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Abstract 
 
 

An improved heuristic technique based on a method 
that we developed in 2003 [1]. The original method 
was called Formula Prediction using Genetic 
Algorithms (FPEG) and that method presented an 
algorithm by which formulas could be generated 
directly from datasets. The method presented 
enhances the power and flexibility of the original 
model resulting a better formula generation tool. 
 
The enhanced method differs from the original by 
formula structure and expressive power – it has a 
variable formula structure, a larger alphabet and new 
independent internal variables. The latter allow for 
better data pattern recognition and better overall 
performance. The method presented here uses 
simulated annealing to generate mathematical 
equations that fit a set of input data to a function. 
Data is represented as a set of input and output values 
collected from a system under consideration. For 
significantly large numbers of independent variables 
in the input set, this problem can be intractable and, 
as such, NP hard. When Advanced Formula 
Prediction using Simulated Annealing (AFP) was 
compared against FPEG using the original 
benchmarks - the results obtained demonstrated that 
the new algorithm is able to better the original 
algorithm’s performance by 2.65 percentage points 
on average – or – an average reduction of the error 
margin by 52.10 percent (which is statistically 
significant).  To keep the comparison valid, the same 
regression benchmarks were used. In addition, a 
technique that encodes strings that represent the 
candidate formulas during the search was enhanced 
to give it more expressive power. 

1 INTRODUCTION 
Many data fit problems can be solved using traditional 
statistical methods. However, there are data sets that 
cannot be adequately mapped or analyzed using statistical 
techniques. Specifically of interest, are problems where 
data is known but the function that generated the data is 
not. In such cases, one approach is to search for patterns 
in the data to find clues about the function that generated 
the data in the first place. The generated or hypothesis 
function is then tested to see how well it fits the data from 
which it was derived. If some information is available as 
to the form of the function (a sin wave, for example), then 
regression analysis techniques can usually be applied 
successfully to the problem of generating a function based 
on observed data. 

Still, regression techniques, whether linear or nonlinear, 
have limitations especially in problems where little or no 
information is available as to the shape or form of the 
function that generated data. In these cases, researchers 
typically use neural networks or fuzzy sets to learn more 
about the shape of the domain space of the function under 
consideration [7]. Once that information is collected, 
regression techniques can then be re-applied. However, 
there is still no guarantee that regression techniques will be 
able to generate a function – this can lead to a circular case 
where there is the need to constantly generate new models 
and use those to select mathematical functions to conduct 
regression analysis and when that does not yield results then 
the cycle starts over with the selection of another model. If 
there was a tool that can generate functions along with their 
respective performance values then, that tool can be a time 
saver when it comes to selecting mathematical models to 
use in regression analysis.   

2 LEARNING  
An effective function prediction algorithm must be able to 
detect or learn patterns hidden in data in order to generate 
a valid approximation function. Learning can be defined 



as the ability to predict future values given past 
experiences or, better yet, the ability to generalize. One 
way to assess how well an algorithm has learned a given 
problem is by measuring the rate of error. The less error 
in future predictions, the better learned the algorithm – 
and better learning means better performance. Learning 
also depends on the quality of the data presented. So a 
good learning algorithm may do poorly if presented with 
an incomplete data set. 
In order to successfully classify data there are some 
considerations that must be addressed; mainly, whether 
the data is a representative sample and in this case 
representative means analyzing the data to determine if it 
is relevant to making predictions. Also, the error inherent 
in the data set must be considered (how noisy is the 
data?). Other considerations relate to how well the dataset 
is distributed. In addition to the data, the domain from 
which the data was collected must also be studied. Are 
there any assumptions that must be made about the 
domain that would influence how the data is perceived by 
a learning algorithm looking for patterns? One such 
concern is a discontinuous function that has no defined or 
infinite output between some range of input values. This 
can throw off a pattern detection algorithm. Also, what is 
the most useful way to represent the output? Options 
include decision trees, function, or some other 
representation method. 
The error level is also important, a researcher must 
determine ahead of time the acceptable level of error at 
which point the simulated function is considered valid-
enough for the application at hand. Certainly, building an 
airplane has little error tolerance but predicting the 
weather is another matter – what if an algorithm was right 
60% of the time while an existing radar-based weather 
algorithm had a performance of 50%? In this case the new 
algorithm would be better –even with a 40% error margin. 
There are many ways to learn; indeed the type of learning 
that an algorithm would have to do should be identified. 
Learning based on past knowledge falls under the 
category of supervised learning. This category of learning 
assumes that observed data values and their 
corresponding output values are provided in the beginning 
of the search [8].  
 

