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Abstract. In solving real-world optimization problems using evolutionary algo-
rithms (EAs), researchers have recently developed a number of real-parameter 
genetic algorithms (GAs). In these studies, the main focus of the research is the 
recombination operator, which use probability distributions calculated from the 
parent solutions. Such operator is intrinsically a non-parametric modeler and 
estimator, which the success of the real-parameter GA depends on. In this paper, 
we propose an implementation of a graph structure among the population to se-
lect such non-parametric kernels more efficiently during the search process. By 
recording the successful crossover as an edge between the individuals, clusters 
within the evolved population were observed. Additionally, a simple experi-
ment exploiting such clusters showed efficient result in multimodal optimiza-
tion. 

1   Introduction 

Recently, there have been increasing interests for real-parameter genetic algorithms, 
which uses real-number vector to encode the GA individuals. Many past studies de-
voted to developing powerful and efficient crossover operators. Different types of 
real-parameter crossover are described by [1]. A family of crossovers, Parent Centric 
Crossover (PCX), Unimodal Normal Distribution Crossover (UNDX), and Simplex 
Crossover (SPX) are extensively studied and well-applied to many practical problems. 

Intrinsically, a real-parameter crossover operator work as a non-parametric prob-
abilistic model estimator and sampler. The parent-individuals in the crossover form a 
local probability distribution. A child-individual is a sample from such local distribu-
tion. The entire distribution of the child-individual, if the parent-individuals are se-
lected probabilistically, is the linear combination of such kernels, i.e., probability 
distribution formed by all of the possible crossovers. The conceptual illustration of 
non-parametric probability distribution composed of real-parameter crossover is 
shown in Fig. 1. The crossover using two parents (represented by circles) creates a 
kernel (represented by ovals) which includes themselves within its region. 

As the figure implicitly suggests, the kernels can be represented as graphs. In this 
paper, we propose to represent the kernels with a graph-structure to test and utilize 
the kernels it represents. Section 2 describes the concept of non-parametric model 
estimation. Section 3 describes the usage of graph structure represent non-parametric 



models. Section 4 describes the experiments to analyze how the graph is formed and 
to exploit the graph structure for efficient parameter optimization. 

 

Fig. 1. A conceptual view of non-parametric probabilistic model latent in GA population and 
the real-parameter crossover: The circles represent the individuals, where as the ellipsoids 
represent the probabilistic distribution of the offspring in a possible crossover of two selected 
parents. The linear combination of all possible ellipsoid makes up a non-parametric probabilis-
tic distribution. 

2   Non-parametric Modeling in Real-parameter Crossover 

The properties of the kernels are defined by specification of the crossovers, e.g., 
BLX-α [2] uses a hyper-cube, UNDX [3] uses a Gaussian kernel, and SPX [4] uses a 
hyper-pyramid or an expanded simplex of parent-individuals. Above crossovers cen-
ter the kernel at the geometric centroid of the parents (mean-centric), [1] proposed a 
parent-centric crossover (PCX) which places a Gaussian kernel centered at one of the 
parents. 

Under specific conditions, the combined probability distributions of these cross-
overs satisfy one of the guidance for design of real-parameter GA [5], i.e., “Genetic 
operator should conserve the statistical property of the population, mainly the mean 
and variance-covariance matrix”. 

The UNDX crossover is designed as follows: µ parents xi (i=1 to µ, x∈Rn) are ran-
domly chosen from population P. Taking µ-1 parents, geometric center g is computed, 
as well as di=xi. – g (i=1 to µ-1). Using µ-th parent, dµ=xµ. – g is computed. The 
orthogonal component of dµ to all di (i=1 to µ-1) has length D. The ortho-normal 
basis of the complementary subspace to space spanned by di (i=1 to µ-1) is ei (i=µ to 
n).  The offspring y is given by (1). 
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The wi and vi are normal distribution N(0, σ2
ζ), N(0,σ2

η) respectively. The second 
term in (1) is known as the primary search component, and the third term is called the 
secondary search component. For parameter σ2

ζ and σ2
η, suggested value are given in 

[3]. This crossover creates offspring within a Gaussian kernel formed by the parent 
individuals. 

