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Abstract. Multiobjective 0/1 knapsack problems have been frequently used as 
test problems to examine the performance of evolutionary multiobjective 
optimization algorithms in the literature. It has been reported that their 
performance strongly depends on the choice of a constraint handling method. In 
this paper, we examine two implementation schemes of greedy repair: 
Lamarckian and Darwinian. In the Lamarckian implementation of greedy repair, 
a feasible solution is generated from an unfeasible one by removing items until 
all the constraint conditions are satisfied. That is, the genetic information of the 
unfeasible solution is modified. On the other hand, the genetic information of 
the unfeasible solution is not changed in the Darwinian implementation where 
greedy repair is used only to evaluate the fitness value of each solution. We 
compare these two implementation schemes with each other through 
computational experiments. We also compare greedy repair-based methods with 
a penalty function approach. 

1  Introduction 

Evolutionary multiobjective optimization (EMO) is a very active research area in the 
field of evolutionary computation (see, for example, Coello et al. [1] and Deb [2]). 
Since the study of Zitzler & Thiele [18], multiobjective 0/1 knapsack problems have 
been frequently used in computational experiments to examine the performance of 
various EMO algorithms (e.g., Ishibuchi et al. [6], [7], Jaszkiewicz [9], [10], Knowles 
& Corne [12], [13], and Zitzler et al. [17]). When EMO algorithms are applied to 
multiobjective 0/1 knapsack problems, unfeasible solutions are often generated by 
genetic operations. That is, generated solutions do not always satisfy the constraint 
conditions. Thus several constraint handling methods have been examined in the 
application of EMO algorithms to multiobjective 0/1 knapsack problems (e.g., 
Ishibuchi & Kaige [4], Mumford [15], and Zydallis & Lamont [20]). Constraint 
handling methods can be roughly classified into the following three categories: 

Greedy Repair: An unfeasible solution is repaired by removing items until all the 
constraint conditions are satisfied. The order in which items are removed is pre-



  

specified based on a heuristic evaluation measure. 
Penalty Function: The objective function related to each knapsack is penalized when 
the constraint condition with respect to that knapsack is violated.  
Permutation Cording: Each solution is not represented by a binary string but a 
permutation of items. That is, the order of items is used as a string to represent each 
solution. A feasible solution is obtained from each permutation-type string by adding 
items to the knapsacks in the order specified by that string. 

 In this paper, we concentrate on the comparison between two implementation 
schemes of greedy repair: Lamarckian and Darwinian. In the Lamarckian 
implementation, a feasible solution is generated from an unfeasible one by removing 
items until all the constraint conditions are satisfied. That is, the genetic information 
of the unfeasible solution is modified by greedy repair as shown in Fig. 1 where the 
fifth and sixth items are removed from the unfeasible solution. Fig. 1 illustrates how a 
newly generated infeasible solution is repaired before it is inserted in the next 
population. As a result, the current population always consists of feasible solutions.  
 On the other hand, the genetic information of an unfeasible solution is not 
changed in the Darwinian implementation where greedy repair is used only to 
evaluate the fitness value of each solution. As shown in Fig. 2, the same feasible 
solution as in Fig. 1 is generated from the unfeasible solution by greedy repair. This 
feasible solution is used only to assign the fitness value to the unfeasible solution. As 
a result, the current population becomes a mixture of feasible and unfeasible solutions 
in the case of the Darwinian implementation of greedy repair.  
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Fig. 1. Illustration of the Lamarckian implementation of greedy repair. 

1 1 0 1 1 1 1 1 1 0 1 0 0 1
Repair

generated by genetic operations
* *

Unfeasible solution Feasible solution

1 1 0 1 1 1 1
Unfeasible solution

in the next population

Fitness value

Fitness evaluation

 

Fig. 2. Illustration of the Darwinian implementation of greedy repair. 



  

 In this paper, we first briefly explain multiobjective 0/1 knapsack problems and 
two repair methods examined in Ishibuchi & Kaige [4] and Zydallis & Lamont [20]. 
The two repair methods are the maximum ratio repair and the weighted scalar repair. 
Then we examine the two implementation schemes (i.e., Lamarckian and Darwinian) 
of these repair methods. The two implementation schemes are compared with each 
other through computational experiments on multiobjective 0/1 knapsack problems in 
Zitzler & Thiele [18] using the NSGA-II algorithm of Deb et al. [3]. We also evaluate 
the performance of the repair methods in comparison with a penalty function 
approach where the objective function with respect to each knapsack is penalized 
when the corresponding constraint condition is violated. 

