human-comprehensible form to the user.
In the earlier work [4], this latter goal was somewhat achieved by including
parsimony as a fitness criterion which allowed for the evolution of a reasonably
compact neulonet solution. This, in turn, corresponds to the extraction of a
smaller set of human logic rules, which would ultimately render rule-inferencing
more amenable towards human comprehension. However, it has to be noted that
these rules can only be interpreted as an entire connecting set. Although rule
interdependence promotes the capacity to infer the relationship between rules,
a deeply-nested neulonet that corresponds to a high degree of interdependence
amongst the extracted rules will inevitably hamper the layman understanding
of the inherent logic in the problem domain.

The present work ensues with the premise of improving the comprehensibility
in genetically-programmed neulonet learning by evolving multiple compact neu-
lonets based on confidence and support measures adopted in association-based
classification. This paper begins with an overview of neural logic networks and
how neulonet learning is accomplished under the genetic programming paradigm.
The rule extraction procedure is described with subsequent analysis of the rules
to illustrate the expressiveness of human logic operations in terms of knowledge
representation. The integration of GP neulonet learning into associative classifi-
cation is explored, and empirical results presented to substantiate the advantages
of including human logic operations in classification tasks.

2 Neural Logic Network - Neulonet

A neulonet has an ordered pair of numbers associated with each node and con-
nection as shown in figure 1. Let Q be the output node and P1, P2, . . . PN be
input nodes. Let values associated with the node Pi be denoted by (ai, bi), and
the weight for the connection from Pi to Q be (αi, βi). The ordered pair for each
node takes one of three values, namely, (1,0) for “true”, (0,1) for “false” and
(0,0) for “don’t know”. (1,1) is undefined. Equation (1) defines the activation
function at the output Q with λ as the threshold, usually set to 1.

Act(Q) =





(1, 0) if
N∑

i=1

(aiαi − biβi) ≥ λ

(0, 1) if
N∑

i=1

(aiαi − biβi) ≤ −λ

(0, 0) otherwise.

(1)
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Fig. 1. Schema of a Neural Logic Network - Neulonet.

A wide variety of human decision logic, which are often too complex to be
expressed neatly using standard boolean logic, can be represented using rudi-
mentary neulonets with different sets of connecting weights. These net rules can
be generally divided into five broad categories as shown in figure 2.

3 Neural Logic Network Composition using Genetic
Programming

Net rules can be combined to form composite neulonets to realize more com-
plicated decisions as shown in figure 3. This can be achieved using genetic pro-
gramming [7], which is an extension of the conventional genetic algorithm where
instead of subjecting bit patterns to genetic evolution, the individuals in the gene
population are computer programs. In the context of neulonet evolution, these
computer programs are represented in the form of neulonets. A brief description
of the genetic neulonet construction process (detailed in [3]) is presented below.

3.1 Neulonet Structure Undergoing Adaptation

Adaptation is performed on the population of neulonets, each being a recursive
composition of net rules and input terminals in a tree-like structure. The in-
put terminals are the attributes of the data set, as well as bias decision nodes
depicting default true, false and unknown decisions. The initial population of
neulonets is generated in a similar fashion as Koza’s “ramped-half-and-half”
generative method [7] that accounts for both depth and fan-out of the neulonet.

3.2 Genetic Operations

We describe three fitness-proportionate genetic operations for modifying the
neulonet structure undergoing evolution. The reproduction operation first selects
a single neulonet from the population. The selected individual is then copied to
the new population. The crossover operation involves swapping the chosen parts
of two neulonets with constraints imposed on the swapping process to preserve
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Fig. 2. Library of net rules divided into five broad categories
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the syntactic integrity. For instance, swapping should not leave any dangling
intermediate output nodes as such nodes will not be able to receive input values
during firing. The mutation operation involves changes to a chosen neulonet.
A random mutation point is picked such that the neulonet whose root is the
mutation point is replaced by another randomly generated neulonet.

