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Abstract. In this paper we explore the use of evolutionary algorithms in a 
wrapper-based selection of features and the classification of P300 signals in 
Brain Computer Interfaces. In particular we focus on a paradigm that uses the 
P300 potential associated to particular visual stimuli for hands free text 
entering. In our experiments the GA has found new ways to process and 
combine EEG signals to improve P300 detection accuracy. 

1. Introduction 

Brain Computer Interfaces (BCIs) can be divided into dependent and independent 
types [1].  In the former, activity in the various motor pathways is needed for 
generating the EEG signals that will carry information pertaining to a given task (see, 
e.g., [2]), whereas in the latter, relevant EEG will arise regardless of the activity 
pattern in motor pathways.  Within the independent BCI realm, P300 potentials have 
provided a relatively robust means to detect user’s intentions concerning the choice of 
objects within a visual field.  To this end, Donchin and others [3, 4] have developed a 
protocol whereby a subject is shown a matrix of characters or symbols, where rows 
and columns flash periodically in random order (see, for example, Fig. 1). Large P300 
potentials are then observed only in response to the matrix element the subject has 
chosen, regardless of where the gaze is directed.  Matrix size effects on the P300 
amplitude potential have been recently investigated as well [5].  

In the present study, we aimed at simultaneously selecting P300-based features and 
discovering classification technique for maximized recognition performance.  The 
setup was as described in [4]. 

2. Methods 

In our work we used the 2nd Wadsworth BCI Dataset from the BCI2003 competition 
[6]. This contains three sessions recorded using the paradigm described in [4]. We 
used the 19 standard channels of the 10-20 system.  
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Our objective was to maximally emphasize the P300 signal w.r.t. to background 
noise and other potentials for the purpose of brain-activity based dictation of 
characters. In order to achieve this we applied two pre-processing stages. The first 
stage consisted in extracting a one second epoch starting from the stimulus, applying 
a 30th order lowpass FIR filter (Fpass = 34 Hz, Fstop = 47 Hz, Wpass = Wstop = 1) and 
skipping every other sample. We then applied the rbio3.3 Continuous Wavelet 
Transform (CWT) to every channel using 30 different scales from within the range 
[2,40]. CWT was chosen because the base functions have similarities with the typical 
shapes of the P300 complex. We then kept the 40 samples between 270ms and 590ms 
obtaining a 19×30×40 matrix of features V. 
    Naturally, V represents an enormous number of features, which could trouble even 
the best classification techniques. So, a feature selection stage is required. We used a 
wrapper approach to feature selection and classification [7] where a subset of the 
features is selected, a classifier is realized, its performance evaluated and the process 
is iterated until both the features and the classifier are sufficiently good (this is 
different from a filter approach where the subset of features is optimized separately 
from the classifier). In our approach we used a Genetic Algorithm (GA) [8] to 
perform this joint optimization of features and classifier. In order to allow the 
exploitation of both linear and non-linear relationships between the features, we used 
a polynomial classifier where a subset of the features are combined in a polynomial of 
the form  
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where: ah are coefficients; ch,k, sh,k, th,k are the channel,  scale and time indexes of a 
feature in the matrix V; and eh,k are integers in {-3,-2,-1,0,1,2,+3}. The output of the 
polynomial was squashed in interval [-1,1]. If the result was greater than a threshold σ 
the trial was classified as target. By allowing a GA to optimize both the real-valued 
coefficients ah and the N×M integer matrices ch,k, sh,k, th,k and eh,k we effectively 
performed the feature selection  and the classifier optimization stages jointly. 
    We used blend crossover (where the value of the offspring parameters is the result 
of interpolating the parents’ parameters) to perform the search. Parents were chosen 
by tournament selection. Mutation was implemented as crossover between an 
individual from the population and a randomly generated one. The objective function 
was the mean (over all the trials in the training set) of the square of the difference 
between the squashed output of the polynomial and the correct output. The population 
size was 20,000. 
     To test the generalization of the system we used 5-fold cross validation using 4 of 
the 5 runs of session 10 of the dataset as training set (selecting all target trials and 
choosing randomly the same number of non-targets) and the other run as validation 
set (using all trials). 
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3. Results  