2  Multiobjective 0/1 Knapsack Problems 

Multiobjective 0/1 knapsack problems with k knapsacks (i.e., k objectives) and n 
items in Zitzler & Thiele [18] can be written as follows: 

   Maximize (f ,         (1) ))(...,),(),(() 21 xxxx kfff=

   subject to ∑ ,  
=

≤
n

j
ijij cxw

1
ki ...,,2,1= ,          (2) 

where 

   ,  ∑
=

=
n

j
jiji xpf

1
)(x ki ...,,2,1= .            (3) 

In this formulation, x is an n-dimensional binary vector (i.e., ( ), 
 is the profit of item j according to knapsack i,  is the weight of item j 

according to knapsack i, and c  is the capacity of knapsack i. Each solution x is 
handled as a binary string of length n in EMO algorithms. 

n
nxxx }1,0{)...,,, 21 ∈

ijp ijw
i

3  Repair Methods 

Zitzler & Thiele [18] used a greedy repair method where items were removed in the 
ascending order of the maximum profit/weight ratio  over all knapsacks: jq

n,...,   },...,2,1|max{ kiwpq ijijj == , j 2,1= .        (4) 

The maximum profit/weight ratio q  in (4) has been used in many studies on EMO 
algorithms [6], [7], [12], [13], [17], [18]. In this paper, we refer to this repair method 
as maximum ratio repair. 

j

 While Pareto ranking was used to evaluate each solution in many EMO algorithms, 
the following weighted scalar fitness function was used in some EMO algorithms (e.g., 
Ishibuchi et al. [5], [8] and Jaszkiewicz [9]-[11]): 
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 In the MOGLS of Jaszkiewicz [11], the weighted scalar fitness function in (5) was 
used in the following manner. When a pair of parent solutions is to be selected, first 
the weight vector )...,,( 1 kλλ=λ  is randomly specified. Next the best K solutions are 
selected from the current population using the weighted scalar fitness function with 
the current weight vector. Then a pair of parent solutions is randomly chosen from 
those K solutions in order to generate an offspring by genetic operations from the 
selected pair. The same weighted scalar fitness function with the current weight 
vector is used in the repair for the generated offspring where items were removed in 
the ascending order of the following ratio: 
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We refer to this repair method as weighted scalar repair. A local search procedure is 
applied to the repaired offspring using the same scalar fitness function with the 
current weight vector. The weighted scalar repair is also used in the local search phase.  
 It should be noted that the weighted scalar repair is directly applicable only to the 
MOGLS with the weighted scalar fitness function. In the application to the NSGA-II 
algorithm [3] in this paper, we use the weighted scalar repair by randomly updating 
the weight vector )...,,( 1 kλλ=λ  for each unfeasible solution. That is, a different 
weight vector is assigned to each unfeasible solution.  
 Each repair method is implemented in the two frameworks: Lamarckian and 
Darwinian. This means that we examine the four combinations of the two repair 
methods and the two implementation schemes.  
 Just for comparison, we also examine the performance of a penalty function 
approach. Using a positive constant α  representing a unit penalty with respect to the 
violation of each constraint condition, we formulate the following k-objective 
optimization problem with no constraint conditions from the original k-objective 0/1 
knapsack problem in (1)-(3): 
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In this formulation, each objective  is penalized when the corresponding )(xif



  

constraint condition is violated. The application of EMO algorithms to the k-objective 
optimization problem in (8)-(9) is straightforward because no constraint conditions 
are involved. When we evaluate the performance of an EMO algorithm with the 
penalty function method, we only examine feasible solutions in the final solution set 
obtained by each run of the EMO algorithm (i.e., unfeasible solutions of the original 
knapsack problem are not taken into account in the performance evaluation). 

4  Computational Experiments 

4.1  Conditions of Computational Experiments 

We incorporated each of the four combinations of the two repair methods and the two 
implementation schemes into the NSGA-II algorithm [3]. As test problems, we used 
three knapsack problems in Zitzler & Thiele [18]: 2-250 (i.e., two-objective 250-item), 
2-500, and 2-750 problems. Each solution for an n-item problem was coded as a 
binary string of length n. The four variants of the NSGA-II algorithm were applied to 
the three knapsack problems under the following parameter specifications:  

Crossover probability (one-point crossover): 0.8,  
Mutation probability (bit-flip mutation): , n/4
Population size: 150 (2-250 problem), 200 (2-500 problem), 250 (2-750 problem), 
Stopping condition: 500 generations. 