3 LEARNING CATEGORIES 
Generally, there are three categories of learning; they can 
be classified by the output provided to the learner. 

3.1 SUPERVISED LEARNING 
In this type of learning the algorithm is supplied with a set 
of training inputs and their corresponding outputs. 
Examples of this type of learning include classification 
and regression. There are three sub-types of supervised 
learning. 

3.1.1 Classification Learning 
Expected output is a Boolean: true/false. Hence the output 
is discrete and not continuous. This type of learning is 
referred to as a binary classification problem. 

3.1.2 Regression (function learning) 
In regression learning, the range of the problem is real 
numbers the output is continuous (real values). 

3.1.3 Preference Learning 
In this type of learning the range of the problem is an 
ordered space. Where two objects are compared and if 
they are not equal then one of them is selected 
(Permutation). 

3.2 UNSUPERVISED LEARNING 
In unsupervised learning, the aim is to learn patterns 
inherent in the data and to learn about the clustering of the 
data. Density estimation and reinforcement learning are 
examples of this type of learning. The feedback given 
indicates how well the algorithm is doing. However, the 
correct output values are not provided, only training inputs. 
The goal of this type of learning is to understand the process 
that generated the data. This approach has applications in 
data compression and classification. 

3.3 REINFORCEMENT LEARNING 
In reinforcement learning, the goal is to produce actions 
that change the state of the world around the algorithm. A 
good example is a chess game where the goal is to 
maximize favorable moves and minimize unfavorable 
moves (those that involve loss of pieces or strategic 
advantage). The correct output is given to the algorithm 
after a decision (move) has been made. 

4 OTHER SEARCH CONSIDERATIONS 

4.1 BATCH/ONLINE LEARNING 
Another area of importance when learning deals with the 
way data is supplied to the algorithm. There are two 
general classifications. The first is batch learning, where 
all data is supplied to the learning algorithm at once. The 
second is on-line leaning, where the algorithm is supplied 
with one example at a time. 

4.2 DESIGNING AN EFFECTIVE SEARCH 
STRATEGY 

There are limitations to classical programming 
techniques, for example, it is not practical to write a 
program to do character recognition using classical if-
then-else control structures; however, it is possible to use 
a neural network to accomplish that task. On the other 
hand, neural networks would be a waste of time if they 



were used to solve linear equations for example. Thus, 
well-defined number crunching problems are probably 
best suited for classical programming techniques (if-then-
else) [7]. 
But, in areas where the solution is not defined and it is not 
known what form that solution should be in, then, 
algorithms that can extrapolate a solution directly from 
data have an advantage. When the answer is not known 
then the search should be as broad as possible, and if 
assumptions were made, then the algorithm could be 
limited to considering solutions that were pre-
programmed for ahead of time. Hence, a character 
recognition program using a classical if-then-else 
approach is not impossible to write; however, it would be 
difficult to write an effective one, because the program 
must make assumptions ahead of time as to what patterns 
constitute a certain letter or number – this can be 
especially tricky if the letters are handwritten by different 
people. 
So when it comes to deriving a solution that is essentially 
a guess, some approaches tend to be more practical than 
others. We considered decision trees, genetic algorithms, 
regression splines and clustering as possible methods to 
base AFP on. 
The main goal of the method presented is to derive 
functions with as little bias as possible. Arguably, any 
method used will have some built in bias that may or may 
not be unique to it. Also, some bias is needed, otherwise 
the solution space would become impossibly large to 
search and the problem would not be much different than 
searching for every single possible combination that 
exists. Hence, neither random search nor exhaustive 
search is desirable. Random search does not have a time 
guarantee on convergence and exhaustive search takes far 
too long to be practical.  
One of the considerations in developing this method was 
the need to limit bias when producing a function. Another 
consideration is that the function should have 
configurable components or building blocks – so that the 
search can be biased in a beneficial manner. In order to 
reduce bias, the selection of mathematical primitives is 
left up to the researcher using the algorithm. While this 
approach may hinder search in the sense that the 
algorithm can only look for answers within that 
mathematical function set, it would also make search 
more orderly because the search is now focused on a 
limited area but not locked into that area and if the 
algorithm does not make progress with that mathematical 
set then the researcher could make changes to the 
mathematical primitives – this ability to readily tune the 
algorithm makes it flexible and powerful. 
Keeping these requirements in mind, it would be difficult 
and cumbersome to back-solve a neural network into a 
function and then translate that function into the desired 
output format. We also considered decision trees because 
they are relatively fast (faster than version spaces) for a 
large concept space and disjunction is easier to carry out; 
however, they were not considered flexible enough to 