3.3 Fitness Measure and Termination Criterion

Each neulonet in the population is assigned a normalized fitness measure f(ε, σ; κ)
based on the errors produced by the neulonet, ε, as well as the size of the neu-
lonet, σ as defined in equation (2). The fitter the neulonet, the larger will be its
fitness measure. The factor, κ ∈ [0, 1], is used to weigh the effects of accuracy
over size in the fitness measure. A higher value for κ places more emphasis on
finding an accurate solution at the expense of the size of the neulonet. Moreover,
the empirical fine-tuning of an appropriate κ value allows the extraction of a
simpler set of net rules that avoids unnecessary complications, so as to provide
a satisfactory overall generalization capability. Note that σmin in equation (2),
denotes the smallest possible size of a neulonet.

f [ε, σ; κ] =
1

1 + κε + (1− κ)(σ − σmin)
(2)

Termination of evolution is controlled using a parameter that specifies a
period in which the termination criterion is examined upon its elapse. The test
for termination involves recording the current generation’s fittest neulonet, and
comparing it against the preceding record. Termination transpires when there is
no improvement in the classification accuracy and size of the current recorded
neulonet, in which case, it is designated as the solution to the problem domain.

4 Rule Extraction

The subsequent extraction of logic rules is straightforward as each constituent
net rule of an evolved solution neulonet fully expresses the human logic in use.
These human logic net rules can be easily identified from any given neulonet.
We use the US Congressional Voting Records Database [8] to illustrate rule-
based learning using net rules. This data set consists of 435 instances and 16
boolean attributes with unknown or missing values. Each instance is classified as
either republican or democrat. GP neulonet learning generated a solution with a
manageable number of rules while being sufficiently accurate. A desirable result
was achieved by setting κ to 0.94. The evolved neulonet solution is shown in
figure 3 with a classification accuracy of 97.7%. The set of logic rules extracted
for this neulonet is given in table 2. Note that a “true” outcome denotes the
republican class.

Observe that the bias-based “Veto” net rule Q4 has rule Q2 as the veto fac-
tor, which implies that Q2 plays a more important role than Q3. This veto power
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Fig. 3. Evolved Neulonet solution for voting records.

Q1 ⇐ 2-out-of-3-Majority[a-b-r=y, s-c-c=y, w-p-c-s=y]
Q2 ⇐ MajorityInfluence[Q1, s-c-c=y, m-m=y]
Q3 ⇐ Overriding[p-f-f=y, TRUE]
Q4 ⇐ Veto[Q2,Q3]

Table 2. Extracted net rules from the voting records data.

will come into effect only when Q2 returns a positive decision. Application of
backward induction indicates that such a situation occurs only if the majority of
the contributing factors of rule Q2 are true. One instance occurs when synfuels-
corporation-cutback(s-c-c) and mx-missile(m-m) are true. The contributing fac-
tors comprising rules Q1 and Q2 can be viewed as belonging to two different
classes of decision makers. The fact that rule Q1 forms part of rule Q2 leads us
to deduce the relative importance between the classes of contributing factors in
both the rules. Moreover, the presence of the attribute s-c-c in both rules sig-
nifies its higher level of participation in the overall decision. Net rules Q1 and
Q2 provide a concise way of expressing the appropriate rule activations, rather
than enumerating every possible combination of decisions factors for each rule
activation using separate rules as in the case of general production rules. Finally,
if the outcome of Q2 is false or unknown, then the higher priority physician-
fee-freeze(p-f-f) attribute in rule Q3 will influence the final outcome, provided
that this attribute value is deterministic, i.e. “true” or “false”. Otherwise, rule
Q4 will assume a true outcome. GP neulonet learning could be used to exploit
the “richer” thought processes that are extensively used for human reasoning,
particularly in real-world problem domains.

An intrinsic feature of neulonet rule extraction is the high degree of interde-
pendence among the rules. The set of rules in table 2 has to be interpreted in
its entirety as a connecting set in order to discover the underlying logic of the
problem domain. This interdependence among the set of logic rules captures the
logic relationship between rules. However, empirical observation shows that this
same property becomes more of a liability when the net rules are nested at more
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than three levels deep. An ideal classification system should, in essence, be able
to exploit this interdependence property albeit to a lesser degree.

