
Understanding Competitive Co-evolutionary

Dynamics via Fitness Landscapes

Elena Popovici and Kenneth De Jong

George Mason University, Fairfax, VA 22030
epopovic@gmu.edu, kdejong@gmu.edu

Abstract. Co-evolutionary EAs are often applied to optimization and
machine learning problems with disappointing results. One of the con-
tributing factors to this is the complexity of the dynamics exhibited by
co-evolutionary systems. In this paper we focus on a particular form of
competitive co-evolutionary EA and study the dynamics of the fitness of
the best individuals in the evolving populations. Our approach is to try
to understand the characteristics of the fitness landscapes that produce
particular kinds of fitness dynamics such as stable fixed points, stable
cycles, and instability. In particular, we show how landscapes can be
constructed that produce each of these dynamics. These landscapes are
extremely similar when inspected with respect to traditional properties
such as ruggedness/modality, yet they yield very different results. This
shows there is a need for co-evolutionary specific analysis tools.

1 Introduction

Co-evolutionary EAs are often applied to optimization and machine learning
problems with disappointing results. One of the contributing factors to this is
the complexity of the dynamics exhibited by co-evolutionary systems. This is
somewhat less of a problem with cooperative co-evolutionary EAs (see, for ex-
ample, [1]), but is a central issue for competitive co-evolutionary EAs (see, for
example, [2] or [3]). In addition, for applications like optimization and machine
learning we are interested primarily in how the fitness of the best individuals
evolves over time, a much more dynamic property than, say, population averages.

In this paper we focus on a particular form of competitive co-evolutionary
EA and study the dynamics of the fitness of the best individuals in the evolving
populations. Our approach is to try to understand the characteristics of the
fitness landscapes that produce particular kinds of fitness dynamics such as
stable fixed points, stable cycles, and instability. In particular, we show how
landscapes can be constructed that produce each of these dynamics.

Additionally, it is pointed out that the differences between these landscapes
are extremely similar with respect to traditional characterizations (e.g. rugged-
ness/modality) yet the behaviors the same algorithm exhibits on them can differ
dramatically. This goes to show the need for different metrics/methodologies/properties
to be designed/analyzed for co-evolutionary algorithms.



2 Coevolutionary Setup

The co-evolutionary algorithm used for investigations in this paper is based on a
very simple competitive model and yet, as it will be seen, it can exhibit a variety
of interesting behaviors.

The setup consists of having two populations with conflicting goals. Individ-
uals in either of these populations are real numbers in the interval [0, n]. An
individual in the first population (the X - population) can only be evaluated in
combination with an individual from the second population (the Y - population)
and vice-versa. When an x and a y are paired, they both receive the same fitness
value, given by some function f(x, y). However, the goal of the X individuals is
to get as high values as possible, whereas the Y individuals are as good as small
their value is.

During the run of the algorithm the two populations take turns. That is
to say that inside one generation only one of the populations is active, the
other one is frozen. All the individuals in the active population are evaluated in
combination with the current best individual from the frozen population. Once
the active population is evaluated, selection and recombination take place on it.
At this point, this population is frozen, and the formerly frozen one becomes
active and goes through the same process, being evaluated against the current
(possibly newly found) best individual in the other population. And the cycle
keeps repeating.

3 Functions

With this algorithm setting in mind and the goal of studying what kinds of
behaviors it can exhibit, three different functions were engineered, each causing
the algorithm to have different dynamics, both in terms of space exploration and
fitness changes.

3.1 Definitions

All three functions used are two dimensional ones operating on the square [0, n]
x [0, n].

The first function was constructed with the goal of getting cyclic behavior
from the particular algorithm used. It will be referred as cyclingRidges. The
following two properties were considered as very likely to generate such behavior.
For every x value, the y that produces the minimum value for the function is
unique (denoted by minY (x)) and is located on the main diagonal. For every y
value, the x that produces the maximum value for the function (maxX(y)) is
unique and is located on the second diagonal.

To have these properties, the function was designed as follows. On the main
diagonal, the function increases uniformly on [0, n/2] from 0 to n, i.e. with a
slope of 2 and then it decreases at the same rate from n to 0 on [n/2, n]. On
the second diagonal, the function decreases uniformly on [0, n/2] from 2n to n



with slope 2 and then it increases at the same rate from n to 2n on [n/2, n] .
The diagonals split the space into four areas. In the west and east sections, the
function decreases along the x axis from the diagonals towards the corresponding
edge of the space with a slope of 1. In the north and south sections, the function
increases along the y axis from the diagonals towards the edges of the space with
a slope of 1.

x

0

2

4

6

8

y

0

2

4

6

8

C
ycling R

idges

0

5

10

15

x

0

2

4

6

8

y

0

2

4

6

8

C
ycling R

idges

0

5

10

15

Fig. 1. Cycling Ridges function.