produce the function formats required and it would be too 
complex to adapt them for use in building formulas that 
fit a set of data the way we inted to do in AFP.  
In addition, a decision tree may not always expain its 
classification clearly. Another possible method is 
statistical analysis (regression based approaches) – 
however, these do not do well when the form of the 
function that generated the data is not known and there is 
limited flexibility as to the mathematical primitives that 
can be used.  
On the other hand, simulated annealing and genetic search 
techniques were a good fit for many reasons; first, the 
way they search is not mathematically based (no direct 
calculations on the data). This means that discontinuities, 
noise and inconsistencies in the data would have little 
effect on the search algorithm [9]. Second, they search for 
a solution independently of what the data looks like. 
Hence, there is no significant bias in relation to how the 
data may be distributed and the algorithm is free to look 
for any pattern hidden within that data set. These search 
strategies are also resistant to getting stuck in local 
maximas – a big advantage when searching for patterns 
within a dataset [9]. As such, the algorithm was 
implemented using simulated annealing to look for a set 
of mathematical primitives that, when combined, would 
result in a function that maps the input data to the output 
data with as little error as possible. 

4.3 THE SEARCH DOMAIN 
The search domain can be thought of as some unknown 
system where the inner workings of the system are not 
known but the input and output values are measurable. 
Collecting data from such a system would require 
monitoring the output while inputting a range of values. 
These values should be selected carefully so as to 
represent the range of input values that the researcher is 
interested in modeling. Such a system is demonstrated in 
figure 1. For sufficiently large number of variables this 
problem can be NP hard. 
 

 

Figure 1: Collecting data from a system. 

A search of the literature found no method that generates 
formulas the way that we propose; however, it is worth 
noting that there is a class of algorithms that generate 
formulas based on frequency response. A good example is 
the Comprehensive Identification from Frequency 
Responses system or CIFER. NASA developed this 
software package to model aircraft and it works by 



measuring the frequency response of a system under study 
and building a mathematical description of the system. 
CIFER works much like reverse-simulation. Simulation 
requires that assumptions be made ahead of time (a-priori) 
to allow for the derivation of equations related to a given 
system and system identification starts with measured 
vehicle motion and measured responses in order to develop 
a model that reflects the measured data accurately. CIFER 
allows designers to skip modeling and get straight to an 
equation that reflects the data collected from a real system. 
The method proposed differs from CIFER because its mode 
of search looks for combinations of mathematical primitives 
that model the data set using input data. The technique is 
flexible and since it is based on simulated annealing, it is 
tolerant to noise and incomplete data sets [12] while CIFER 
requires that the data be as accurate as possible. 

