
Advanced Formula Prediction using Simulated Annealing

Namir Aldawoodi

PhD candidate / Computer
Engineer.

University of South Florida
Tampa, FL 33620

Dr. Rafael Perez
Professor & Graduate Program

Director
Computer Science Dept.

University of South Florida
Tampa, FL 33620

Abstract

An improved heuristic technique based on a method
that we developed in 2003 [1]. The original method
was called Formula Prediction using Genetic
Algorithms (FPEG) and that method presented an
algorithm by which formulas could be generated
directly from datasets. The method presented
enhances the power and flexibility of the original
model resulting a better formula generation tool.

The enhanced method differs from the original by
formula structure and expressive power – it has a
variable formula structure, a larger alphabet and new
independent internal variables. The latter allow for
better data pattern recognition and better overall
performance. The method presented here uses
simulated annealing to generate mathematical
equations that fit a set of input data to a function.
Data is represented as a set of input and output values
collected from a system under consideration. For
significantly large numbers of independent variables
in the input set, this problem can be intractable and,
as such, NP hard. When Advanced Formula
Prediction using Simulated Annealing (AFP) was
compared against FPEG using the original
benchmarks - the results obtained demonstrated that
the new algorithm is able to better the original
algorithm’s performance by 2.65 percentage points
on average – or – an average reduction of the error
margin by 52.10 percent (which is statistically
significant). To keep the comparison valid, the same
regression benchmarks were used. In addition, a
technique that encodes strings that represent the
candidate formulas during the search was enhanced
to give it more expressive power.

1 INTRODUCTION
Many data fit problems can be solved using traditional
statistical methods. However, there are data sets that
cannot be adequately mapped or analyzed using statistical
techniques. Specifically of interest, are problems where
data is known but the function that generated the data is
not. In such cases, one approach is to search for patterns
in the data to find clues about the function that generated
the data in the first place. The generated or hypothesis
function is then tested to see how well it fits the data from
which it was derived. If some information is available as
to the form of the function (a sin wave, for example), then
regression analysis techniques can usually be applied
successfully to the problem of generating a function based
on observed data.

Still, regression techniques, whether linear or nonlinear,
have limitations especially in problems where little or no
information is available as to the shape or form of the
function that generated data. In these cases, researchers
typically use neural networks or fuzzy sets to learn more
about the shape of the domain space of the function under
consideration [7]. Once that information is collected,
regression techniques can then be re-applied. However,
there is still no guarantee that regression techniques will be
able to generate a function – this can lead to a circular case
where there is the need to constantly generate new models
and use those to select mathematical functions to conduct
regression analysis and when that does not yield results then
the cycle starts over with the selection of another model. If
there was a tool that can generate functions along with their
respective performance values then, that tool can be a time
saver when it comes to selecting mathematical models to
use in regression analysis.

2 LEARNING
An effective function prediction algorithm must be able to
detect or learn patterns hidden in data in order to generate
a valid approximation function. Learning can be defined

as the ability to predict future values given past
experiences or, better yet, the ability to generalize. One
way to assess how well an algorithm has learned a given
problem is by measuring the rate of error. The less error
in future predictions, the better learned the algorithm –
and better learning means better performance. Learning
also depends on the quality of the data presented. So a
good learning algorithm may do poorly if presented with
an incomplete data set.
In order to successfully classify data there are some
considerations that must be addressed; mainly, whether
the data is a representative sample and in this case
representative means analyzing the data to determine if it
is relevant to making predictions. Also, the error inherent
in the data set must be considered (how noisy is the
data?). Other considerations relate to how well the dataset
is distributed. In addition to the data, the domain from
which the data was collected must also be studied. Are
there any assumptions that must be made about the
domain that would influence how the data is perceived by
a learning algorithm looking for patterns? One such
concern is a discontinuous function that has no defined or
infinite output between some range of input values. This
can throw off a pattern detection algorithm. Also, what is
the most useful way to represent the output? Options
include decision trees, function, or some other
representation method.
The error level is also important, a researcher must
determine ahead of time the acceptable level of error at
which point the simulated function is considered valid-
enough for the application at hand. Certainly, building an
airplane has little error tolerance but predicting the
weather is another matter – what if an algorithm was right
60% of the time while an existing radar-based weather
algorithm had a performance of 50%? In this case the new
algorithm would be better –even with a 40% error margin.
There are many ways to learn; indeed the type of learning
that an algorithm would have to do should be identified.
Learning based on past knowledge falls under the
category of supervised learning. This category of learning
assumes that observed data values and their
corresponding output values are provided in the beginning
of the search [8].