The average performance of each variant on each test problem was calculated over 30 
runs with different initial populations. 
 A number of performance measures have been proposed for evaluating a set of 
non-dominated solutions in the literature. As explained in Knowles & Corne [14], 
Okabe et al. [16], and Zitzler et al. [19], no performance measure can simultaneously 
evaluate various aspects of a solution set. In this paper, we use three performance 
measures that are applicable to simultaneous comparison of many solution sets. Let S 
be a solution set obtained by an EMO algorithm. A simple performance measure to 
evaluate the diversity of solutions in the solution set S is the width of the solution set 
S in the objective space. The width of the solution set S is measured for each objective 
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evaluated by the generational distance defined as follows:  
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where  is a reference solution set (i.e., the set of Pareto-optimal solutions) and d  
is the distance between a solution x and a reference solution y in the k-dimensional 
objective space: 
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 For evaluating both the diversity of solutions in the solution set S and the 
convergence speed to the Pareto front, we calculate the D1  measure defined as 
follows: 
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It should be noted that D1  in (14) is the average distance from each reference 
solution y in S  to its nearest solution in S while GD  in (12) is the average 
distance from each solution x in S to its nearest reference solution in S . The 
generational distance GD  measures the proximity of the solution set S to the 
reference solution set S . On the other hand, D1  evaluates how well the solution 
set S approximates the reference solution set . 
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 Since all Pareto-optimal solutions are known for the 2-250 and 2-500 test 
problems, we can use them as the reference solution set S  for each test problem. On 
the other hand, the performance of the four variants of the NSGA-II algorithm on the 
2-750 test problem is visually examined in its two-dimensional objective space. 

*

4.2  Comparison of Two Implementation Schemes: Lamarckian and Darwinian 

Average results over 30 runs are summarized in Table 1 for the maximum ratio repair 
and Table 2 for the weighted scalar repair. In these tables, the average value of each 
performance measure is shown together with the corresponding standard deviation in 
the parentheses. The better result between the two implementation schemes (i.e., 
Lamarckian and Darwinian) is shown by boldface. It should be noted that smaller 
values of the generational distance and the D1  measure mean better results while 
larger values of the width measure mean better results.  

R

 From Table 1 and Table 2, we can see that the Darwinian implementation 
consistently outperforms the Lamarckian implementation independent of the setting 
of the other factors (i.e., in all combinations of the two repair methods, the two test 
problems, and the three performance measures). We can also see from the comparison 
between Table 1 and Table 2 that the weighted scalar repair consistently outperforms 



  

the maximum ratio repair in all combinations of the two implementation schemes, the 
two test problems, and the three performance measures. 
 

Table 1. Average results using the maximum ratio repair. 
 

Generational distance D1R measure Width 
Problem 

Lamarckian Darwinian Lamarckian Darwinian Lamarckian Darwinian 
2-250 140 (15) 105 (17) 262 (27) 212 (27) 2173 (233) 2414 (289) 
2-500 324 (32) 239 (24) 632 (42) 502 (47) 2758 (322) 3324 (371) 

Table 2. Average results using the weighted scalar repair. 
 

Generational distance D1R measure Width 
Problem 

Lamarckian Darwinian Lamarckian Darwinian Lamarckian Darwinian 
2-250 57 (6) 36 (5) 94 (15) 40 (5) 3336 (273) 4518 (186) 
2-500 155 (17) 100 (19) 269 (26) 103 (18) 4717 (326) 7114 (228) 

 
 
 In order to visually compare the two implementation schemes, we calculated the 
50% attainment surface using 30 solution sets obtained from 30 independent runs for 
each case. Experimental results are shown in Fig. 3 for the maximum ratio repair and 
Fig. 4 for the weighted scalar repair. In these figures, all the Pareto-optimal solutions 
(i.e., Pareto front) of each test problem are also shown. These Pareto-optimal 
solutions were used to calculate the generational distance and the D1  measure in 
Table 1 and Table 2. Fig. 3 and Fig. 4 visually show the superiority of the Darwinian 
implementation over the Lamarckian implementation.  
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         (a) 2-250 test problem.          (b) 2-500 test problem. 

Fig. 3. Pareto fronts and 50% attainment surfaces obtained by the maximum ratio repair. 
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         (a) 2-250 test problem.          (b) 2-500 test problem. 

Fig. 4. Pareto fronts and 50% attainment surfaces obtained by the weighted scalar repair. 
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    (a) Maximum ratio repair.       (b) Weighted scalar repair. 

Fig. 5. 50% attainment surfaces obtained for the 2-750 test problem. 