5 THE UPDATED METHOD 
The updated method utilizes simulated annealing to 
generate a function from a set of data. Like FPEG, this 
method (AFP) is also classified as a supervised regression 
learning approach that uses batch data. This paper 
investigates and quantifies the ability of the enhanced 
simulated annealing search method to find formulas that 
describe the relationship between a set of observed input 
and related output data with little or no knowledge of the 
problem domain and to search with better accuracy than 
the original FPEG model.  
Simulated Annealing search techniques were selected 
because they offer advantages when searching large, 
complex domains, the type that we expect to encounter 
when searching for unknown functions. Simulated 
annealing is very good at avoiding local maximas [12] 
[10]. It has been proven as a successful algorithm that is 
used in many real applications [11]. There has been much 
research done using Simulated Annealing for large 
problems with good results [9]. Although the optimality 
of simulated annealing is not formally defined, the 
algorithm guarantees that a global maximum will be 
found if temperature is annealed infinitely slowly [9][10]. 
Also, simulated annealing is not hindered by 
discontinuities in solutions expressed by mathematical 
formulas since it directly manipulate a string representing 
those formulas. 
This updated method can be used to refine and validate 
functions generated from data. There are advantages and 
disadvantages to using the approach proposed. It does 
well in areas where regression can get bogged down. It is 
also useful in filtering important variables from a large set 
of independent variables [5].  
In applications that require the generation of a meta 
model the method that we propose is very useful in 
generating meta-models; this is because commercially 
available statistical packages have drawbacks, Davis and 
Bigelow state in a paper published in 2002: “..off the shelf 
statistical packages are not very useful when there is little 
knowledge as to the models internal workings.” The paper 

goes on to point out that meta models are useful because 
they can be used to gain insight as to the inner workings 
of a large, complex model, and they offer exploratory 
analysis [6]. 
If the analysis of the model was over a large part of its 
domain then a meta model with a limited number of  
variables – under 15 instead of hundreds makes 
exploratory analysis more feasible (Davis and Bigelow, 
2002) [6].  
The function-estimation algorithm can also be used to 
validate assumptions made about a given problem 
domain. Hence, a tool whose results can be compared 
with regression analysis is useful, particularly in 
validating a model that regression analysis generated. 
Thus, the proposed method would search for patterns in 
data and generate an estimator function. Performance is 
also important – both in terms of the time it takes to 
search and in the accuracy of the prediction. The way a 
search is conducted also matters because it has an impact 
on how quickly the search converges. The method 
proposed does not use statistical techniques; rather, it uses 
simulated annealing because it is likely find patterns in 
the data that regression may miss due to bias built into the 
regression methodology itself [12].  
Disadvantages in using genetic algorithms and simulated 
annealing as a basis for generating answers lie in the 
relative lack of precision [3]. Hence, this approach is not 
the most efficient approach to use when the domain is 
well defined and the quality of the data is very good. In 
these problems types, where the domain is well defined, 
regression analysis would be an ideal method. 

5.1 LIMITATIONS OF REGRESSION 
Linear regression has a fixed form as the far the returned 
formula. Also, linear and nonlinear regression will both 
return the same answer every time unless a new formula 
model is used; there is little flexibility once the formula is 
selected. The method we propose will return a different 
combination every time. The use of standard statistical 
methods with a problem that has a large number of 
variables can be expensive in terms of computation. The 
parsimony principle states that some factors are more 
important than others and actually contribute more to the 
final answer (Myers and Montgomery 1995,  Kleijnen  
1987). Thus, screening algorithms attempt to find the 
variables that have most impact on response (Trocine and 
Mallone, 2000) [5]. Once these variables have been 
identified then they can be isolated from the rest of the 
dataset and used as a part of a smaller dataset in statistical 
analysis. 
Other drawbacks of statistical regression techniques are: 
(1) highly parametric structure and (2) weighty 
assumptions within a small-data setting. There are some 
problem classes in which there is no statistical method 
that can be applied affectively to derive an answer. One 
such problem was proposed by Ratner [2] where he sites 
the example of a direct marketing problem that seeks to 



maximize the response rate of solicitation by identifying 
customers that are most likely to respond based on 
collected data. Ratner concludes that there is no standard 
statistical method that addresses this type of problem 
adequately.  
Linear statistical models make strong assumptions about 
the structure of data, which often do not hold in 
applications. The method of least squares is very sensitive 
to the structure of the data, and can be markedly 
influenced by one or a few unusual observations. We 
could abandon linear models and least-squares estimation 
in favor of non-parametric regression and robust 
estimation. Unusual data are problematic in linear models 
that fit by using the least squares method because they can 
unduly influence the results of the analysis, and because 
their presence may be a signal that the model fails to 
capture important characteristics of the data.  