3 LEARNING CATEGORIES
Generally, there are three categories of learning; they can
be classified by the output provided to the learner.

3.1 SUPERVISED LEARNING
In this type of learning the algorithm is supplied with a set
of training inputs and their corresponding outputs.
Examples of this type of learning include classification
and regression. There are three sub-types of supervised
learning.

3.1.1 Classification Learning
Expected output is a Boolean: true/false. Hence the output
is discrete and not continuous. This type of learning is
referred to as a binary classification problem.

3.1.2 Regression (function learning)
In regression learning, the range of the problem is real
numbers the output is continuous (real values).

3.1.3 Preference Learning
In this type of learning the range of the problem is an
ordered space. Where two objects are compared and if
they are not equal then one of them is selected
(Permutation).

3.2 UNSUPERVISED LEARNING
In unsupervised learning, the aim is to learn patterns
inherent in the data and to learn about the clustering of the
data. Density estimation and reinforcement learning are
examples of this type of learning. The feedback given
indicates how well the algorithm is doing. However, the
correct output values are not provided, only training inputs.
The goal of this type of learning is to understand the process
that generated the data. This approach has applications in
data compression and classification.

3.3 REINFORCEMENT LEARNING
In reinforcement learning, the goal is to produce actions
that change the state of the world around the algorithm. A
good example is a chess game where the goal is to
maximize favorable moves and minimize unfavorable
moves (those that involve loss of pieces or strategic
advantage). The correct output is given to the algorithm
after a decision (move) has been made.

4 OTHER SEARCH CONSIDERATIONS

4.1 BATCH/ONLINE LEARNING
Another area of importance when learning deals with the
way data is supplied to the algorithm. There are two
general classifications. The first is batch learning, where
all data is supplied to the learning algorithm at once. The
second is on-line leaning, where the algorithm is supplied
with one example at a time.

4.2 DESIGNING AN EFFECTIVE SEARCH
STRATEGY

There are limitations to classical programming
techniques, for example, it is not practical to write a
program to do character recognition using classical if-
then-else control structures; however, it is possible to use
a neural network to accomplish that task. On the other
hand, neural networks would be a waste of time if they

were used to solve linear equations for example. Thus,
well-defined number crunching problems are probably
best suited for classical programming techniques (if-then-
else) [7].
But, in areas where the solution is not defined and it is not
known what form that solution should be in, then,
algorithms that can extrapolate a solution directly from
data have an advantage. When the answer is not known
then the search should be as broad as possible, and if
assumptions were made, then the algorithm could be
limited to considering solutions that were pre-
programmed for ahead of time. Hence, a character
recognition program using a classical if-then-else
approach is not impossible to write; however, it would be
difficult to write an effective one, because the program
must make assumptions ahead of time as to what patterns
constitute a certain letter or number – this can be
especially tricky if the letters are handwritten by different
people.
So when it comes to deriving a solution that is essentially
a guess, some approaches tend to be more practical than
others. We considered decision trees, genetic algorithms,
regression splines and clustering as possible methods to
base AFP on.
The main goal of the method presented is to derive
functions with as little bias as possible. Arguably, any
method used will have some built in bias that may or may
not be unique to it. Also, some bias is needed, otherwise
the solution space would become impossibly large to
search and the problem would not be much different than
searching for every single possible combination that
exists. Hence, neither random search nor exhaustive
search is desirable. Random search does not have a time
guarantee on convergence and exhaustive search takes far
too long to be practical.
One of the considerations in developing this method was
the need to limit bias when producing a function. Another
consideration is that the function should have
configurable components or building blocks – so that the
search can be biased in a beneficial manner. In order to
reduce bias, the selection of mathematical primitives is
left up to the researcher using the algorithm. While this
approach may hinder search in the sense that the
algorithm can only look for answers within that
mathematical function set, it would also make search
more orderly because the search is now focused on a
limited area but not locked into that area and if the
algorithm does not make progress with that mathematical
set then the researcher could make changes to the
mathematical primitives – this ability to readily tune the
algorithm makes it flexible and powerful.
Keeping these requirements in mind, it would be difficult
and cumbersome to back-solve a neural network into a
function and then translate that function into the desired
output format. We also considered decision trees because
they are relatively fast (faster than version spaces) for a
large concept space and disjunction is easier to carry out;
however, they were not considered flexible enough to

