

Lamarckian Repair and Darwinian Repair in EMO
Algorithms for Multiobjective 0/1 Knapsack Problems

Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi

Department of Industrial Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
{shiori, kaname, hisaoi}@ie.osakafu-u.ac.jp

Abstract. Multiobjective 0/1 knapsack problems have been frequently used as
test problems to examine the performance of evolutionary multiobjective
optimization algorithms in the literature. It has been reported that their
performance strongly depends on the choice of a constraint handling method. In
this paper, we examine two implementation schemes of greedy repair:
Lamarckian and Darwinian. In the Lamarckian implementation of greedy repair,
a feasible solution is generated from an unfeasible one by removing items until
all the constraint conditions are satisfied. That is, the genetic information of the
unfeasible solution is modified. On the other hand, the genetic information of
the unfeasible solution is not changed in the Darwinian implementation where
greedy repair is used only to evaluate the fitness value of each solution. We
compare these two implementation schemes with each other through
computational experiments. We also compare greedy repair-based methods with
a penalty function approach.

1 Introduction

Evolutionary multiobjective optimization (EMO) is a very active research area in the
field of evolutionary computation (see, for example, Coello et al. [1] and Deb [2]).
Since the study of Zitzler & Thiele [18], multiobjective 0/1 knapsack problems have
been frequently used in computational experiments to examine the performance of
various EMO algorithms (e.g., Ishibuchi et al. [6], [7], Jaszkiewicz [9], [10], Knowles
& Corne [12], [13], and Zitzler et al. [17]). When EMO algorithms are applied to
multiobjective 0/1 knapsack problems, unfeasible solutions are often generated by
genetic operations. That is, generated solutions do not always satisfy the constraint
conditions. Thus several constraint handling methods have been examined in the
application of EMO algorithms to multiobjective 0/1 knapsack problems (e.g.,
Ishibuchi & Kaige [4], Mumford [15], and Zydallis & Lamont [20]). Constraint
handling methods can be roughly classified into the following three categories:

Greedy Repair: An unfeasible solution is repaired by removing items until all the
constraint conditions are satisfied. The order in which items are removed is pre-

specified based on a heuristic evaluation measure.
Penalty Function: The objective function related to each knapsack is penalized when
the constraint condition with respect to that knapsack is violated.
Permutation Cording: Each solution is not represented by a binary string but a
permutation of items. That is, the order of items is used as a string to represent each
solution. A feasible solution is obtained from each permutation-type string by adding
items to the knapsacks in the order specified by that string.

 In this paper, we concentrate on the comparison between two implementation
schemes of greedy repair: Lamarckian and Darwinian. In the Lamarckian
implementation, a feasible solution is generated from an unfeasible one by removing
items until all the constraint conditions are satisfied. That is, the genetic information
of the unfeasible solution is modified by greedy repair as shown in Fig. 1 where the
fifth and sixth items are removed from the unfeasible solution. Fig. 1 illustrates how a
newly generated infeasible solution is repaired before it is inserted in the next
population. As a result, the current population always consists of feasible solutions.
 On the other hand, the genetic information of an unfeasible solution is not
changed in the Darwinian implementation where greedy repair is used only to
evaluate the fitness value of each solution. As shown in Fig. 2, the same feasible
solution as in Fig. 1 is generated from the unfeasible solution by greedy repair. This
feasible solution is used only to assign the fitness value to the unfeasible solution. As
a result, the current population becomes a mixture of feasible and unfeasible solutions
in the case of the Darwinian implementation of greedy repair.

1 1 0 1 1 1 1 1 1 0 1 0 0 1

Repair

Unfeasible solution
generated by genetic operations

Feasible solution
in the next population

* *

Fig. 1. Illustration of the Lamarckian implementation of greedy repair.

1 1 0 1 1 1 1 1 1 0 1 0 0 1
Repair

generated by genetic operations
* *

Unfeasible solution Feasible solution

1 1 0 1 1 1 1
Unfeasible solution

in the next population

Fitness value

Fitness evaluation

Fig. 2. Illustration of the Darwinian implementation of greedy repair.

