
W. B. Langdon

Computer Science,

University College, London

W.B.Langdon@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Langdon

W. B. Langdon 1

http://www.cs.ucl.ac.uk/staff/W.Langdon

14:00–15:50 Bill Langdon

• Tutorial based on Foundations of Genetic Programming

GECCO 2001-2003 given in two parts with Riccardo Poli.

Slides for 2003 available via ftp://cs.ucl.ac.uk/genetic/papers/

fogp slides/

• 1. Introduction

• 2. Fitness Landscapes

• 7. and 8. The Genetic Programming Search Space

New rates of convergence and limits.

• 9. Empirical: Santa Fe Ant

• 10. The MAX problem

• 11. Genetic Programming Convergence and Bloat

• Conclusions

W. B. Langdon 2

http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
ftp://cs.ucl.ac.uk/genetic/papers/fogp_slides/
ftp://cs.ucl.ac.uk/genetic/papers/fogp_slides/

Fitness Landscapes

• Metaphor: Search space like countryside (2 dimensions!!)
height is fitness.

Mountains have high fitness

Metaphor can be inverted ; Valleys and seas are good points.

• Enumeration, exhaustive exploration

• Shortsighted Hill climbing. Local optima, swamps and plateaus.
Basins of attraction.

• Simulated annealing, uphill but downward steps probabilisti-
cally allowed. Chance depends exponentially upon ratio of
height of backward step and current “temperature”

• Genetic Algorithm, metaphor fails with crossover

W. B. Langdon 3

Enumeration

start

end

2
3

4
5

6
7

2

3

4

5

6

7

8

0
0.5

1
1.5

2

Explore whole search space is systematic fashion.

(Monte Carlo: sample search space at random)

W. B. Langdon 4

Hill Climbing

Start Local Peak

Start

Peak

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0
0.5

1
1.5

2

Choose start point at random

Find local gradient

Follow local gradient up hill

May get stuck at top of small hill (known as “local optima”,

“false peaks”, “deceptive peaks” etc.)

W. B. Langdon 5

Basins of Attraction

swamp

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0
0.5

1
1.5

2

Two major basins of attraction.

In this case higher peak also has larger area from which a hill

climber will reach it.

In swamp explorer has no gradient to guide him.

W. B. Langdon 6

Smooth or Rough Landscape
Smooth: hill climber moves rapidly to single hill top (Fuji).

 3.43
 2.75
 2.06
 1.37

 0.687

0 1 2 3 4 5 6 7 8 9 0
1

2
3

4
5

6
7

8
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rugged landscapes with many hills

If hills isolated by deep valleys the hill climber worse than if
interconnected by mountain ridges.

But if the ridges are narrow and lead downwards our explorer will
still have difficulties
W. B. Langdon 7

Long Paths

-20 -15 -10 -5 0 5 10 15 20 -20
-15

-10
-5

0
5

10
15

20

-80

-60

-40

-20

0

20

40

60

80

100

In this landscape the local gradient may eventually leads to the
summit but the path is much longer than the direct path.
W. B. Langdon 8

Other users of Landscape Poetry

Smarter explorers may not be as short sighted and so make
assumptions about the smoothness of the landscape to make
large jumps towards were they calculate the peak “should be”
(if their assumptions are correct).

In simulated annealing, sometimes allowed to climb down hill.

On detecting a local peak, start exploring again from a new
randomly chosen start point.

Tabu search can be thought of as keeping a “tabu” list of places
the explorer should not revisit.

In A? (and other AI search) once a search is underway it may
be possible to exclude large areas of the search space (by using
heuristics i.e. knowledge about the problem)

For example find cheapest route between two cities, A? stops
exploring any partial route which already costs more than a viable
route it has previously found.

W. B. Langdon 9

Change of representation

Ridge

Local Peak
swamp

Peak 1.67
 1.33
 1

 0.667
 0.333

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0
0.5

1
1.5

2

Landscape using binary coding. This is the same landscape as
slides 4, 5 and 6 but using a binary coding rather than a Grey
coding.

The captions (“Peak” etc.) refer to the original figures. Recod-
ing the parameters changes the topology of the landscape and,
in this example, introduces more local peaks.

W. B. Langdon 10

Fitness Landscape Failings

• overlook long range correlation (conceal useful regularities)

• only two horizontal dimensions

• Single objective, can’t deal with both speed and battery life

• GA etc. often binary parameters not continuous

• “Landscape” depends upon representation and operators

Good for two dimensions and small mutations.