produce the function formats required and it would be too
complex to adapt them for use in building formulas that
fit a set of data the way we inted to do in AFP.
In addition, a decision tree may not always expain its
classification clearly. Another possible method is
statistical analysis (regression based approaches) –
however, these do not do well when the form of the
function that generated the data is not known and there is
limited flexibility as to the mathematical primitives that
can be used.
On the other hand, simulated annealing and genetic search
techniques were a good fit for many reasons; first, the
way they search is not mathematically based (no direct
calculations on the data). This means that discontinuities,
noise and inconsistencies in the data would have little
effect on the search algorithm [9]. Second, they search for
a solution independently of what the data looks like.
Hence, there is no significant bias in relation to how the
data may be distributed and the algorithm is free to look
for any pattern hidden within that data set. These search
strategies are also resistant to getting stuck in local
maximas – a big advantage when searching for patterns
within a dataset [9]. As such, the algorithm was
implemented using simulated annealing to look for a set
of mathematical primitives that, when combined, would
result in a function that maps the input data to the output
data with as little error as possible.

4.3 THE SEARCH DOMAIN
The search domain can be thought of as some unknown
system where the inner workings of the system are not
known but the input and output values are measurable.
Collecting data from such a system would require
monitoring the output while inputting a range of values.
These values should be selected carefully so as to
represent the range of input values that the researcher is
interested in modeling. Such a system is demonstrated in
figure 1. For sufficiently large number of variables this
problem can be NP hard.

Figure 1: Collecting data from a system.

A search of the literature found no method that generates
formulas the way that we propose; however, it is worth
noting that there is a class of algorithms that generate
formulas based on frequency response. A good example is
the Comprehensive Identification from Frequency
Responses system or CIFER. NASA developed this
software package to model aircraft and it works by

measuring the frequency response of a system under study
and building a mathematical description of the system.
CIFER works much like reverse-simulation. Simulation
requires that assumptions be made ahead of time (a-priori)
to allow for the derivation of equations related to a given
system and system identification starts with measured
vehicle motion and measured responses in order to develop
a model that reflects the measured data accurately. CIFER
allows designers to skip modeling and get straight to an
equation that reflects the data collected from a real system.
The method proposed differs from CIFER because its mode
of search looks for combinations of mathematical primitives
that model the data set using input data. The technique is
flexible and since it is based on simulated annealing, it is
tolerant to noise and incomplete data sets [12] while CIFER
requires that the data be as accurate as possible.

5 THE UPDATED METHOD
The updated method utilizes simulated annealing to
generate a function from a set of data. Like FPEG, this
method (AFP) is also classified as a supervised regression
learning approach that uses batch data. This paper
investigates and quantifies the ability of the enhanced
simulated annealing search method to find formulas that
describe the relationship between a set of observed input
and related output data with little or no knowledge of the
problem domain and to search with better accuracy than
the original FPEG model.
Simulated Annealing search techniques were selected
because they offer advantages when searching large,
complex domains, the type that we expect to encounter
when searching for unknown functions. Simulated
annealing is very good at avoiding local maximas [12]
[10]. It has been proven as a successful algorithm that is
used in many real applications [11]. There has been much
research done using Simulated Annealing for large
problems with good results [9]. Although the optimality
of simulated annealing is not formally defined, the
algorithm guarantees that a global maximum will be
found if temperature is annealed infinitely slowly [9][10].
Also, simulated annealing is not hindered by
discontinuities in solutions expressed by mathematical
formulas since it directly manipulate a string representing
those formulas.
This updated method can be used to refine and validate
functions generated from data. There are advantages and
disadvantages to using the approach proposed. It does
well in areas where regression can get bogged down. It is
also useful in filtering important variables from a large set
of independent variables [5].
In applications that require the generation of a meta
model the method that we propose is very useful in
generating meta-models; this is because commercially
available statistical packages have drawbacks, Davis and
Bigelow state in a paper published in 2002: “..off the shelf
statistical packages are not very useful when there is little
knowledge as to the models internal workings.” The paper