 
 We also calculated the 50% attainment surface for the 2-750 test problem. 
Experimental results are summarized in Fig. 5. As in the above-mentioned 
experimental results on the 2-250 and 2-500 test problems, better results were 
obtained by the Darwinian implementation than the Lamarckian implementation. We 
can also see that the weighted scalar repair outperforms the maximum ratio repair in 
Fig. 5 as in Fig. 3 and Fig. 4. 
 In order to further demonstrate the difference between the two implementation 
schemes, we monitored the number of feasible solutions in each generation during the 
execution of the four variants of the NSGA-II algorithm on the three test problems. In 
Fig. 6 (a), we show experimental results of a single run on the 2-500 test problem 
using the maximum ratio repair. As we have already explained, all the solutions at 
each generation were always feasible in the case of the Lamarckian implementation. 



  

On the contrary, the number of feasible solutions rapidly decreased to zero in the 
early stage of evolution in the case of the Darwinian implementation in Fig. 6 (a). We 
also monitored the average number of items included in each solution during the same 
execution as in Fig. 6 (a). Experimental results are summarized in Fig. 6 (b). From Fig. 
6 (b), we can see that more items were included in each solution in the case of the 
Darwinian implementation than the Lamarckian implementation. We can also see that 
the increase in the average number of items was very slow after the 100th generation 
even in the case of the Darwinian implementation where all solutions were infeasible 
after the 4th generation. 
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     (a) Number of feasible solutions.    (b) Average number of items in each solution. 

Fig. 6. Experimental results of a single run on the 2-500 test problem. 

4.3  Comparison with Penalty Function Approach 

In the same manner as in Subsection 4.2, we applied the NSGA-II algorithm to each 
test problem 30 times using the penalty function approach in (8)-(9). We examined 
the various specifications of the unit penalty α : =α 1.0, 1.2, 1.4, ..., 3.0. Average 
results over 30 runs on the 2-500 test problem are depicted by open circles in Fig. 7 
where we also show the average results by the Darwinian implementation of the two 
repair methods in Subsection 4.2. Fig. 7 (a)-(c) show the average results with respect 
to the three performance measures: the generational distance, the D1  measure, and 
the width measure, respectively. We also show the average number of obtained 
solutions in Fig. 7 (d). It should be noted that smaller values mean better results in Fig. 
7 (a) and Fig. 7 (b) while larger values mean better results in Fig. 7 (c) and Fig. 7 (d). 
From Fig. 7, we can see that good results were not obtained by the penalty function 
approach while we examined a wide range of parameter values. More specifically, we 
can see from Fig. 7 (a) that the convergence to the Pareto front degraded as the unit 
penalty 

R

α  increased. On the other hand, we can see from Fig. 7 (b)-(d) that the 



  

diversity of obtained solutions degraded as the unit penalty α  decreased. When the 
unit penalty α  was very small (e.g., =α 1.0), only a few solutions were obtained 
from each run using the penalty function approach as shown in Fig. 7 (d). 
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     (a) Generational distance.         (b) D1R measure. 
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    (c) Width measure.            (d) Number of obtained solutions. 

Fig. 7. Average results by the penalty function approach on the 2-500 test problem. 

5  Concluding Remarks 

We examined two implementation schemes (i.e., Lamarckian and Darwinian) of 
greedy repair through computational experiments on multiobjective 0/1 knapsack 
problems. We also examined two repair methods: maximum ratio repair and weighted 
scalar repair. While the Lamarckian implementation has been mainly used in the 
application of EMO algorithms to multiobjective 0/1 knapsack problems in the 
literature, better results were obtained by the Darwinian implementation in this paper. 



  

The main contribution of this paper is that the superiority of the Darwinian 
implementation over the Lamarckian implementation was clearly demonstrated 
through computational experiments on multiobjective 0/1 knapsack problems. 
 We also showed that better results were obtained by the weighted scalar repair 
than the maximum ratio repair. This observation is consistent with some reported 
results in the literature. Finally we demonstrated that good results were not obtained 
by the penalty function approach in comparison with greedy repair. This observation 
is also consistent with some reported results in the literature. 
 While we empirically showed the superiority of the Darwinian implementation 
over the Lamarckian implementation through computational experiments on 
multiobjective 0/1 knapsack problems, we did not explain why the Darwinian 
implementation outperformed the Lamarckian implementation in the application of 
the NSGA-II algorithm to the three test problems in this paper. We did not examine 
the performance of the two implementation schemes for other test problems, either. 
Further empirical studies as well as theoretical studies are left for future research with 
respect to the comparison between the two implementation schemes of greedy repair 
for multiobjective optimization problems. 
 The authors would like to thank the financial support from Kayamori Foundation 
of Information Science Advancement, Ogasawara Foundation for the Promotion of 
Science & Engineering, and Japan Society for the Promotion of Science (JSPS) 
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