 In this paper, we first briefly explain multiobjective 0/1 knapsack problems and
two repair methods examined in Ishibuchi & Kaige [4] and Zydallis & Lamont [20].
The two repair methods are the maximum ratio repair and the weighted scalar repair.
Then we examine the two implementation schemes (i.e., Lamarckian and Darwinian)
of these repair methods. The two implementation schemes are compared with each
other through computational experiments on multiobjective 0/1 knapsack problems in
Zitzler & Thiele [18] using the NSGA-II algorithm of Deb et al. [3]. We also evaluate
the performance of the repair methods in comparison with a penalty function
approach where the objective function with respect to each knapsack is penalized
when the corresponding constraint condition is violated.

2 Multiobjective 0/1 Knapsack Problems

Multiobjective 0/1 knapsack problems with k knapsacks (i.e., k objectives) and n
items in Zitzler & Thiele [18] can be written as follows:

 Maximize (f , (1)))(...,),(),(() 21 xxxx kfff=

 subject to ∑ ,
=

≤
n

j
ijij cxw

1
ki ...,,2,1= , (2)

where

 , ∑
=

=
n

j
jiji xpf

1
)(x ki ...,,2,1= . (3)

In this formulation, x is an n-dimensional binary vector (i.e., (),
 is the profit of item j according to knapsack i, is the weight of item j

according to knapsack i, and c is the capacity of knapsack i. Each solution x is
handled as a binary string of length n in EMO algorithms.

n
nxxx }1,0{)...,,, 21 ∈

ijp ijw
i

3 Repair Methods

Zitzler & Thiele [18] used a greedy repair method where items were removed in the
ascending order of the maximum profit/weight ratio over all knapsacks: jq

n,..., },...,2,1|max{ kiwpq ijijj == , j 2,1= . (4)

The maximum profit/weight ratio q in (4) has been used in many studies on EMO
algorithms [6], [7], [12], [13], [17], [18]. In this paper, we refer to this repair method
as maximum ratio repair.

j

 While Pareto ranking was used to evaluate each solution in many EMO algorithms,
the following weighted scalar fitness function was used in some EMO algorithms (e.g.,
Ishibuchi et al. [5], [8] and Jaszkiewicz [9]-[11]):

 , (5) ∑
=

=
k

i
ii ff

1
)(),(xx λλ

where

 0≥∀ ii λ and . (6) 1
1

=∑
=

k

i
iλ

 In the MOGLS of Jaszkiewicz [11], the weighted scalar fitness function in (5) was
used in the following manner. When a pair of parent solutions is to be selected, first
the weight vector)...,,(1 kλλ=λ is randomly specified. Next the best K solutions are
selected from the current population using the weighted scalar fitness function with
the current weight vector. Then a pair of parent solutions is randomly chosen from
those K solutions in order to generate an offspring by genetic operations from the
selected pair. The same weighted scalar fitness function with the current weight
vector is used in the repair for the generated offspring where items were removed in
the ascending order of the following ratio:

 ∑∑
==

=
k

i
ij

k

i
ijij wpq

11
λ , nj ,...,2,1= . (7)

We refer to this repair method as weighted scalar repair. A local search procedure is
applied to the repaired offspring using the same scalar fitness function with the
current weight vector. The weighted scalar repair is also used in the local search phase.
 It should be noted that the weighted scalar repair is directly applicable only to the
MOGLS with the weighted scalar fitness function. In the application to the NSGA-II
algorithm [3] in this paper, we use the weighted scalar repair by randomly updating
the weight vector)...,,(1 kλλ=λ for each unfeasible solution. That is, a different
weight vector is assigned to each unfeasible solution.
 Each repair method is implemented in the two frameworks: Lamarckian and
Darwinian. This means that we examine the four combinations of the two repair
methods and the two implementation schemes.
 Just for comparison, we also examine the performance of a penalty function
approach. Using a positive constant α representing a unit penalty with respect to the
violation of each constraint condition, we formulate the following k-objective
optimization problem with no constraint conditions from the original k-objective 0/1
knapsack problem in (1)-(3):

 Maximize g , (8)))(...,),(),(()(21 xxxx kggg=

where

 , 









−⋅−= ∑

=
i

n

j
jijii cxwfg

1
,0max)()(αxx ki ...,,2,1= . (9)

In this formulation, each objective is penalized when the corresponding)(xif

constraint condition is violated. The application of EMO algorithms to the k-objective
optimization problem in (8)-(9) is straightforward because no constraint conditions
are involved. When we evaluate the performance of an EMO algorithm with the
penalty function method, we only examine feasible solutions in the final solution set
obtained by each run of the EMO algorithm (i.e., unfeasible solutions of the original
knapsack problem are not taken into account in the performance evaluation).