goes on to point out that meta models are useful because
they can be used to gain insight as to the inner workings
of a large, complex model, and they offer exploratory
analysis [6].
If the analysis of the model was over a large part of its
domain then a meta model with a limited number of
variables – under 15 instead of hundreds makes
exploratory analysis more feasible (Davis and Bigelow,
2002) [6].
The function-estimation algorithm can also be used to
validate assumptions made about a given problem
domain. Hence, a tool whose results can be compared
with regression analysis is useful, particularly in
validating a model that regression analysis generated.
Thus, the proposed method would search for patterns in
data and generate an estimator function. Performance is
also important – both in terms of the time it takes to
search and in the accuracy of the prediction. The way a
search is conducted also matters because it has an impact
on how quickly the search converges. The method
proposed does not use statistical techniques; rather, it uses
simulated annealing because it is likely find patterns in
the data that regression may miss due to bias built into the
regression methodology itself [12].
Disadvantages in using genetic algorithms and simulated
annealing as a basis for generating answers lie in the
relative lack of precision [3]. Hence, this approach is not
the most efficient approach to use when the domain is
well defined and the quality of the data is very good. In
these problems types, where the domain is well defined,
regression analysis would be an ideal method.

5.1 LIMITATIONS OF REGRESSION
Linear regression has a fixed form as the far the returned
formula. Also, linear and nonlinear regression will both
return the same answer every time unless a new formula
model is used; there is little flexibility once the formula is
selected. The method we propose will return a different
combination every time. The use of standard statistical
methods with a problem that has a large number of
variables can be expensive in terms of computation. The
parsimony principle states that some factors are more
important than others and actually contribute more to the
final answer (Myers and Montgomery 1995, Kleijnen
1987). Thus, screening algorithms attempt to find the
variables that have most impact on response (Trocine and
Mallone, 2000) [5]. Once these variables have been
identified then they can be isolated from the rest of the
dataset and used as a part of a smaller dataset in statistical
analysis.
Other drawbacks of statistical regression techniques are:
(1) highly parametric structure and (2) weighty
assumptions within a small-data setting. There are some
problem classes in which there is no statistical method
that can be applied affectively to derive an answer. One
such problem was proposed by Ratner [2] where he sites
the example of a direct marketing problem that seeks to

maximize the response rate of solicitation by identifying
customers that are most likely to respond based on
collected data. Ratner concludes that there is no standard
statistical method that addresses this type of problem
adequately.
Linear statistical models make strong assumptions about
the structure of data, which often do not hold in
applications. The method of least squares is very sensitive
to the structure of the data, and can be markedly
influenced by one or a few unusual observations. We
could abandon linear models and least-squares estimation
in favor of non-parametric regression and robust
estimation. Unusual data are problematic in linear models
that fit by using the least squares method because they can
unduly influence the results of the analysis, and because
their presence may be a signal that the model fails to
capture important characteristics of the data.

5.2 ADVANTAGES OF UPDATED METHOD
The original FPEG algorithm was based on genetic search
and simulated annealing to assemble a formula out of an
alphabet of primitives supplied by the programmer. The
newer method relies primarily on simulated annealing.
However, genetic search can still be used as a backup
search-method should simulated annealing fail to reach the
results expected. So far, experiments that the authors
conducted show that that both search approaches return
almost identical results – with few exceptions. As such, in
order to speed up the search – the genetic algorithm based
search is only conducted if simulated annealing fails to find
a function with the desired performance.
The algorithm tends to return a unique combination of
mathematical primitives each time it is ran. Problems with a
large number of near optimal maximas tend to return more
diverse functions.
The proposed method does not claim to out-perform
regression analysis in every category. Rather, it is presented
as a powerful tool to that can perform as well as regression
analysis (as indicated by our experimental results) in some
areas and, possibly better, in areas where regression analysis
has inherent weaknesses. This tool can be used to analyze
virtually any system where data can be collected. It also
offers alternate answers that can be used and compared to
functions or solutions obtained using other methods, case in
point: if a complex, well trained, neural network was
developed to solve a given problem; AFP can be applied to
derive an equivalent function that can be used to gain insight
as to the internal operation of the neural network, This is
important because mathematical primitives can be plotted
and analyzed - there is almost no ambiguity in a
mathematical formula – however, a neural network or a
fuzzy logic set can be a challenge to analyze
mathematically.
Another consideration was the calculation of error. There
are many error calculation methods available (as well as
the option of defining a new error calculation method).
For example, many regression approaches use mean

squared error (MSE) to measure how well a generated
function ‘fits’ or deviates from the original data set.
Another measure of error is the mean absolute percentage
error (MAPE). Naturally, the method chosen, can, in a
subtle way, affect overall results. One error method may
show a lower error reading over another (depending on
data and the type of problem). However, early on we
decided to select a straightforward error calculation
method and use that consistently.