5.2 ADVANTAGES OF UPDATED METHOD 
The original FPEG algorithm was based on genetic search 
and simulated annealing to assemble a formula out of an 
alphabet of primitives supplied by the programmer. The 
newer method relies primarily on simulated annealing. 
However, genetic search can still be used as a backup 
search-method should simulated annealing fail to reach the 
results expected. So far, experiments that the authors 
conducted show that that both search approaches return 
almost identical results – with few exceptions. As such, in 
order to speed up the search – the genetic algorithm based 
search is only conducted if simulated annealing fails to find 
a function with the desired performance. 
The algorithm tends to return a unique combination of 
mathematical primitives each time it is ran. Problems with a 
large number of near optimal maximas tend to return more 
diverse functions. 
The proposed method does not claim to out-perform 
regression analysis in every category. Rather, it is presented 
as a powerful tool to that can perform as well as regression 
analysis (as indicated by our experimental results) in some 
areas and, possibly better, in areas where regression analysis 
has inherent weaknesses. This tool can be used to analyze 
virtually any system where data can be collected. It also 
offers alternate answers that can be used and compared to 
functions or solutions obtained using other methods, case in 
point: if a complex, well trained, neural network was 
developed to solve a given problem; AFP can be applied to 
derive an equivalent function that can be used to gain insight 
as to the internal operation of the neural network, This is 
important because mathematical primitives can be plotted 
and analyzed - there is almost no ambiguity in a 
mathematical formula – however, a neural network or a 
fuzzy logic set can be a challenge to analyze 
mathematically. 
Another consideration was the calculation of error. There 
are many error calculation methods available (as well as 
the option of defining a new error calculation method). 
For example, many regression approaches use mean 

squared error (MSE) to measure how well a generated 
function ‘fits’ or deviates from the original data set. 
Another measure of error is the mean absolute percentage 
error (MAPE ). Naturally, the method chosen, can, in a 
subtle way, affect overall results. One error method may 
show a lower error reading over another (depending on 
data and the type of problem). However, early on we 
decided to select a straightforward error calculation 
method and use that consistently. 
 
The method chosen is a variation of MAPE. As far as the 
authors are concerned, there is no error calculation 
method that has clear advantages over another error 
calculation method. As one author summed it up: “Data 
always have some detail, which can trick a method into 
losing its theoretical advantage. A method may be 
theoretically preferred over an alternative method for a 
given problem, but empirical results do not reflect its 
advantage.” 

6 THE ALGORITHM 
The new AFP algorithm is designed to return a solution 
form with the desired mathematical primitives. 

6.1 PROBLEM DEFENITION 
The problem requires the generation of a function that 
maps input data to output data from a system under 
observation. The generated function must meet a 
minimum (pre-selected) accuracy level or find the best 
solution within a maximum temperature setting. The 
fitness measure is calculated for every function that the 
algorithm generated and that measure is used to indicate 
how well the generated function approximates the 
observed data. The algorithm stops searching once the 
generated function maps the data under the pre-defined 
minimum error or when the temperature reaches 0. 

6.2 DATA FORMAT 
Given a system under observation, inputs to that system will 
be represented by the vector S and observed outputs of the 
system will be represented by the vector T. Figure 2 
demonstrates a system with an observed input vector Si, and 
an observed output vector Ti.  S and T cannot be empty. 
 

 

Figure 2: Inputs and outputs to a system 



 

Each input vector S must have a corresponding output 
vector T. When collecting data from a system, a collection 
of input vectors is entered and a collection of output vectors 
is observed. The algorithm would take the S and T vectors 
and produce some function F that relates all the input 
vectors (S1, S2 S3, … , SN) to their respective output 
vectors (T1, T2, T3, … , TN) such that: Tij = Fj(Si()) 
where: 1 <= j <= n. and n is the size of T.  
The average error rate e is calculated as shown in figure 3. 
 

 

Figure 3: Error Calculation 

 

Note that the error calculation is applied to one output value 
at a time. Since T holds all the output values for a system, 
the algorithm produces a separate formula for each element 
of T. The output under consideration (represented by i) is 
selected from each output vector T and considered.  

6.3 THE SOLUTION FORM 
The algorithm generates formulas using the format shown 
below. A function with m input variables generated by AFP 
(Advance Formula Prediction Using Simulated Annealing) 
has the form: 
(pr)(mul)(op(s1)) comb (pr)(mul)(op(s2)) comb 
(pr)(mul)(op(s3)) …  
comb (pr)(mul)(op(sm)) dOp Delta 
where s1, s2, s3, … , sm are members of the input vector S. 