As the GA population evolves, parents are replaced by the offspring and the ker-
nels are updated by the new individuals. In Minimal Generation Gap [6] replacement 
scheme, used with UNDX, SPX, PCX [1, 3, 4], large number of offspring are gener-
ated from the same parents and only two individuals (two of the parents) are under 
selective pressure at a time.  

One iteration of the MGG model is described as follows. 
1. Select µ parents from the Population P. 
2. Generate λ offspring from parents using genetic operators. 
3. Choose two elimination candidate from the parents. 
4. Create a subpopulation F of offspring and elimination candidate.  
5. Replace elimination candidate with best and roulette wheel selection from F.  

In UNDX+MGG, the suggested value of µ is 3 to 6, while λ is 100 [3]. In the follow-
ing sections, we consider UNDX and MGG as our default genetic operator and re-
placement model.  

With  each step of the MGG, the kernel is tested and updated/maintained. Using 
MGG model with real-parameter crossover, the behavior of the GA can be interpreted 
as testing and updating the kernels represented by the population. Our intuition is that 
by explicitly handling the kernels, it is possible to perform more efficient search with 
crossover.  

From another view point, sampling from the kernels is equivalent to rough analysis 
of the local fitness landscape. We define the distance on fitness landscape ∆ij between 
individuals i,j, as the integral of objective function over the region covered by the 
kernel κij.  
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Parents with small ∆ should form better kernel or cluster as it is more probable 
they belong in the same basin rather than with that of larger ∆. The ∆ should present 
better index for closeness between individual than Euclidean distance d. The concep-
tual illustration of the landscape distance is shown in Fig. 2.  

If the kernel includes many promising individuals, it indicates that the parents’ 
landscape distance is small and should be clustered together. Meanwhile, if the kernel 
fails to produce better individuals, it is probable that the parents are distant on fitness 
landscape and has small correlation.  

In multimodal objective function optimization, the result of finding a better kernel 
is similar to that of clustering. For successful multimodal optimization, the population 
should form clusters around local optima. As the evolution proceeds, the discrepancy 
between the clusters widens and effective crossover/kernel between clusters becomes 
sparse.  

Simplistically, the kernel which generate improved individual should be empha-
sized, while the kernel which failed should be thrown out. But since the GA is a 



population based search, the parents are maintained as well as the kernel, e.g. MGG. 
The next section describes a supplementary data structure to represent and exploit the 
kernels.  
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Fig. 2. The distance on 1-dimentional fitness landscape. The curve represents the one dimen-
sional schwefel function. The triangular and rectangular points (i, j, k) indicate the individuals. 
The landscape distance ∆ij indicated by the dashed arrow is defined by the area of dark-gray 
filled region. The landscape distance ∆jk indicated by the solid arrow is defined by the area of 
gray filled region. In this case, ∆ij > ∆jk where as in Euclidean distance, dij < djk.  

2   Representation of the non-parametric kernel with graph 

One straight-forward representation of the kernel would be a graph structure, since 
the kernels correspond to a set of individuals (parents). We used an undirected graph 
G(V, E) where vertices Vi (i=1 to P) represent the individual.  

The kernel can be represented as a set of vertex connected by the edges. The Fig.3 
shows a basic procedure for building graph from successful crossovers.  

2. 1 Kernel Evaluation 

In this section, we will define a specific kernel evaluation index, which uses concept 
similar to landscape distance.  

The landscape distance ∆ can be used to compare the relations between individuals. 
But since it is nearly an integral along the path between individual, it is affected by 
the ill-scaled problems, i.e., if one or more variables has different scaling, that vari-
able will be over/under-treated. Solution to this is using the average.  The mean fit-
ness function value M over a kernel κij, is defined by M=∆ij/∫κijdx. M is not affected 
by ill-scaling, since it does not differentiate far and near individuals. By comparing M 
to a standardized fitness value α, we measure the quality of a kernel, whether it cov-
ers a promising region.  