4 Computational Experiments

4.1 Conditions of Computational Experiments

We incorporated each of the four combinations of the two repair methods and the two
implementation schemes into the NSGA-II algorithm [3]. As test problems, we used
three knapsack problems in Zitzler & Thiele [18]: 2-250 (i.e., two-objective 250-item),
2-500, and 2-750 problems. Each solution for an n-item problem was coded as a
binary string of length n. The four variants of the NSGA-II algorithm were applied to
the three knapsack problems under the following parameter specifications:

Crossover probability (one-point crossover): 0.8,
Mutation probability (bit-flip mutation): , n/4
Population size: 150 (2-250 problem), 200 (2-500 problem), 250 (2-750 problem),
Stopping condition: 500 generations.

The average performance of each variant on each test problem was calculated over 30
runs with different initial populations.
 A number of performance measures have been proposed for evaluating a set of
non-dominated solutions in the literature. As explained in Knowles & Corne [14],
Okabe et al. [16], and Zitzler et al. [19], no performance measure can simultaneously
evaluate various aspects of a solution set. In this paper, we use three performance
measures that are applicable to simultaneous comparison of many solution sets. Let S
be a solution set obtained by an EMO algorithm. A simple performance measure to
evaluate the diversity of solutions in the solution set S is the width of the solution set
S in the objective space. The width of the solution set S is measured for each objective

 as)(xif

 }|)(min{}|)(max{)(SfSfSwidth iii ∈−∈= xxxx . (10)

The sum of the widths over the k objectives is calculated as

 . (11) ∑
=

=
k

i
i SwidthSwidth

1
)()(

 On the other hand, the proximity of the solution set S to the Pareto front is

evaluated by the generational distance defined as follows:

 ∑
∈

∈=
S

Sd
S

S
x

xy y }|min{
||

1)(GD * , (12)

where is a reference solution set (i.e., the set of Pareto-optimal solutions) and d
is the distance between a solution x and a reference solution y in the k-dimensional
objective space:

*S xy

 22
11))()(())()((yxyxxy kk ffffd −+⋅⋅⋅+−= . (13)

 For evaluating both the diversity of solutions in the solution set S and the
convergence speed to the Pareto front, we calculate the D1 measure defined as
follows:

R

 ∑
∈

∈=
*

}|min{
||

1)(D1 *R
S

Sd
S

S
y

xy x . (14)

It should be noted that D1 in (14) is the average distance from each reference
solution y in S to its nearest solution in S while GD in (12) is the average
distance from each solution x in S to its nearest reference solution in S . The
generational distance GD measures the proximity of the solution set S to the
reference solution set S . On the other hand, D1 evaluates how well the solution
set S approximates the reference solution set .

)(R S

)(S
*

*)(S
*

R
*S

 Since all Pareto-optimal solutions are known for the 2-250 and 2-500 test
problems, we can use them as the reference solution set S for each test problem. On
the other hand, the performance of the four variants of the NSGA-II algorithm on the
2-750 test problem is visually examined in its two-dimensional objective space.

*

4.2 Comparison of Two Implementation Schemes: Lamarckian and Darwinian

Average results over 30 runs are summarized in Table 1 for the maximum ratio repair
and Table 2 for the weighted scalar repair. In these tables, the average value of each
performance measure is shown together with the corresponding standard deviation in
the parentheses. The better result between the two implementation schemes (i.e.,
Lamarckian and Darwinian) is shown by boldface. It should be noted that smaller
values of the generational distance and the D1 measure mean better results while
larger values of the width measure mean better results.