The method chosen is a variation of MAPE. As far as the
authors are concerned, there is no error calculation
method that has clear advantages over another error
calculation method. As one author summed it up: “Data
always have some detail, which can trick a method into
losing its theoretical advantage. A method may be
theoretically preferred over an alternative method for a
given problem, but empirical results do not reflect its
advantage.”

6 THE ALGORITHM
The new AFP algorithm is designed to return a solution
form with the desired mathematical primitives.

6.1 PROBLEM DEFENITION
The problem requires the generation of a function that
maps input data to output data from a system under
observation. The generated function must meet a
minimum (pre-selected) accuracy level or find the best
solution within a maximum temperature setting. The
fitness measure is calculated for every function that the
algorithm generated and that measure is used to indicate
how well the generated function approximates the
observed data. The algorithm stops searching once the
generated function maps the data under the pre-defined
minimum error or when the temperature reaches 0.

6.2 DATA FORMAT
Given a system under observation, inputs to that system will
be represented by the vector S and observed outputs of the
system will be represented by the vector T. Figure 2
demonstrates a system with an observed input vector Si, and
an observed output vector Ti. S and T cannot be empty.

Figure 2: Inputs and outputs to a system

Each input vector S must have a corresponding output
vector T. When collecting data from a system, a collection
of input vectors is entered and a collection of output vectors
is observed. The algorithm would take the S and T vectors
and produce some function F that relates all the input
vectors (S1, S2 S3, … , SN) to their respective output
vectors (T1, T2, T3, … , TN) such that: Tij = Fj(Si())
where: 1 <= j <= n. and n is the size of T.
The average error rate e is calculated as shown in figure 3.

Figure 3: Error Calculation

Note that the error calculation is applied to one output value
at a time. Since T holds all the output values for a system,
the algorithm produces a separate formula for each element
of T. The output under consideration (represented by i) is
selected from each output vector T and considered.

6.3 THE SOLUTION FORM
The algorithm generates formulas using the format shown
below. A function with m input variables generated by AFP
(Advance Formula Prediction Using Simulated Annealing)
has the form:
(pr)(mul)(op(s1)) comb (pr)(mul)(op(s2)) comb
(pr)(mul)(op(s3)) …
comb (pr)(mul)(op(sm)) dOp Delta
where s1, s2, s3, … , sm are members of the input vector S.

The rest of the symbols are as follows:
pr = Property operator
mul = Multiplier operator
op = Operation operator
Comb = Combination operator
dOp = Delta operator
Delta = Delta value

This format is flexible and allows for fine-tuning of the
returned function. The algorithm returns a solution that
contains the same number of variables as the size of the
input vector S. AFP takes the members of the input vector S
and applies to each member the operation, multiplier and
property operators. The property operators are variables that
may hold any of a number of different mathematical
primitives. The values for the operators are derived from
sets that will be referred to as the alphabet sets. Once the
first set of operators is applied, the resulting (modified)
variables are combined using the combination operator.
When all these calculations are completed, a delta value is
added or subtracted to the resulting sum. The final result is
referred to as the calculated value. This technique searches
within all the possible combinations of the above operators
to find the best combination, that when applied to the input
values in S, will yield a calculated value that has as little
error as possible when compared to the actual value. If the
algorithm were to search every combination then the
problem would be unmanageable for large alphabets and/or
large input sets. Genetic and simulated annealing search
methodologies excel in searching large problem domains for
combinations that produce the best fit [4].