In most runs the GA evolved (near-) linear classifiers.1 There can be two reasons for 
this: a) linear classifiers perform better or b) linear terms are easier to discover.2 Since 
all our efforts to evolve non-linear components failed, we believe the first explanation 
is more likely. 
    When we set N=2 we obtained equations like 

)11,15,10(100.0)11,15,16(159.0335.0)( VVV ⋅+⋅−−=P  
This classifies a trial as target if the weighted difference between channels T6 and C4 
of the correlation with the mother wavelet stretched 17 times and shifted by 
approximately 380ms is greater than σ–0.335  (with σ=0, TP=0.77 and FP=0.24 on 
validation set). As CWT is linear, the equation can be seen as calculating the 
correlation between the weighted difference between the two channels and the mother 
wavelet stretched and shifted. This suggests that the difference between T6 and C4 is 
important for the purpose of P300 detection.  
   Fig.2 shows the signals recorded in T6 (bottom) and C4 (top) in the presence (solid 
line) and in the absence of P300 (to reduce the noise, plots are averages over multiple 
trials3). Fig. 3 shows the weighted difference between these signals (top) as well as 
the appropriately stretched and scaled wavelet mentioned above (bottom). The non-
target plots for C4 and T6 are very similar (and in-phase). On the contrary the target 
plots are quite different. So, subtraction tends to cancel the non-target signal and to 
enhance the target one: exactly what we need for a reliable detection of the P300. 
When a P300 is present, the signal resulting from the subtraction has a shape similar 
to the wavelet in Fig. 3, so convolution with it further strengthens our classifier. 
   Table 1 shows the results obtained with a 5-fold cross-validation for polynomials 
with N=3 and N=4 linear terms. The value of σ can be used to trade true positives 
(TP) for false positives (FP). We tested two criteria to set σ optimally: a) the 
maximum rate of correct outputs (MaxCorr); b) the maximum mutual channel 
information (MaxInfo)  
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where S is a stimulus on the screen and output R the response provided by the 
detector. In both cases we set Pr{S=target}=1/6 because 1/6 is the target frequency in 
the Donchin speller paradigm [4]. 
    From the table we can see that the rate of correct classification for our classifiers is 
up to 87.62%, which compares well with the results reported by others on similar 
datasets. It is interesting to note that the MaxCorr criterion favors specificity 
excessively, as clearly shown by the fact that I(S,R) is significantly reduced w.r.t. the 

                                                           
1 Linear terms are obtained when in a term of the polynomial a factor has exponent 1 and all 
others have exponent 0. Since this is a complex configuration, to help evolution we later added 
a pure a linear part to the general polynomial. 
2 A second order term, for example, can lead to a very big product that needs to be paired with a 
small coefficient. 
3 We averaged all the trials in the dataset where either exactly one (solid lines) or exactly zero 

(dashed lines) P300 potentials where present within the time interval shown. 
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maximum achievable (e.g. 0.146 vs. 0.163). We can also see that the use of four 
features improves I(S,R).   

4. Discussion  

The results reported in Table 1 are quite encouraging [10,11,12], but these are still a 
far cry from what we need to achieve fast and reliable brain-computer interfaces. 
These would have a huge number of potential applications, particularly in the area of 
communication aids for people with severe motor disabilities.  