R

 From Table 1 and Table 2, we can see that the Darwinian implementation
consistently outperforms the Lamarckian implementation independent of the setting
of the other factors (i.e., in all combinations of the two repair methods, the two test
problems, and the three performance measures). We can also see from the comparison
between Table 1 and Table 2 that the weighted scalar repair consistently outperforms

the maximum ratio repair in all combinations of the two implementation schemes, the
two test problems, and the three performance measures.

Table 1. Average results using the maximum ratio repair.

Generational distance D1R measure Width
Problem

Lamarckian Darwinian Lamarckian Darwinian Lamarckian Darwinian
2-250 140 (15) 105 (17) 262 (27) 212 (27) 2173 (233) 2414 (289)
2-500 324 (32) 239 (24) 632 (42) 502 (47) 2758 (322) 3324 (371)

Table 2. Average results using the weighted scalar repair.

Generational distance D1R measure Width
Problem

Lamarckian Darwinian Lamarckian Darwinian Lamarckian Darwinian
2-250 57 (6) 36 (5) 94 (15) 40 (5) 3336 (273) 4518 (186)
2-500 155 (17) 100 (19) 269 (26) 103 (18) 4717 (326) 7114 (228)

 In order to visually compare the two implementation schemes, we calculated the
50% attainment surface using 30 solution sets obtained from 30 independent runs for
each case. Experimental results are shown in Fig. 3 for the maximum ratio repair and
Fig. 4 for the weighted scalar repair. In these figures, all the Pareto-optimal solutions
(i.e., Pareto front) of each test problem are also shown. These Pareto-optimal
solutions were used to calculate the generational distance and the D1 measure in
Table 1 and Table 2. Fig. 3 and Fig. 4 visually show the superiority of the Darwinian
implementation over the Lamarckian implementation.

R

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Pareto front
Lamarckian
Darwinian

7000 8000 9000 10000

8000

9000

10000

 Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Pareto front
Lamarckian
Darwinian

16000 17000 18000 19000 20000
16000

17000

18000

19000

20000

 (a) 2-250 test problem. (b) 2-500 test problem.

Fig. 3. Pareto fronts and 50% attainment surfaces obtained by the maximum ratio repair.

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Pareto front
Lamarckian
Darwinian

7000 8000 9000 10000

8000

9000

10000

 Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Pareto front
Lamarckian
Darwinian

16000 17000 18000 19000 20000
16000

17000

18000

19000

20000

 (a) 2-250 test problem. (b) 2-500 test problem.

Fig. 4. Pareto fronts and 50% attainment surfaces obtained by the weighted scalar repair.

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Lamarckian
Darwinian

24000 26000 28000

24000

26000

28000

30000

 Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

Lamarckian
Darwinian

24000 26000 28000

24000

26000

28000

30000

 (a) Maximum ratio repair. (b) Weighted scalar repair.

Fig. 5. 50% attainment surfaces obtained for the 2-750 test problem.

 We also calculated the 50% attainment surface for the 2-750 test problem.
Experimental results are summarized in Fig. 5. As in the above-mentioned
experimental results on the 2-250 and 2-500 test problems, better results were
obtained by the Darwinian implementation than the Lamarckian implementation. We
can also see that the weighted scalar repair outperforms the maximum ratio repair in
Fig. 5 as in Fig. 3 and Fig. 4.
 In order to further demonstrate the difference between the two implementation
schemes, we monitored the number of feasible solutions in each generation during the
execution of the four variants of the NSGA-II algorithm on the three test problems. In
Fig. 6 (a), we show experimental results of a single run on the 2-500 test problem
using the maximum ratio repair. As we have already explained, all the solutions at
each generation were always feasible in the case of the Lamarckian implementation.

On the contrary, the number of feasible solutions rapidly decreased to zero in the
early stage of evolution in the case of the Darwinian implementation in Fig. 6 (a). We
also monitored the average number of items included in each solution during the same
execution as in Fig. 6 (a). Experimental results are summarized in Fig. 6 (b). From Fig.
6 (b), we can see that more items were included in each solution in the case of the
Darwinian implementation than the Lamarckian implementation. We can also see that
the increase in the average number of items was very slow after the 100th generation
even in the case of the Darwinian implementation where all solutions were infeasible
after the 4th generation.