Hard to visualise discrete search spaces or crossover

• Fixed landscape assumption, what of time varying?
“Effective fitness” landscape changes as population moves
across it

W. B. Langdon 11

Scaling of Program Fitness Spaces

• Genetic Programming stochastic search for programs

• What is known about the space of all programs

• Above threshold, proportion of functions of each type inde-
pendent of length

• Experimental evidence, tree based GP

• Proof linear, e.g. machine code GP

• summary tree based GP

• So what?

W. B. Langdon 12

Number of programs v. size, various problems

0.1

1

10

100

1000

10000

1 10 100 1000

N
um

be
r o

f P
ro

gr
am

s
(lo

g
10

)

Program Size

Quintic, Sextic Polynomial
11 Multiplexor
6 Multiplexor
Binary Trees

W. B. Langdon 13

Distribution of Binary Trees by size and height

0

200

400

600

800

1000

0 20 40 60 80 100

N
um

be
r o

f i
nt

er
na

l n
od

es
 a

nd
 te

rm
in

al
s

Tree Depth

5% peak 95%full

 minimal

mean and SD
Flajolet

W. B. Langdon 14

Distribution of Binary Trees by size and height

 Full

 Peak

Minimal

0
5

10
15

20
25

30

Depth

0
10

20
30

40
50

60

Length

0

2

4

6

8

10

12

14

16

Log number

W. B. Langdon 15

Proportion of NAND trees:

2 input logic function

offnor 2nd1 4nd0xornandandeqd011d113oron 1 15 31 5163 91
127 151

201
255

Size

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W. B. Langdon 16

Fitness Sextic Polynomial

100,000
10,000

1000
100

10
1

.1
.01

Mean Error 3
5

11
19

41
63

127
201

501

Program Length

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

Proportion

(constants and input equally sampled)

W. B. Langdon 17

Artificial Ant

0 10 20 30 40 50 60 70 80 89
Fitness 3

5
10

50
100

500
1000

Program Length

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Proportion

W. B. Langdon 18

Linear Model of Computer

1 75OR

AND

Memory

CPU

0

1

2

3

4

5

6

7

I/O register NAND 0 0 7

AND 3 7 6

Program

AND 4 3

AND 1 5 0

OR 6 3

NOR 3 3 3

NAND 2 5 3

0

3

Program counter

6 3 5OR

• Input and output registers part of memory.

• Memory initialy zero (except input register).

• Linear GP program is a sequence of instructions.

• CPU fetches operands from memory.

• Performs operation.

• Writes answer into memory (overwriting previous contents).

• Programs stops after l instructions.

• Final answer in output register.

W. B. Langdon 19

Why Interest in Random Programs?

• Consider all programs, of a chosen length.

• Create a large number of random programs, measure their

properties

• We are sampling the search space of all possible programs

• Bigger sample ; better estimate of actual

• We are interested in Markov processes because analysis (rather

than experiment) can give provable general results a) in the

limit and b) the rate at which practical systems approach this

limit.

W. B. Langdon 20

Why are Random Programs Markov?

• A Markov process only depends on current state

• When a program is check pointed, its state is saved

It can be restarted, without ill effect, if its state (i.e. content
of memory) is restored and it restarts from the same point.

I.e. what happens later only depends on current memory

• At each time step t a Markov process is in a state, i

Randomly chose another state j for the next time step, t+1.

Process is Markov if probabilities associated with each transi-
tion do not change with time, only depend on current state.

Matrix M = probability of transition from state i to j.

M does not change with time.

• Executing a random program is a Markov process, whose
state is the contents of the computer’s memory.

W. B. Langdon 21

Proof Linear: Model of Computer

• State of computer given by contents of memory

• All memory, registers but exclude PC

• N memory bits ⇒ 2N states

• Execution ≡ state → next state

• In general state 6= next state but allow state = next state

• Computer designed so all states accessible

• Symmetric instruction set, state ⇀↽ next state

W. B. Langdon 22

Proof Linear: Execution of computer program

• state0 given by inputs

• Program = sequence of instructions, change state

• program l states long

• terminates at state statel−1

• program itself need not be linear

branches, loops, function calls OK provided executes random

instructions

W. B. Langdon 23

Instructions as Transformation Matrices

• |probability vector| = 2n v = 0,0, . . . ,1,0, . . . ,0︸ ︷︷ ︸
2n elements

• At any time t in one state i⇒ vti = 1 and vt6 i = 0

• Each instruction = 2n × 2n matrix

• vt+1 = vtN

• Every Nij = 0 or 1, N is stochastic∗

∗Stochastic matrices have the property that each of their elements are not
negative and the elements in each add up to one. “Stochastic” does not
mean they are random!