 
GA(MGG) Procedure Graph Procedure 
1. Initialize population 

Initialize xi (i = 1 to P)  
All individuals have specific index id 

Initialize graph: G 
1. prepare an empty graph 
2. add vertices Vi (i = 1 to P) to the 

graph  
2. Select µ parent individuals at random  
3. Select one elimination candidate ε 
from the parents randomly 

 

4. Generate λ offspring from using cross-
over 

Evaluate the kernel: 
Compare the offspring fitness with 

standard fitness value α.  
5. Create subpopulation F=λ+ε  
6. Replace elimination candidate with 
best in F 

Add/Remove vertices/edges 
1. Erase replaced vertex from the graph 
2. Connect the ends of outgoing edge 

from erased vertex with new edges. 
3. If the kernel evaluation is a satisfactory, 

insert edges between new individual 
and the remaining parent  

4. Otherwise, Remove the edge (if exists) 
between parent-individuals 
 

7. Go back to 2.  

 Fig. 3. GA and Graph building procedure 

 

 

Fig. 4. The edge insertion/deletion by kernel evaluation. On the left, the kernel sampled many 
above standard fitness individual, which inserts an edge between the parents and the offspring. 
On the right, the kernel samples only few fit individuals which triggers the deletion of edge 
between parents.  

In our work, we implemented the approximated, discrete version of the procedure 
described above. This is important for efficiency and avoiding fitness scaling issues. 



We estimate the M  by sampling from the kernel. This is efficient since this process is 
part of the MGG. The  β percentile of sampled offspring’s fitness values fi, (i=1 to λ)  
is compared to the standardized fitness α. For α, we used the median of the individu-
als' fitness in entire population P. The graph building and kernel evaluation is illus-
trated in Fig. 4. 

The described kernel evaluation and graph-building proceed alongside the genetic 
operation of the GA. With the iterated genetic operation, the updated kernel is evalu-
ated in higher resolution since the offspring is more likely to be placed between the 
parents.  

2.2   Experiment 

The graph building process can be operated completely independent from the GA. 
We conduct an experiment to analyze how the conventional GA, namely 
UNDX+MGG, build a graph with the proposed method. 

The objective function we used is a two-peak sphere function F1 shown in (3). 

 

Fig. 5. The fitness landscape of F1 mapped onto R2. The contour is shown by lines and the 
gradient. The darker region indicates better fitness. 
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The problem dimension n=10. The parameters for MGG are µ=3, λ=50. The pa-
rameters for UNDX are σζ=1 and ση=0.11, using the suggested value in [3]. The 
population size P=40, and the GA terminated at 104 function evaluations. The percen-
tile parameter β=10 was used. 

 



 

(a)after 70 evaluation   (b)after 200 evaluation 

 Fig. 6. The graph structure after 70 and 200 generation. 

Results 
Fig. 6 shows the edges between the individuals on fitness landscape after 7,000 and 
20,000 function evaluations. There are 20 and 11 edges in the respective graphs. 
After 20,000 evaluation, edges that connect different optima are removed. The  

3   Exploiting the graph structure with clustering 

This section describes the method to utilize the graph structure in the GA search. A 
simple approach is to uses the graph as an efficient alternative for clustering. The 
clustering method is known to improve the performance of GA in multimodal optimi-
zation. The graph connects individuals whose mutual landscape distance is small. If 
the Since the graph records successful kernels, UNDX crossover should benefit from 
selecting parents from individuals connected by the edges. 

In [1], Deb stated, while comparing the mean-centric crossover to the parent-
centric crossover, that it may be demanding to assume that region near the geometric 
center of the parent-individuals contain good solutions, compared to the region near 
the parent-individuals itself, especially when the parents are sparse in the search do-
main. To supplement, the case where mean-centric kernel can be effective is when the 
landscape is smooth enough for the population to form its contour. Additionally, it 
can generally cover larger region of the search domain than parent-centric approach. 
In our implementation, the graph structure can identify the kernels that are likely to 
be successful while preserving the merits of the mean-centric crossover. 