Generation

N
um

be
r o

f f
ea

si
bl

e
so

lu
tio

ns

Lamarckian

Darwinian

1 2 3 4 5 6 7 8 9 10

50

100

150

200

0

 Generation

A
ve

ra
ge

 n
um

be
r o

f i
te

m
s

Lamarckian

Darwinian

100 200 300 400 500
100

110

120

130

140

150

 (a) Number of feasible solutions. (b) Average number of items in each solution.

Fig. 6. Experimental results of a single run on the 2-500 test problem.

4.3 Comparison with Penalty Function Approach

In the same manner as in Subsection 4.2, we applied the NSGA-II algorithm to each
test problem 30 times using the penalty function approach in (8)-(9). We examined
the various specifications of the unit penalty α : =α 1.0, 1.2, 1.4, ..., 3.0. Average
results over 30 runs on the 2-500 test problem are depicted by open circles in Fig. 7
where we also show the average results by the Darwinian implementation of the two
repair methods in Subsection 4.2. Fig. 7 (a)-(c) show the average results with respect
to the three performance measures: the generational distance, the D1 measure, and
the width measure, respectively. We also show the average number of obtained
solutions in Fig. 7 (d). It should be noted that smaller values mean better results in Fig.
7 (a) and Fig. 7 (b) while larger values mean better results in Fig. 7 (c) and Fig. 7 (d).
From Fig. 7, we can see that good results were not obtained by the penalty function
approach while we examined a wide range of parameter values. More specifically, we
can see from Fig. 7 (a) that the convergence to the Pareto front degraded as the unit
penalty

R

α increased. On the other hand, we can see from Fig. 7 (b)-(d) that the

diversity of obtained solutions degraded as the unit penalty α decreased. When the
unit penalty α was very small (e.g., =α 1.0), only a few solutions were obtained
from each run using the penalty function approach as shown in Fig. 7 (d).

Value of α

A
ve

ra
ge

 v
al

ue
 o

f t
he

 G
D

 m
ea

su
re

Weighted scalar repair

Maximum ratio repair

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.80

200

400

600

800

3.0
Val

eigh

aximu

1.6

 ue of α
A

ve
ra

ge
 v

al
ue

 o
f t

he
 D

1 R
m

ea
su

re

W ted scalar repair

M m ratio repair

1.0 1.2 1.4 1.8 2.0 2.2 2.4 2.6 2.8 3.00

200

400

600

800

1000

1200

 (a) Generational distance. (b) D1R measure.

Value of α

A
ve

ra
ge

 v
al

ue
 o

f t
he

 w
id

th
 m

ea
su

re

Weighted scalar repair

Maximum ratio repair

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.00

2000

4000

6000

8000

 Value of α

ve
ra

ge
 n

um
be

r o
f o

bt
ai

ne
d

so
lu

tio
ns

Weighted scalar repair

Maximum ratio repair

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.00

20

40

60

80

100

120

140

A

 (c) Width measure. (d) Number of obtained solutions.

Fig. 7. Average results by the penalty function approach on the 2-500 test problem.

5 Concluding Remarks

We examined two implementation schemes (i.e., Lamarckian and Darwinian) of
greedy repair through computational experiments on multiobjective 0/1 knapsack
problems. We also examined two repair methods: maximum ratio repair and weighted
scalar repair. While the Lamarckian implementation has been mainly used in the
application of EMO algorithms to multiobjective 0/1 knapsack problems in the
literature, better results were obtained by the Darwinian implementation in this paper.

The main contribution of this paper is that the superiority of the Darwinian
implementation over the Lamarckian implementation was clearly demonstrated
through computational experiments on multiobjective 0/1 knapsack problems.
 We also showed that better results were obtained by the weighted scalar repair
than the maximum ratio repair. This observation is consistent with some reported
results in the literature. Finally we demonstrated that good results were not obtained
by the penalty function approach in comparison with greedy repair. This observation
is also consistent with some reported results in the literature.
 While we empirically showed the superiority of the Darwinian implementation
over the Lamarckian implementation through computational experiments on
multiobjective 0/1 knapsack problems, we did not explain why the Darwinian
implementation outperformed the Lamarckian implementation in the application of
the NSGA-II algorithm to the three test problems in this paper. We did not examine
the performance of the two implementation schemes for other test problems, either.
Further empirical studies as well as theoretical studies are left for future research with
respect to the comparison between the two implementation schemes of greedy repair
for multiobjective optimization problems.
 The authors would like to thank the financial support from Kayamori Foundation
of Information Science Advancement, Ogasawara Foundation for the Promotion of
Science & Engineering, and Japan Society for the Promotion of Science (JSPS)
through Grand-in-Aid for Scientific Research (B): KAKENHI (14380194).