 
The rest of the symbols are as follows: 
pr      = Property operator   
mul    = Multiplier operator 
op       = Operation operator 
Comb  = Combination operator   
dOp = Delta operator  
Delta    = Delta value 
 

This format is flexible and allows for fine-tuning of the 
returned function. The algorithm returns a solution that 
contains the same number of variables as the size of the 
input vector S. AFP takes the members of the input vector S 
and applies to each member the operation, multiplier and 
property operators. The property operators are variables that 
may hold any of a number of different mathematical 
primitives. The values for the operators are derived from 
sets that will be referred to as the alphabet sets. Once the 
first set of operators is applied, the resulting (modified) 
variables are combined using the combination operator. 
When all these calculations are completed, a delta value is 
added or subtracted to the resulting sum. The final result is 
referred to as the calculated value. This technique searches 
within all the possible combinations of the above operators 
to find the best combination, that when applied to the input 
values in S, will yield a calculated value that has as little 
error as possible when compared to the actual value. If the 
algorithm were to search every combination then the 
problem would be unmanageable for large alphabets and/or 
large input sets. Genetic and simulated annealing search 
methodologies excel in searching large problem domains for 
combinations that produce the best fit [4]. 

6.4 AFP RELATED ENHANCEMENTS 
While the basic operator structure of FPEG and AFP are 
similar, there are enhancements that make the new 
algorithm more effective and accurate. The first 
enhancement is a layers variable. This variable has a range 
of 1 through 10. The new variable indicates how many times 
the basic formula format (from section 6.3) should be 
repeated. This allows for each variable in the input to appear 
more than once in the resulting formula with (possibly) 
different functions applied to it. When the ‘layers’ variable 
is set to 1, then each input value in the data appears once 
and only once in the resulting equation. This means that if a 
given variable in the input data can influence the range of 
the problem in more than one way (or dimension), it would 
have been difficult for FPEG to account for that. However, 
in AFP, each input variable can appear up to 10 times in the 
resulting equation. 
The second important enhancement to FPEG that AFP 
makes is through the use of three new random real variables 
(called companion variables) that are associated with each 
input variable in S. The companion variables offer a further 
dimension to making the basic alphabet set more powerful. 
They are used with the operation operator to derive an 
almost infinite number of possible calculations from one 
mathematical primitive. The original FPEG used a limited 
set of integer values to modify operation operators (x 
squared for example – the modifier is the 2 – that makes the 
power operator square the input number). AFP does not use 
a limited set of values to modify operators; rather, it uses the 
companion variables to achieve a wide range of values. 
Thus, the previous example of x to the second power can 
become x to the value contained in a companion variable. 
 
 



The third set of enhancement pertains to a ‘time function’. 
This function is internal to AFP and can be used as a time 
dimension with the input set S. Thus, each pair of input and 
output value is assigned a unique time stamp value by the 
time function. This allows FPEG to search for time-
dependent patterns within the data and combine those with 
the existing patters detected. This adds a time dimension to 
AFP and makes it sensitive to pattern changes in time – 
which FPEG never considered. 

6.5 OPERATOR DETAILS 
The algorithm is flexible because the formula can be 
adjusted and changed as needed. Also the alphabet sets 
can contain any mathematical primitive or function and, 
as such, the length of the sets themselves can be varied. In 
the next section we will discuss the alphabet values that 
were chosen for this paper. 

6.5.1 The property operator (pr) 
This operator is one unit in size. It acts on the multiplier 
operator and modifies the values that it holds as follows: 

 

Encoding Action taken 

w 1 * (multiplier value) 

x -1 * (multiplier value) 

y 1 / (multiplier value) 

z -1 / (multiplier value) 

 

Table 1: The property operator 

6.5.2 The Multiplier Operator (mul) 
The multiplier operator is 3 units in length; it holds a value 
that ranges from 000 to 999. The property operator modifies 
the value within this operator. 