A three dimensional representation of the function can be seen in figure 1 from
two perspectives. It’s mathematical expression is described below (as Java code).
The ridges function is the generic skeleton that all three functions constructed
here use. The first three branches describe the values the function takes along
the two curves that are defined by minY (x) and maxX(y) . For cyclingRidges
minY (x) and maxX(y) represent the two diagonals. The rest of the branches
compute the value of the function in a certain point by adding/subtracting some-
thing to/from the value of the function in a corresponding point on one of the
minY (x) and maxX(y) curves.

double ridges(double i, double j)
{

if (i <= n / 2 && j == fa(i))
return (2 * i);

else if (i >= n / 2 && j == fb(i))



return (2 * n - 2 * i);
else if (j == fc(i))

return (Math.max(2 * i, 2 * n - 2 * i));
else if (i <= n / 2)
{

if (j <= fa(i))
return (2 * i + (fa(i) - j));

else if (j <= n / 2)
return (ffaInv(j) - (faInv(j) - i));

else if (j <= fc(i))
return (ffcInv(j) - (fcInv(j) - i));

else
return (Math.max(2 * i, 2 * n - 2 * i) + (j - fc(i)));

}
else
{

if (j <= fc(i))
return (Math.max(2 * i, 2 * n - 2 * i) + (fc(i) - j));

else if (j <= n / 2)
return (ffcInv(j) - (i - fcInv(j)));

else if (j <= fb(i))
return (ffbInv(j) - (i - fbInv(j)));

else
return (2 * n - 2 * i + (j - fb(i)));

}
}

Where:

- y = fa(x) = x is the equation of the first half of the main diagonal

- y = fb(x) = x is the equation of the second half of the main diagonal

- y = fc(x) = n − x is the equation of the second diagonal

Why the distinction between the first and second half of the main diagonal
was made will be evident when describing the other two functions.

- faInv, fbInv and fcInv are the inverses of fa, fb and fc respectively.

- ffaInv(y) = f(faInv(y), y) = 2 ∗ faInv(y)

- ffcInv(y) = f(fbInv(y), y) = 2 ∗ n − 2 ∗ fbInv(j)

- ffcInv(y) = f(fcInv(y), y) = max(2 ∗ fcInv(j), 2 ∗ n − 2 ∗ fcInv(j))

The second and the third functions, collapsingRidges and expandingRidges,
were obtained by changing the minY (x) curve from a straight line into S-like
curves. Such a curve is composed of two parts and each part is a quarter of a
(different) circle. As the reader might have already guessed, these pieces will be
defined by the fa and fb functions. Their expressions are given below:

collapsingRidges:

- fa(x) = sqrt(i ∗ (n − i))

- fb(x) = n − sqrt(i ∗ (n − i))



expandingRidges:
- fa(x) = n/2 − sqrt((n/2) ∗ (n/2) − i ∗ i)
- fb(x) = n/2 + sqrt((n/2) ∗ (n/2)− (n − i) ∗ (n − i))

x

0

2

4

6

8

y

0

2

4

6

8

C
ollapsing R

idges

0

5

10

15

x

0

2

4

6

8

y

0

2

4

6

8

C
ollapsing R

idges

0

5

10

15

Fig. 2. Collapsing Ridges function.

The two minY (x) curves for collapsingRidges and expandingRidges are
the mirroring of one another with respect to the main diagonal. The reader can
already inspect their shapes in figure 5 and figure 6.

The maxX(y) curve is unchanged for all three functions, namely the straight
line of the second diagonal. Therefore fc(x) is unchanged as well.

Spatial views of collapsingRidges and expandingRidges are shown in figure
2 and figure 3.

3.2 Explanations

Why would these functions exhibit the cycling, collapsing and expanding behav-
iors that we seek? Here’s the explanation. Consider plotting on the same chart
the minY (x) and maxX(y) curves of the function to study and remember how
the algorithm works.

Let P x

0
be the initial x population and y0 a random y value with respect to

which P x

0
is evaluated and then evolved. If the best individual in P x

0
is to be as

good as theoretically possible, it should be given by maxX(y0), as good values
for the X population are big values of the function. This x can be graphically



x

0

2

4

6

8

y

0

2

4

6

8

E
xpanding R

idges

0

5

10

15

x

0

2

4

6

8

y

0

2

4

6

8

E
xpanding R

idges

0

5

10

15

Fig. 3. Expanding Ridges function.

obtained by intersecting the horizontal line with equation y = y0 with the x =
maxX(y) curve. Let x1 be the x value thus found.