6.4 AFP RELATED ENHANCEMENTS
While the basic operator structure of FPEG and AFP are
similar, there are enhancements that make the new
algorithm more effective and accurate. The first
enhancement is a layers variable. This variable has a range
of 1 through 10. The new variable indicates how many times
the basic formula format (from section 6.3) should be
repeated. This allows for each variable in the input to appear
more than once in the resulting formula with (possibly)
different functions applied to it. When the ‘layers’ variable
is set to 1, then each input value in the data appears once
and only once in the resulting equation. This means that if a
given variable in the input data can influence the range of
the problem in more than one way (or dimension), it would
have been difficult for FPEG to account for that. However,
in AFP, each input variable can appear up to 10 times in the
resulting equation.
The second important enhancement to FPEG that AFP
makes is through the use of three new random real variables
(called companion variables) that are associated with each
input variable in S. The companion variables offer a further
dimension to making the basic alphabet set more powerful.
They are used with the operation operator to derive an
almost infinite number of possible calculations from one
mathematical primitive. The original FPEG used a limited
set of integer values to modify operation operators (x
squared for example – the modifier is the 2 – that makes the
power operator square the input number). AFP does not use
a limited set of values to modify operators; rather, it uses the
companion variables to achieve a wide range of values.
Thus, the previous example of x to the second power can
become x to the value contained in a companion variable.

The third set of enhancement pertains to a ‘time function’.
This function is internal to AFP and can be used as a time
dimension with the input set S. Thus, each pair of input and
output value is assigned a unique time stamp value by the
time function. This allows FPEG to search for time-
dependent patterns within the data and combine those with
the existing patters detected. This adds a time dimension to
AFP and makes it sensitive to pattern changes in time –
which FPEG never considered.

6.5 OPERATOR DETAILS
The algorithm is flexible because the formula can be
adjusted and changed as needed. Also the alphabet sets
can contain any mathematical primitive or function and,
as such, the length of the sets themselves can be varied. In
the next section we will discuss the alphabet values that
were chosen for this paper.

6.5.1 The property operator (pr)
This operator is one unit in size. It acts on the multiplier
operator and modifies the values that it holds as follows:

Encoding Action taken

w 1 * (multiplier value)

x -1 * (multiplier value)

y 1 / (multiplier value)

z -1 / (multiplier value)

Table 1: The property operator

6.5.2 The Multiplier Operator (mul)
The multiplier operator is 3 units in length; it holds a value
that ranges from 000 to 999. The property operator modifies
the value within this operator.

6.5.3 The Operation Operator (op)
In FPEG this operator holds a character value that ranges
from the letter ‘a’ to ‘p’. Even though it is one unit in
length, it represents one of 16 possible operations that can
be applied to a value. There is a variable, denoted by the
letter C that is used to ‘tune’ or adjust the effect of the
operation operator. The original FPEG algorithm used a C
value of 4. Table 2 summarizes this operator in FPEG:

Table 2: The FPEG operation operator

In AFP, changes were made to Table 2. The first change
was the expansion of the Op code from 16 to 52
combinations. This was achieved using the alphabet set ‘A-
Z’ and ‘a-z’. The C variable was eliminated. This was no
longer necessary since each input variables in S had 3
companion variables (the companion variables also undergo
perturbation along with the solution form). The new AFP
form of table 2 can be seen in table 3. In table 3, N
represents the value of an input variable in S. The
companion variables are represented as c1, c2 and c3. It
important to note that each variable in the input set S has its
own unique set of companion variables. In the table the
symbol ‘power’ represents raising the first item between the
parenthesis (i1) to the power of the second listed item (i2).
An example would be: power (i1, i2). The symbol ‘abs’
means absolute value of the expression within the
parenthesis. The mathematical primitives listed in table 3
are by no means a fixed set – this is one possible
combination that worked in testing the datasets. Through
experimentation the values of this table are adjusted and
changed to find the best combination that yields the lowest
error.

Table 3: The AFP operation operators

6.5.4 The Combination Operator
This operator is one unit in length. It indicates how to
combine two variables A and B.

6.5.5 The Delta Operator
This operator indicates what to do with the delta-value. It
specifies one of two possible actions: addition or
subtraction.

6.5.6 The Delta Value
This operator has been changed to hold a value that ranges
from 0.01 to 9.99. It is added or subtracted from the
resulting equation depending on the delta operator. This
operator is three positions in length.