6.5.3 The Operation Operator (op) 
In FPEG this operator holds a character value that ranges 
from the letter ‘a’ to ‘p’. Even though it is one unit in 
length, it represents one of 16 possible operations that can 
be applied to a value. There is a variable, denoted by the 
letter C that is used to ‘tune’ or adjust the effect of the 
operation operator. The original FPEG algorithm used a C 
value of 4. Table 2 summarizes this operator in FPEG: 

 

 
Table 2: The FPEG operation operator 

 

 

In AFP, changes were made to Table 2. The first change 
was the expansion of the Op code from 16 to 52 
combinations. This was achieved using the alphabet set ‘A-
Z’ and ‘a-z’. The C variable was eliminated. This was no 
longer necessary since each input variables in S had 3 
companion variables (the companion variables also undergo 
perturbation along with the solution form). The new AFP 
form of table 2 can be seen in table 3. In table 3, N 
represents the value of an input variable in S. The 
companion variables are represented as c1, c2 and c3. It 
important to note that each variable in the input set S has its 
own unique set of companion variables. In the table the 
symbol ‘power’ represents raising the first item between the 
parenthesis (i1) to the power of the second listed item (i2). 
An example would be: power (i1, i2). The symbol ‘abs’ 
means absolute value of the expression within the 
parenthesis. The mathematical primitives listed in table 3 
are by no means a fixed set – this is one possible 
combination that worked in testing the datasets. Through 
experimentation the values of this table are adjusted and 
changed to find the best combination that yields the lowest 
error. 

 



 
 

Table 3: The AFP operation operators 

 

 

 

6.5.4 The Combination Operator 
This operator is one unit in length. It indicates how to 
combine two variables A and B.  

6.5.5 The Delta Operator 
This operator indicates what to do with the delta-value. It 
specifies one of two possible actions: addition or 
subtraction. 

6.5.6 The Delta Value 
This operator has been changed to hold a value that ranges 
from 0.01 to 9.99. It is added or subtracted from the 
resulting equation depending on the delta operator. This 
operator is three positions in length. 

6.6 CALCULATING THE FITNESS VALUE 
The application of these operators to the vector S of input 
variables transforms these variables into a resulting 
calculated value. This resulting value is compared with the 
original output value stored in the corresponding result set 
T.  As shown in figure 3 earlier, for some data pair Si():Tij, 
the error value is calculated by comparing the calculated 
value with the actual value. The error value shows how 
close the function built by AFP comes to approximating the 
function under study. The fitness value is defined as the 
average of all the error values for a given output. The error 
calculated is essentially a percentage difference between the 
resultant values calculated by the generated function and the 
supplied (correct) values; hence, the fitness value will vary 
from 0% error (a perfect match) to very large numbers. 
Naturally, the lower the error, the better the fitness of that 
function. The fitness values are expressed in percentile 
numbers to make it easier to assess how closely the function 
generated by AFP approximates the function that produced 
the data set.  

6.7 IMPLEMENTATION DETAILS 
The algorithm returns a formula that has the same number of 
variables as there are input variables (input columns) when 
the ‘layers’ variable is set to 1. If the ‘layers’ variable is set 
to two then the returned number of variables is 2x the input 
number of variables (each variable is represented twice) and 
likewise for each value of the ‘layers’ variable  - thus, a 
layers=10 setting will produce a resultant function with each 
input variable m represented 10 times (10m). Thus AFP 
offers a way to configure the number of variables in the 
resulting function. Next, the algorithm calculates the 
character string length needed to encode the input data into a 
function and then it generates a random population (in the 
case of simulated annealing a single random starting point is 
chosen). During the search process, a fitness function 
evaluates the current string (or population of strings). The 
fitness value is essentially the error rate.  The search 
concludes when the temperature (Simulated Annealing) has 
reached a terminating state. At that time a function is 
returned along with three performance parameters: the best, 



worst and average error values for that function. The best 
performance value represents the best fit where the retuned 
value of the function comes very close to the original value 
in the data set. Likewise, the worst performance value 
indicates the point where the generated function deviates the 
most from the data set. The average value indicates the 
performance of the generated function averaged over the 
entire data set.  