It is now the turn of P y

0
to be evaluated with respect to x1 and then evolved.

If the best individual in P y

0
is to be as good as theoretically possible, it should

be given by minY (x1), as good values for the Y population are small values of
the function. This y can be graphically obtained by intersecting the vertical line
with equation x = x1 with the y = minY (x) curve. Let y2 be the y value thus
found.

The process now continues in the same fashion, by alternatively drawing hor-
izontal and vertical lines and intersecting them with the maxX(y) and minY (x)
curves respectively, generating cobweb-like diagrams (the term was introduced
in [3], although in a different kind of setup).

It is easy to see that for cyclingRidges the cobweb immediately runs into a
(rectangular) cycle whose position (edge size) is dependent on the initial start-
ing point (y0). For collapsingRidges, regardless of where the process starts, the
trajectory gets closer and closer with each step to the (n/2, n/2) point, converg-
ing to it in the limit. The shape generated is an inward going spiral. The limit
behavior of expandingRidges is also independent of the starting point, but this
time an outward spiral can be observed, that gets closer and closer to the edges
of the space.



4 Results and Analysis

4.1 Algorithm Settings

The general dynamics of the co-evolutionary algorithm used were described in
section 2. Here we present the details.

The algorithm employs a real number representation and a generational
model, with tournament selection of size two and gaussian mutation with a
standard deviation of 0.25 applied at a rate of 0.95. Unless otherwise specified,
the population size was set to 100 individuals and the number of generations for
which the algorithm was run was also 100.

As far as the fitness functions are concerned, n = 8 was used in all the
experiments presented here.

For each function multiple runs were conducted (in the order of 10) and
visually inspected (as it is hard to average trajectories) and typical runs are
displayed in the charts.

4.2 Methodology

In each case, the dynamics of the co-evolutionary process are inspected from two
perspectives:

- how does the current best of each population move around in the space
- how does the fitness of the current best of each population change in time.

Fig. 4. The cyclingRidges function.

Therefore, for each function two plots are produced, one for each perspective,
and they are shown in figures 4 - cyclingRidges, 5 - collapsingRidges and 6 -
expandingRidges. There is a one-to-one correspondence between the points in
the plots of such a pair.



Fig. 5. The collapsingRidges function.

Fig. 6. The expandingRidges function.



Movement-across-the-space type plots contain three data series. The dark
colored one represents the data obtained from running the algorithm and the
lines are directed (with respect to time/generation number) always counter-
clockwise for the functions investigated. The light color trend shows for every y
value which is the x that gives the highest function value (i.e. maxX(y)) and
the medium shade trend shows for every x value which is the y that gives the
lowest function value (i.e. minY (x)).

4.3 In Practice, Practice Agrees with Theory

The most visible thing from the movement-across-the-space type plots is that
they closely follow the predicted behavior. There is still a (fairly low) degree of
variance due to the stochastic nature of the algorithm, but the cycling, collapsing
and respectively expanding trends are strong.

It is interesting to note that the highest degree of trajectory variance is in
the cycling case, and this trend will show again in a later experiment presented
in subsection 4.4. One explanation is the fact that for this function the gradients
of both sides of all ridges are fairly close, yielding comparable probabilities of
slipping off on either side. For the collapsingRidges and expandingRidges func-
tions, along the ridges define by the minY (y) curves the gradient is much higher
on one side than on the other, yielding higher probability of slipping on the side
on which being close to the ridge will pull towards convergence (or respectively
divergence) anyway.

4.4 Population Size Effects

As some variance in the cycling/collapsing/expanding nature of the trajectories
has been noticed (and was expected), an additional experiment was conducted
to observe the effects of a dramatically smaller population size, namely 10.

As predicted, there is increasing variance due to sampling error. For the col-
lapsingRidges function, the effect is slightly slower convergence to the (n/2, n/2)
point, and sometimes the trajectory temporarily escapes it only to be drawn back
in. Similarly, in the expandingRidges case, it takes a bit more time for the tra-
jectory to reach the edges of the space and it can be from time to time pulled
back in for a while only to consequently expand again.