6.6 CALCULATING THE FITNESS VALUE
The application of these operators to the vector S of input
variables transforms these variables into a resulting
calculated value. This resulting value is compared with the
original output value stored in the corresponding result set
T. As shown in figure 3 earlier, for some data pair Si():Tij,
the error value is calculated by comparing the calculated
value with the actual value. The error value shows how
close the function built by AFP comes to approximating the
function under study. The fitness value is defined as the
average of all the error values for a given output. The error
calculated is essentially a percentage difference between the
resultant values calculated by the generated function and the
supplied (correct) values; hence, the fitness value will vary
from 0% error (a perfect match) to very large numbers.
Naturally, the lower the error, the better the fitness of that
function. The fitness values are expressed in percentile
numbers to make it easier to assess how closely the function
generated by AFP approximates the function that produced
the data set.

6.7 IMPLEMENTATION DETAILS
The algorithm returns a formula that has the same number of
variables as there are input variables (input columns) when
the ‘layers’ variable is set to 1. If the ‘layers’ variable is set
to two then the returned number of variables is 2x the input
number of variables (each variable is represented twice) and
likewise for each value of the ‘layers’ variable - thus, a
layers=10 setting will produce a resultant function with each
input variable m represented 10 times (10m). Thus AFP
offers a way to configure the number of variables in the
resulting function. Next, the algorithm calculates the
character string length needed to encode the input data into a
function and then it generates a random population (in the
case of simulated annealing a single random starting point is
chosen). During the search process, a fitness function
evaluates the current string (or population of strings). The
fitness value is essentially the error rate. The search
concludes when the temperature (Simulated Annealing) has
reached a terminating state. At that time a function is
returned along with three performance parameters: the best,

worst and average error values for that function. The best
performance value represents the best fit where the retuned
value of the function comes very close to the original value
in the data set. Likewise, the worst performance value
indicates the point where the generated function deviates the
most from the data set. The average value indicates the
performance of the generated function averaged over the
entire data set.

7 TESTING METHODOLOGY

7.1 FUNCTIONS AND SEARCH SPACES
The aim of this algorithm is to derive functions from a given
set of data. As we did in FPEG, testing AFP was done after
it was tuned using basic algebraic formulas that were
assembled for testing purposes. The functions used in tuning
the algorithm fell into two classes: the first we refer to as
‘In-Alphabet’ functions, these are derived from the alphabet
sets and use mathematical primitives that already exist in
our sets. The second class of functions is referred to as ‘Out-
of-alphabet’ functions; these are equations whose operator
variable uses elements that are not in the alphabet sets. Out-
of-alphabet functions imply that the operation operator
cannot encode the operation in the original function because
it is not in the current alphabet. However, there could be a
combination of other operators that can yield a close
approximation. The second part of the test involved
applying the AFP algorithm to the same statistical
benchmark sets that were used to test the original FPEG
algorithm. These were obtained from the National Institute
of Standards and Technology. These benchmark sets were
designed to test commercial nonlinear regression software
and they were rated by difficulty level. Tests were
conducted to evaluate how well AFP evaluates these sets.

7.2 TEST RESULTS
Table 4 below shows the benchmark name, the difficulty
level (lower indicates easier to solve), the Class
(Exponential or Miscellaneous), the number of parameters,
the number of observations, the source (Observed or
Generated) and the performance of FPEG and AFP.

Dataset Level Class Para
(ba)

Num
Obsv.

Source FPEG
Perf

AFP
Perf

Misrala Lower Exp 2 14 Obsrvd 4.20% 1.38%

Misralb Lower Misc 2 14 Obsrvd 3.59% 2.51%

Nelson Avg Exp 3 128 Obsrvd 7.20% 3.29%

Gauss3 Avg Exp 8 250 Gen 1.88% 0.77%

Rat43 Higher Exp 2 6 Obsrvd 8.50% 4.75%

BoxBod Higher Exp 4 15 Obsrvd 6.59% 1.82%

Table 4: Test results for benchmarks

A 1.38% would indicate an average error rate of about 2%
or a 98.62 accuracy rate on average for that function. Next, a
comparison was made between AFP and FPEG; the aim was
to calculate the improvement that AFP offered over FPEG.
The percentage error reduction was compared for AFP. The
results are shown in table 5.

Accuracy
(FPEG)

Accuracy
(AFP)

Improvement
AFP over

FPEG

% Reduction of Error
Margin

95.8 98.62 2.82 67.14

96.41 97.49 1.08 30.08

92.8 96.71 3.91 54.31

98.12 99.23 1.11 59.04

91.5 95.25 3.75 44.12

93.41 98.18 4.77 72.38

Table 5: Improvement AFP vs FPEG

To get an overall idea as to how well AFP does when
compared with FPEG, we averaged all the data from table 5
and calculated the average accuracy for AFP and FPEG. We
also calculated the average improvement and average
reduction of error margin. The results are shown in table 6.