Why can we not do better? Certainly one reason is the enormous amount of noise 
and variability present in EEG signals. For example, these are extremely small in 
amplitude, their acquisition requires a good contact between skin and electrodes, 
which is very hard to achieve on all electrodes, and a considerable amplification. 
Also, muscular noise (e.g. the blinking of an eye, swallowing, etc.) can completely 
cover brain activity.  However, we believe these are not the only reasons why the 
accuracy and reliability of BCI detection systems cannot be improved beyond a 
certain limit: some perceptual phenomena including attentional blink, repetition 
blindness and other effects caused by attentional limits can interfere with character 
identification in Farwell and Donchin’s P300-based speller paradigm [3].  In 
particular in our experiments we have found evidence for the existence of  "near 
targets". 
    To study the possible influence of perceptual errors we first split the signals into 
(partially overlapping) trials lasting 1s and starting from a stimulus (the flashing of a 
row or a column of letters on the screen). We then grouped the trials in the dataset into 
12 classes on the basis of which of the 6 rows and 6 columns flashed. The trials 
representing each row (column) where further subdivided on the basis of the row 
(column) of the target chosen by the subject, thereby producing 12×6=72 classes. In 
order to reduce noise we averaged the trials within each class.4 We concentrated our 
analysis on both the signals recorded in the Cz channel and the weighted difference 
∆=0.1×C4−0.159×T6 between channels T6 and C4, which, in our experiments, we 
had found to have high significance for the purpose of P300 detection.  
   What should one expect to see when plotting the averaged signals for each class? In 
theory, out of all the trials where column c flashed, only those where column c 
actually contained the target should present a P300 and likewise for the rows. Indeed 
this is what we observed, as illustrated in Fig. 4, where the red plot represents the � 
signal averaged over all the trials where the row containing the target flashed, which 
confirms the presence of P300s (similar results were obtained for Cz). However, the 
green plot, which represents the � signal averaged over all the trials where the row 
that flashed was adjacent to the one containing the target, differs significantly from 
the remaining plots (representing situations where the target was further away from 

                                                           
4 Different rows and columns had different numbers of stimuli, namely: 180, 165, 75, 165, 0 
and 0 (top to bottom) for the rows, and 150, 150, 105, 30, 75 and 75 (left to right) for the 
columns.  
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the flashing column), effectively presenting a large P300-like wave peaked at 300ms.5  
    What generated these P300-like waves in the presence of near-target stimuli? A 
plausible explanation is to attribute these to attentional orienting mechanisms [9], 
where the subject’s visual system, being unable to focus attention only on precisely 
the target letter, generated P300 (surprise, attentional orienting) signals. We suspect 
these perceptual errors may be a reason for the limited single-trial performance shown 
by automated P300 detectors. This, of course, drammatically increases the number of 
repetitions needed for reliable recognition. 
   However, as Fig. 4 suggests, EEG signals may contain information regarding the 
degree of targetness of stimuli. So, spurious P300s will not necessarily work against 
BCI if, in the future, we will be able to exploit this information. 

 

5. Conclusions 

In this paper we have explored the use of evolutionary algorithms to aid the selection 
of features and the classification of P300 signals in BCI. This approach has confirmed 
the usefulness of linear detectors, while at the same time revealing the importance of 
selecting certain EEG channels and using their differences to cancel non-P300 
components. The evolved classifiers have shown state-of-the-art performance. 
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Figure 1. Example of display used in Donchin's P300-based speller paradigm. 
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 Figure 2. Average signals recorded in T6 (bottom) and C4 (top) in the presence (solid 
lines) and in the absence (dashed lines) of P300. 
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 Figure 3. Average weighted difference between the C4 and T6 signals (top) 
and the mother wavelet stretched 17 times and shifted by approximately 380ms 
(bottom) which was selected by the GA for optimal P300 detection. 
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 Table 1. Results obtained by the GA with a 5-fold cross-validation for polynomials with 
N=3 and N=4 linear terms 

    N=3 N=4 

   MaxCorr MaxInfo MaxCorr MaxInfo 

mean 
51.63% 65.61% 51.82% 70.58% 

TP 
std 

6.89% 6.35% 5.58% 6.94% 

mean 
6.00% 11.94% 5.22% 13.15% 

FP 
std 

1.93% 4.64% 1.64% 3.99% 

mean 
86.94% 84.32% 87.62% 84.14% 

Correct 
std 

1.33% 2.99% 1.17% 2.45% 

mean 
0.137 0.148 0.146 0.163 

I(S,R) 
std 

0.026 0.016 0.023 0.018 

 

 
 Figure 4. Average P300 signals recorded for target (red plot), near-target (green 
plot) and non-target (remaining plots) signals. 
 