5 Incorporating Neulonet Learning into Associative
Classification

Associative classification is the technique of employing association rule mining
concepts [9] for classification, and represents an alternative to purely accuracy-
based classifier systems. Among the many associative classifiers in the litera-
ture, the CBA system [10] is of particular interest. CBA comprises two distinct
stages: a rule-generation stage followed by a classifier-building stage. In the rule-
generation stage, all independent class association rules (CARs) are generated.
The classifier-building stage, on the other hand, provides a methodology to group
these CARs together to form an eventual classifier. Clearly, this two stage process
is easily adaptable for the proposed neulonet associative classification technique.
Rather than generating the CARs that only involve an implicit conjunction op-
erator, the novelty lies in evolving compact neulonet association rules (NARs)
in their place. These NARs would then be utilized for classifier building without
any major modifications to the existing classifier-building algorithm in CBA.
On the microscopic level, an NAR would be able to exploit the interdependence
property in neulonet rule-inference, while on the macroscopic level, the relevant
NARs could collectively form an accurate classifier.

5.1 Extending Notions of Confidence and Support to Neulonet
Learning

Association rule mining is a common technique used for market basket analy-
sis [9]. Assigned to every assocation rule is the two important notions of confi-
dence and support. Basically, the confidence of a rule provides a measure on the
accuracy of the rule. On the other hand, the support of a rule is an indication
of the amount of data that is consistent with the rule. In order to incorporate
genetically-programmed neulonet learning into the associative classification do-
main, these two notions have to be accounted for in the fitness measure during
neulonet evolution.

In CBA, a class association rule is expressed in the form

a1, a2, . . . , ak → y

where each of the terms ai denotes a boolean attibute, and y denotes the class
label. For ease of explanation, denote the LHS of the above expression as the
condset (the set of conditional attributes). For each CAR, the condition support
count, condsupCount, is the number of cases in the data set D that satisfy
the condset. On the other hand, the rule support count, rulesupCount, is the
number of cases in D that satisfy the condset, with the additional requirement
that each of these cases should be labeled with class y. The support, S, and
confidence, C, of a CAR is defined as follows:
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S =
rulesupCount

|D| (3)

C =
rulesupCount

condsupCount
(4)

Implicit in the condset of the CAR is the conjunction operator that operates
on the conditional attributes. As such, the CAR can be re-expressed as

a1 ∧ a2 ∧ . . . ∧ ak → y

In terms of net rule syntax, the following equivalent expression is obtained.

y : Q1 ← Conjunction(a1, a2, . . . , ak)

The label y denotes that the above net rule is associated with the class y, so
that an outcome of “true” in Q1 will signify the class y. In the present context,
condsupCount and rulesupCount need to be redefined accordingly. For a neu-
lonet generated to learn a particular class label y, condsupCount is defined as
the number of cases in the data set D for which the neulonet solution returns
a “true” outcome. Similarly, rulesupCount is defined as the number of cases in
D for which the neulonet solution returns a “true” outcome, with the additional
requirement that each of these cases must be labeled with the class y.

The usual fitness measure for neulonet evolution given in equation (2) is
based upon the error rate ε and size σ of the evolved neulonet. In the context of
associative classification, ε needs to be replaced by a penalty function Ψ(S, C),
that accounts for the support S and confidence C levels.

f [S, C, σ;κ] =
1

1 + κΨ(S,C) + (1− κ)(σ − σmin)
(5)

To ensure that the effect of the weighting factor κ is consistent across both
fitness measures, the penalty function should be defined such that the range of
values of Ψ(·) in equation (5) is consistent with that of ε ∈ [0, |D|] in equa-
tion (2). Furthermore, in accordance with CBA’s precedence ordering of CARs,
the fitness measure should be able to express the ordering of NARs where prece-
dence is based on the confidence level first, followed by the support level. No-
tice that the range of integer values for condSupCount and ruleSupCount lie in
{0, 1, 2, . . . , |D|} and {0, 1, 2, . . . , condSupCount} respectively. For a condSup-
Count of |D|, the confidence level C occurs as discrete values in the range

C ∈
{

0,
1
|D| ,

2
|D| , . . . ,

|D| − 1
|D| , 1

}

Clearly, for any other value of condSupCount (< |D|), the interval between
two successive confidence levels will be larger than 1/|D|. The idea is therefore
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to shrink the range of support levels from [0,1] to [0, 1/|D|) instead, so that mere
addition of confidence and support levels will result in a value that correlates
with the precedence ordering. Define the precedence value p as

p(C,S) = C + S

(
1

|D|+ 1

)
(6)

where p lies in the range [0, (|D|+2)/(|D|+1)] with a higher value of p denoting
a higher precedence. Since the formulation of the penalty function requires a
higher precendence to correspond to a lower penalty value, define the raw penalty
function1 as

Ψ(C, S) =
|D|+ 2
|D|+ 1

− p(S, C) (7)

Finally, define the penalty function Ψ(·) as

Ψ(C, S) = Ψ(C, S)|D|
=

[ |D|+ 2
|D|+ 1

−
(

C +
S

|D|+ 1

)]
|D| (8)

and substitute this into the modified fitness measure of equation (5).
Additionally, CBA ensures that CARs generated have support and confi-

dence levels that are above the specified minimum support and confidence levels
respectively. This same strategy is adopted during neulonet evolution.