Avarage
Accuracy
(FPEG)

Avarage
Accuracy

(AFP)

Avarage
Improvement
AFPG over

FPEG

Avarage %
Reduction of

Error Margin

94.92 97.57 2.65 52.10

Table 6: Average improvement AFP vs FPEG

8 CONCLUSIONS
A simulated annealing-based algorithm to predict
mathematical formulas from observed data was
successfully constructed and tested. This new method was
based on the FPEG algorithm that was developed by the
authors in 2003. The AFP algorithm test data demonstrate
that it is capable of generating results that achieve a better
accuracy level (or fit) than the original FPEG algorithm.
There are many more data sets that this tool could be
applied to including market analysis. We have
demonstrated an improved tool that can be a valuable aid
in research, this tool does not replace regression analysis;
however, it offers a unique method that can be used to
compare how well a given regression analysis was carried
out by comparing results from that analysis with results

from AFP. Yet, there are many other uses for this tool,
such as in cases where regression analysis fails to yield
good results, then this tool can be used an backup method.
This tool may offer an alternative to CIFER. Future work
may involve benchmarking AFP against CIFER. This
application was designed to be used in areas of research
where there are a large number of parameters and where
the relation between the data is not well understood. The
results obtained so far are very promising.

References
[1] N. Aldawoodi, R. Perez (2003), Formula Prediction
Using Genetic Algorithms (FPEG), University of South
Florida, GECCO A.I. Conference.
[2] B. Ratner (2000). A Comparison of two popular
Machine Learning Methods, Mine Tech.
[3] L. Davis, K. DeJong, M. Vose, D. Whitley, (1999),
Evolutionary Algorithms, Springer.
[4] T. Back, (1996), Evolutionary Algorithms in Theory and
Practice, Oxford University Press.
[5] L. Trocine, L. Malone, (2000), Finding Important
Independent Variables Through Screening Designs: A
Comparison of Methods, Proceeding of the 2000 Winter
Simulation Conference.
[6] P. Davis, J. Bigelow, (2002), Motivated Metamodels,
RAND Graduate School.
[7] Q. Wang, T. Aoyama (2001), A Neural Network
Solver for Differential Equations, Miyazaki University,
Japan.
[8] T. Mitchell, (1997), Machine Learning, WBC/McGraw-
Hill.
[9] Lawrence Davis, (1990), Genetic Algorithms and
Simulated Annealing, Pitman, London.
[10] P. J. M. van Laarhoven and E. H. L. Aarts, (1987),
Simulated Annealing Theory and Applications.
[11] Shaharuddin Salleh, Albert Y. Zomaya, (1999),
Scheduling in Parallel Computing Systems – Fuzzy and
Annealing Techniques.
[12] D.T. Pham and D. Karaboga, (2000), Intelligenet
Optimisation Techniques.

	INTRODUCTION
	LEARNING
	LEARNING CATEGORIES
	SUPERVISED LEARNING
	Classification Learning
	Regression (function learning)
	Preference Learning

	UNSUPERVISED LEARNING
	REINFORCEMENT LEARNING

	OTHER SEARCH CONSIDERATIONS
	BATCH/ONLINE LEARNING
	DESIGNING AN EFFECTIVE SEARCH STRATEGY
	THE SEARCH DOMAIN

	THE UPDATED METHOD
	LIMITATIONS OF REGRESSION
	ADVANTAGES OF UPDATED METHOD

	THE ALGORITHM
	PROBLEM DEFENITION
	DATA FORMAT
	THE SOLUTION FORM
	AFP RELATED ENHANCEMENTS
	OPERATOR DETAILS
	The property operator (pr)
	The Multiplier Operator (mul)
	The Operation Operator (op)
	The Combination Operator
	The Delta Operator
	The Delta Value

	CALCULATING THE FITNESS VALUE
	IMPLEMENTATION DETAILS

	TESTING METHODOLOGY
	FUNCTIONS AND SEARCH SPACES
	TEST RESULTS

	CONCLUSIONS
	
	References