The procedure for selecting parents from the graph G(V, E) are given as follows 
1. Select parent Vi (i=1 to P) randomly from G  
2.  Add all vertices connected to Vi by less than two edges from to set Q 
3.  If Q has m(<µ) elements, add µ-m vertices randomly selected from G.  
4.  Otherwise select µ individuals randomly from Q 



If the first selected parent does not have enough neighboring individuals, randomly 
selected parents are used in the crossover. To differentiate the m adjacent and distant 
µ-m parents, offspring y are generated from following formulae: 
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di′ is the vector di in subspace complementary to space spanned by di (i=1 to m). ui is 
an Gaussian distribution N(0, 0.1).  By initializing the graph as complete graph,  the 
selection and the crossover operator’s behaviors are equivalent to that of 
UNDX+MGG.  

3.1   Experiment 

We evaluate the performance of the proposed method on two test functions. One is 
the Himmelblau function F2 (5), and the other is the checker-stripe function F3 (6). 
Both function have multiple global optima, thus the objective is to find all of them.  
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F3 has many local optima, and is a deceptive function, i.e., the basins of the worse 
local optima cover larger region of the domain. The landscape of F3 and F2 is shown 
in Fig 7.  

The experiment was performed with following settings: µ=3, λ=40, σζ=1, ση=0.11, 
P=100, β=10, and termination at 106 function evaluations. 20 runs were performed 
for each experiment.  

3.2 Results 
In function F2, The proposed approach reached all of the optima in all runs, while 
UNDX+MGG converged to 3 or less optima in all runs, depending on the initial 
population.  

In function F3, the proposed approach reached the global optima in all runs. 
UNDX+MGG did not reach the global optima when the population converged on one 
of the dimensions before it reached the optimal. The average percentage of the optima 
reached by UNDX+MGG was 9.8. As shown in Table 3, the average number of func-
tion evaluation to reach the global optima was generally smaller with the proposed 
method. 



 

      

  (a) Himmelblau   (b) Checker-stripe 

Fig. 7.  The fitness landscape of two dimensional F2 and F3 is shown as gradient. The region 
with higher fitness is colored with darker color. 

Table 1. The number of runs where the optima of F2 were reached with UNDX+MGG and the 
proposed method. 

Optima Coordinates F2 value UNDX+MGG Proposed method 
1 ( 3.584,-1.848) 1.0 e-20 18 20 
2 ( 3.000, 2.000) 1.0 e-20 20 20 
3 (-2.805, 3.131) 1.0 e-20 15 20 
4 (-3.779,-3.283) 1.0 e-20 19 20 

Table 2. The average percentage of the optima of F3 reached with UNDX+MGG and the 
proposed method. 

Coordinates UNDX+MGG Proposed method
(±9.92474,..., 

±9.92474) 
9.8 100 

Table 3. The average number of evaluation required to reach optimal fitness function for F3. 

UNDX+MGG Proposed method
168,802± 2,375 108,072+4,323 

4   Conclusions  

We proposed a novel approach to utilize crossover and estimate the correlation of the 
individuals. Using the graph-structure, were able to form the clusters adaptively and 
with very few additional computational cost. The result shows that the proposed 



method can search multiple optima in one run. This shows that at the beginning of the 
search the clusters of the graph are overlapping, and as the evolution progress, the 
population is divided into clusters which respectively search a nearby basin.  

The proposed method uses autonomous and adaptive approach to clustering. Com-
pared to other clustering methods such as k-means, this method is less vulnerable in 
ill-scaled problems because it does not use distance in determining the class. 

5   Future Works  

We plan to perform more specific analyses of the proposed method. One is the quan-
titative analysis of the clusters in the graph.  

We also plan to compare the proposed method to other multimodal search genetic 
algorithm on common benchmarks. Additionally, initializing a complete graph is very 
costly since many graph modification procedure require O(E), where E is the number 
of edges. We plan to address this problem by applying clustering algorithm to the 
initial population. 
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