5.2 Constructing the Neulonet Associative Classifier

As in CBA, neulonet associative classification involves two equivalent phases.
The motivation for the first stage of neulonet association rule (NAR) generation
(table 3) is simply to find a minimal ordered sequence of NARs that would cover
the required hypothesis space. Note that for an n-class classification problem, n
separate sequences of NARs are generated for resolving each class value i [11].
During the second stage of classifier building (table 4), the best NARs from all
sequences will then compete to be included into the eventual classifier.

We use the Voting Records Database to analyse the NARs generated. To
maintain the comprehensibility of each neulonet association rule, the evolved
NARs are kept small at a depth of at most two, with each net rule having a
fan-out not exceeding three. The minimum support and confidence levels were
set at 0.25 and 0.5 respectively. Neulonet associative classification produced a
classifier with 18 NARs as compared to CBA’s classifier of 29 CARs. Table 5
shows an extract of the first three NARs which would have achieved an accuracy
of 94.9%. In fact, the first rule Q1 by itself would already have achieved an
accuracy of 94.0% with republican as the default class; the layman interpreta-
tion being: if the physician-fee-freeze (p-f-f) attribute is true, then the decision
1 Ideally, a normalized penalty function with values in the range [0,1] should be de-

fined. However, the raw penalty function with the range [0, 1 + (1/(|D|+ 1))] is an
adequate approximation, especially for large data sets.
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would be republican, since Q1 is not satisfied. Otherwise, the decision is demo-
crat when either absorption-of-budget-resolution (a-b-r) or synfuels-corporation-
cutback (s-c-c) are true). In contrast, the first five CARs generated in CBA
achieved a relatively lower accuracy of 93.8%. Rule-for-rule comparisons show
that neulonet associative classification does indeed perform better than CBA as
expected. This is again attributed to the more expressive human logic net rules
used in classification. Furthermore, as the interdependence property is kept to a
minimum, each NAR remains easily comprehensible in layman terms.

Algorithm: GenerateNARs(i)

1. Initialize queue Ci as empty.
2. Iteratively perform the following until data set D no longer contains

any instances with class value i, or no other NAR can be evolved.
2.1. Evolve a NAR that resolves class i.
2.2. For each instance d in D, mark d if

(a) Firing NAR with d returns “true”; and
(b) The class label of d is i.

2.3. Insert NAR at end of queue Ci.
2.4. Remove all marked instances in D.

3. Return queue Ci.

Table 3. NAR generation for class i.

Algorithm: BuildClassifier

1. Initialize classifier C as empty.
2. Iteratively perform the following until all Ci queues are empty

2.1. Compare all NARs at head of each Ci and remove NAR with highest fitness.
2.2. For each instance d in data set D, mark d if

(a) Firing NAR with d returns “true”; and
(b) The class label of d is the same as the class resolved by the chosen NAR.

2.3. Perform the following if some d is marked.
(i) Insert NAR at end of C.
(ii) Remove all marked instances in D.
(iii) Compute default class of D (majority class of remaining instances).
(iv) Compute number of errors of C.

3. Find the first NAR in C with the lowest error and drop all NARs after that.
4. Add default class of last NAR to the end of C.
5. Return classifier C.

Table 4. Classifier building.