7 TESTING METHODOLOGY 

7.1 FUNCTIONS AND SEARCH SPACES 
The aim of this algorithm is to derive functions from a given 
set of data. As we did in FPEG, testing AFP was done after 
it was tuned using basic algebraic formulas that were 
assembled for testing purposes. The functions used in tuning 
the algorithm fell into two classes:  the first we refer to as 
‘In-Alphabet’ functions, these are derived from the alphabet 
sets and use mathematical primitives that already exist in 
our sets. The second class of functions is referred to as ‘Out-
of-alphabet’ functions; these are equations whose operator 
variable uses elements that are not in the alphabet sets. Out-
of-alphabet functions imply that the operation operator 
cannot encode the operation in the original function because 
it is not in the current alphabet. However, there could be a 
combination of other operators that can yield a close 
approximation. The second part of the test involved 
applying the AFP algorithm to the same statistical 
benchmark sets that were used to test the original FPEG 
algorithm. These were obtained from the National Institute 
of Standards and Technology. These benchmark sets were 
designed to test commercial nonlinear regression software 
and they were rated by difficulty level. Tests were 
conducted to evaluate how well AFP evaluates these sets. 

7.2 TEST RESULTS 
Table 4 below shows the benchmark name, the difficulty 
level (lower indicates easier to solve), the Class 
(Exponential or Miscellaneous), the number of parameters, 
the number of observations, the source (Observed or 
Generated) and the performance of FPEG and AFP.  
 

Dataset Level Class Para 
(ba) 

Num 
Obsv. 

Source FPEG 
Perf 

AFP 
Perf 

Misrala Lower Exp 2 14 Obsrvd 4.20% 1.38% 

Misralb Lower Misc 2 14 Obsrvd 3.59% 2.51% 

Nelson Avg Exp 3 128 Obsrvd 7.20% 3.29% 

Gauss3 Avg Exp 8 250 Gen 1.88% 0.77% 

Rat43 Higher Exp 2 6 Obsrvd 8.50% 4.75% 

BoxBod Higher Exp 4 15 Obsrvd 6.59% 1.82% 

 
Table 4: Test results for benchmarks 

A 1.38% would indicate an average error rate of about 2% 
or a 98.62 accuracy rate on average for that function. Next, a 
comparison was made between AFP and FPEG; the aim was 
to calculate the improvement that AFP offered over FPEG. 
The percentage error reduction was compared for AFP. The 
results are shown in table 5. 
 

Accuracy 
(FPEG) 

Accuracy 
(AFP) 

Improvement 
AFP over 

FPEG 

% Reduction of Error 
Margin 

95.8 98.62 2.82 67.14 

96.41 97.49 1.08 30.08 

92.8 96.71 3.91 54.31 

98.12 99.23 1.11 59.04 

91.5 95.25 3.75 44.12 

93.41 98.18 4.77 72.38 

 
Table 5: Improvement AFP vs FPEG 

 
To get an overall idea as to how well AFP does when 
compared with FPEG, we averaged all the data from table 5 
and calculated the average accuracy for AFP and FPEG. We 
also calculated the average improvement and average 
reduction of error margin. The results are shown in table 6. 
 

Avarage 
Accuracy 
(FPEG) 

Avarage 
Accuracy 

(AFP) 

Avarage 
Improvement 
AFPG over 

FPEG 

Avarage % 
Reduction of 

Error Margin 

94.92 97.57 2.65 52.10 

 
Table 6: Average improvement AFP vs FPEG 

 

8 CONCLUSIONS 
A simulated annealing-based algorithm to predict 
mathematical formulas from observed data was 
successfully constructed and tested. This new method was 
based on the FPEG algorithm that was developed by the 
authors in 2003. The AFP algorithm test data demonstrate 
that it is capable of generating results that achieve a better 
accuracy level (or fit) than the original FPEG algorithm. 
There are many more data sets that this tool could be 
applied to including market analysis.  We have 
demonstrated an improved tool that can be a valuable aid 
in research, this tool does not replace regression analysis; 
however, it offers a unique method that can be used to 
compare how well a given regression analysis was carried  
out by comparing results from that analysis with results 



from AFP. Yet, there are many other uses for this tool, 
such as in cases where regression analysis fails to yield 
good results, then this tool can be used an backup method. 
This tool may offer an alternative to CIFER. Future work 
may involve benchmarking AFP against CIFER. This 
application was designed to be used in areas of research 
where there are a large number of parameters and where 
the relation between the data is not well understood. The 
results obtained so far are very promising. 
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