The cyclingRidges function shows a more drastic behavior difference in this
case. As it can be seen in figure 7, the trajectory travels all over the place, highly
exploring the space, and in the particular movement plot shown it even ends up
stabilizing (maybe just for a while?) in the saddle point in the middle of the
space. Explanations for this behavior have been suggested in subsection 4.3.

4.5 Chasing Tails, Mediocre Stable States and Arms-Race

Dynamics

A number of buzz-words have emerged in the field of co-evolutionary algorithms
trying to characterize their behavior and point presumably desirable kinds of



Fig. 7. The cyclingRidges function. Behavior for population size 10.

behavior. The results of the conducted experiments are presented in the light of
these existing notions.

cyclingRidges Figure 4 shows a type of cycling behavior in which the two
populations take turns in ”beating” each other by pulling each other’s best
through four regions, two of which are favorable to X and the other two favorable
to Y . These regions are strongly dependent on the initial starting point (which
one of them actually contains and is developed around) and are hardly ever
escaped. The search space is not explored beyond them.

Tracing best fitness, the only changes observed over time are slight variations
due to stochastic effects and alternative swaps at each generation between the
local fitness range good for X and the one good for Y . Neither of the populations
exhibits any significant change in fitness from the circumstantial initial preferred
value found. This is also a side effect of the symmetry of the function on each
diagonal with respect to the other. If it were not like that, each population would
then have two preferred fitness areas that would alternatively be sampled.

This kind of behavior can be regarded as a kind of stagnation, although it
is a different type from what is referred in the literature as reaching a stable
state. The two populations are just chasing each other’s tail. Whether the best
fitnesses produced by either population are very good, mediocre or lousy ones is
circumstantial, depending on the starting point. In addition, the way the function
is set up, the best fitnesses of the two populations fall in the same category, they
are both either good, mediocre or lousy, neither X nor Y beats the other one at
a higher degree.

collapsingRidges The behavior of the algorithm on the second function is
a definite example of convergence to a mediocre stable state, as can be easily



seen in figure 5. The ”stable state” is evident both on the movement plot, on
which the trajectory goes into the saddle point (n/2, n/2) and stays there, and
on the fitness plot, which shows the fitness stabilizing at a value of n. This
is mediocre, because it is half way between the minimum and the maximum
possible. In addition, over time the fitness of the best individuals produced by
the two populations gets worse and worse (lower for X and higher for Y ).

expandingRidges Finally, the third function is an example of an arms race,
one type of behavior that is considered desirable, especially when co-evolution
is used as an optimization technique. The space trajectory drawn by the current
best individuals (see figure 6) of the two populations has the shape of a spiral
expanding towards the boundaries of the space and then cycling there because
it is not allowed to go out. If the space were infinite, it would keep expanding
for ever.

The same trend is visible on the fitness plot. While the populations still take
turns in ”beating” each other, the function values that the best individuals are
reaching are getting better and better over time until they reach the maximum
(for X) and minimum (for Y ) after which there is just light variance in the values
due to the stochastic nature of the algorithm. Again, if the space were infinite,
unlimited growth in function values would be seen.

5 Conclusions

This paper took a new approach at analyzing dynamics of competitive co-
evolutionary algorithms. These dynamics were studied on real-valued function
landscapes, as opposed to most existing co-evolution studies which focused on
game domains. In addition, the dynamics were observed from two perspectives -
movement over space and fitness change - and the joint analysis of the insights
each of them gives facilitates a better understanding of the process.

One very important thing to be noted as a result of this work is how useless
traditional methods of characterizing fitness landscapes are when dealing with
co-evolution. The differences between the three functions with respect to notions
such as ruggedness/modality or deception are so slight or inexistent, and yet the
resulting behaviors of the algorithm are so drastically different. It is hard both
formally and for the human eye to distinguish what is fundamentally different
between these landscapes, especially the last two.

The work presented opens directions of research that hold promise for identi-
fying landscape properties that are relevant to co-evolutionary algorithms. These
will have to initially be investigated on fabricated functions, and then taken one
(big) step further to apply them in real world domains.

References

1. Wiegand, R.P.: An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,
George Mason University, Fairfax, Virginia (2004)



2. Ficici, S., Pollack, J.: Challenges in coevolutionary learning: Arms–race dynamics,
open–endedness, and mediocre stable states. In et al, A., ed.: Proceedings of the
Sixth International Conference on Artificial Life, Cambridge, MA, MIT Press (1998)
238–247

3. Ficici, S., Pollack, J.: Game–theoretic investigation of selection methods used in
evolutionary algorithms. In et al, Z., ed.: Proceedings of the 2000 Congress on
Evolutionary Computation. (2000) 880–887