6 Empirical Study and Discussion

Empirical study is undertaken to compare the classifiers constructed from CBA
with that of Neulonet Associative Classification using the entire library of net
rules (NACfull) in figure 2. Furthermore, classifiers constructed by NAC using a
restricted set of net rules (1), (13) and (14) that simulates the use of boolean logic
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Resolving democrat :
Q1 ⇐ Veto-Disjunction[p-f-f=y, a-b-r=y, s-c-c=y]

Resolving republican :
Q3 ⇐ 2-out-of-3-Majority[Q2, p-f-f=y, s-c-c=n]
Q2 ⇐ Silence-Means-Consent[i=y, a-b-r=y, d-f-e=n]

Resolving democrat :
Q4 ⇐ Veto[a-s-t-b=n, c=n]

default class : republican

Table 5. Three NARs generated for the Voting Records data.

operations in associative classification (NACstd) will also be tested. The details
of experimentation closely resemble those in [10]. Experiment results based on
ten-fold cross validation on data sets from [12] are presented in table 6. Results
for CBA are reproduced from [10].

From the tabulated results, it is clearly evident that neulonet associative
classification using human logic net rules is generally the better choice. In fact,
both NAC classifiers outperform CBA. Generally, NACs generate a smaller num-
ber of rules than CBA; there are almost twice as many CARs compared with
NARs generated in the NAC classifiers. The enhanced logic expression using
interdependent human logic rules is the primary contributing factor towards the
construction of better classifiers. Although using a single implicit conjunction
operator in general association-based classifiers makes the association rules (or
CARs in the case of CBA) easy to understand, it deters the construction of
accurate classifiers with minimal number of rules. On the other hand, the large
variety of net rules and their corresponding semantics might seem complex at
first, but nonetheless, these operators represent common human decision pro-
cesses, and should therefore be generally acceptable. Also note that the advent
of association rule mining arose due to the need for market basket analysis. As
such, association-based classifiers using the implicit conjunction operator might
not have the additional expressiveness and flexibility in handling the complex
logic inherent in most classification data sets.

Data Set CBA NACfull NACstd Data Set CBA NACfull NACstf
anneal 3.6 (34) 0.3 (18.0) 1.0 (15.3) horse 18.7 (97) 14.2 (38.4) 19.4 (31.3)
auto 27.2 (54) 16.9 (34.2) 19.4 (31.3) hypo 1.7 (35) 1.2 (44.3) 0.9 (46.7)
breast-w 4.2 (49) 3.3 (40.7) 3.9 (39.1) iono 8.2 (45) 6.5 (21.4) 5.4 (23.3)
cleve 16.7 (78) 16.2 (42.1) 17.8 (40.1) iris 7.1 (5) 4.0 (6.3) 4.0 (6.2)
crx 14.1 (142) 13.3 (82.0) 15.5 (68.0) labor 17.0 (12) 6.7 (3.1) 6.7 (7.2)
diabetes 25.3 (57) 23.7 (20.8) 23.3 (18.0) lymph 19.6 (36) 12.0 (21.7) 12.7 (23.8)
german 26.5 (172) 24.8 (63.4) 25.0 (66.1) pima 27.6 (45) 23.8 (19.9) 24.1 (17.2)
glass 27.4 (27) 21.5 (24.2) 23.3 (21.3) sonar 21.7 (37) 14.0 (21.6) 19.0 (23.1)
heart 18.5 (52) 14.2 (38.5) 14.5 (23.6) vehicle 31.3 (125) 29.2 (34.7) 30.7 (31.0)
hepati 15.1 (23) 13.6 (15.1) 13.6 (15.4) wine 8.4 (10) 1.1 (5.1) 0.6 (4.7)

Table 6. Experimental results depicting classification errors (%) of different associa-
tive classifiers. Figures in bold indicate the lowest error. The numbers inside brackets
denotes the average number of CARs/NARs in the classifier.
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7 Conclusion and Future Work

The adoption of the genetic programming paradigm has future implications in
that it enables encoding of prior knowledge. Very often, this is in the form of gen-
eral consensual knowledge, that is, knowledge having both high support and high
confidence. Such knowledge can then be encoded as NAR(s) which could either
be kept intact throughout the rule generation and classifier building process, or
at most, minimally adapted. These NARs will make up the foremost rules of the
classifier, leaving the neulonet associative classifier to come up with the latter
NARs which would make up the interesting exceptions. The successful integra-
tion of GP neulonet learning with associative classification has also opened up
a host of opportunities for similar endeavours. In fact, any data classification
platform that separates rule generation from classifier construction are potential
candidates for further exploration. The net rule library will be expanded and
more elaborate form of decision logic will be tested. We envision an even more
exciting horizon by integrating associative classification with fuzzy neulonets [1].
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