References

1. Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B.: Evolutionary Algorithms
for Solving Multi-Objective Problems, Kluwer Academic Publishers, Boston (2002).

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons,
Chichester (2001).

3. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II, IEEE Trans. on Evolutionary Computation 6 (2002) 182-197.

4. Ishibuchi, H., and Kaige, S.: Effects of Repair Procedures on the Performance of EMO
Algorithms for Multiobjective 0/1 Knapsack Problems, Proc. of 2003 Congress on
Evolutionary Computation (2003) 2254-2261.

5. Ishibuchi, H., and Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its
Application to Flowshop Scheduling, IEEE Trans. on Systems, Man, and Cybernetics - Part
C: Applications and Reviews 28 (1998) 392-403.

6. Ishibuchi, H., and Shibata, Y.: An Empirical Study on the Effect of Mating Restriction on
the Search Ability of EMO Algorithms, Lecture Notes in Computer Science 2632 (2003)
433-447. Proc. of Second International Conference on Evolutionary Multi-Criterion
Optimization.

7. Ishibuchi, H., and Shibata, Y.: A Similarity-Based Mating Scheme for Evolutionary
Multiobjective Optimization, Lecture Notes in Computer Sciences 2723 (2003) 1065-1076.
Proc. of 2003 Genetic and Evolutionary Computation Conference.

8. Ishibuchi, H., Yoshida, T., and Murata, T.: Balance between Genetic Search and Local
Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling, IEEE
Trans. on Evolutionary Computation 7 (2003) 204-223.

9. Jaszkiewicz, A.: Comparison of Local Search-Based Metaheuristics on the Multiple
Objective Knapsack Problem, Foundations of Computing and Decision Sciences 26 (2001)
99-120.

10. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1
Knapsack Problem - A Comparative Experiment, IEEE Trans. on Evolutionary Computation
6 (2002) 402-412.

11. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization,
European Journal of Operational Research 137 (2002) 50-71.

12. Knowles, J. D., and Corne, D. W.: M-PAES: A Memetic Algorithm for Multiobjective
Optimization, Proc. of 2000 Congress on Evolutionary Computation (2000) 325-332.

13. Knowles, J. D., and Corne, D. W.: A Comparison of Diverse Approaches to Memetic
Multiobjective Combinatorial Optimization, Proc. of 2000 Genetic and Evolutionary
Computation Conference Workshop Program: WOMA I (2000) 103-108.

14. Knowles, J. D., and Corne, D. W.: On Metrics for Comparing Non-Dominated Sets, Proc.
of 2002 Congress on Evolutionary Computation (2002) 711-716.

15. Mumford, C. L.: Comparing Representations and Recombination Operators for the Multi-
Objective 0/1 Knapsack Problem, Proc. of 2003 Congress on Evolutionary Computation
(2003) 854-861.

16. Okabe, T., Jin, Y., and Sendhoff, B.: A Critical Survey of Performance Indices for Multi-
Objective Optimization, Proc. of 2003 Congress on Evolutionary Computation (2003) 878-
885.

17. Zitzler, E., Laumanns, M., and Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, TIK-Report 103, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (2001).

18. Zitzler, E., and Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach, IEEE Trans. on Evolutionary Computation 3
(1999) 257-271.

19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G.: Performance
Assessment of Multiobjective Optimizers: An Analysis and Review, IEEE Trans. on
Evolutionary Computation 7 (2003) 117- 132.

20. Zydallis, J. B., and Lamont, G. B.: Explicit Building-Block Multiobjective Evolutionary
Algorithms for NPC Problems, Proc. of 2003 Congress on Evolutionary Computation
(2003) 2685-2695.