W. B. Langdon 24

All Programs

• All possible programs of l

average vector u = Mean of all v

ut+1 = utM where M is average instruction matrix

• u is Markov, M is stochastic

At least one Mii 6= 0

period of state i = 1 i.e. it will be aperiodic [Feller, 1970]

Greatest common divisor (g.c.d) of all states = 1

• All states can be reached ⇒M irreducible

• Irreducible ergodic Markov chain ⇒ limt→∞ ut = u∞

independent of the starting state (i.e. the program’s inputs)

W. B. Langdon 25

An Illustrative Example

• Two Boolean registers R0 and R1

• Each initialy loaded with an input

• Program’s answer is given by R0

W. B. Langdon 26

An Illustrative Example: Instruction Set

• There are 22 = 4 states (R1RO = 00,01,10,11)

• There are eight instructions

Eight transformation (4× 4) matrices

R0 ← AND
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

R1 ← AND
1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

R0 ← NAND
0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R1 ← NAND
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0

R0 ← OR
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

R1 ← OR
1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1

R0 ← NOR
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0

R1 ← NOR
0 0 1 0
0 1 0 0
1 0 0 0
0 1 0 0

W. B. Langdon 27

• Example R0 ← AND

R1 = 1, R0 = 0 u = (0 0 1 0)

v = uM = (0 0 1 0)×


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = (0 0 1 0)

R1 = 1, R0 = 0

I.e. AND(0,1) = 0, so R0 is set to 0 while R1 is unchanged

• If we use each of the instructions with equal probability the

Markov transition matrix is the average of all 8, i.e.

M = 1/8


4 2 2 0
2 4 0 2
2 0 4 2
0 2 2 4



W. B. Langdon 28

An Illustrative Example: Limiting Probabilities

• The limiting distribution u∞ = 1/4(1,1,1,1) is given by the

eigenvector corresponding the largest eigenvalue (which al-

ways has the value 1).

The eigenvalues λ and corresponding eigenvectors E of M

are

λ00=1/2(0 −1 1 0)
λ01=1/2(−1 0 0 1)
λ10=1 (1 1 1 1)
λ11=0 (1 −1 −1 1)

Note since M is symmetric the other eigenvalues are also

real.

W. B. Langdon 29

Rate of Convergence and the Threshold

• The Rate of convergence is dominated by the second largest

(absolute magnitude) eigenvector of M , λ2

• The smaller λ2 is the faster the actual distribution of func-

tions converges to the limiting distribution

• I.e. the smaller is the threshold

• Threshold size ≈ −1/ log |λ2|

Convergence rate depends crucially on type of computer and

size of its memory [Langdon, 2002].

W. B. Langdon 30

Extend to Functions

We have proved distribution of outputs tends to limit.

Formally need to extend this to the distribution of functions.

There is a limiting distribution of program functionality.

Uniform distribution of outputs 6⇒ uniform distribution of func-

tions.

W. B. Langdon 31

Functions Example

One Boolean register. (N = 1 so 2N
2N

= 4 possible functions).

Suppose our machine has 4 instructions:
CLEAR, NOP, TOGGLE, SET.

Two outputs (0 and 1) both equally likely.

CLEAR
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

NOP
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

TOGGLE
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

SET
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

M

1/4


2 0 0 2
1 1 1 1
1 1 1 1
2 0 0 2


The limiting distribution (eigenvector with eigenvalue=1) of the
functions is

1/2 (1 0 0 1).

I.e. 50% CLEAR and 50% SET (not uniform).

W. B. Langdon 32

What is the Limiting Distribution?

The limit depends upon the computer type. If we restrict our-
selves, the eigenvalues and eigenvectors of the Markov matrices
may already be known or maybe we can discover them.

1. Cyclic. Increment, decrement and NOP. Reversible but not
universal [Langdon, 2002; Langdon, 2003a].

2. Bit flip. Flip biti and NOP. Reversible but not universal
[Langdon, 2002; Langdon, 2003a].

3. Any non reversible . [Langdon, 2002a; 2002b; 2003a].

4. Any reversible [Langdon, 2003b].

5. CCNOT (Toffoli gate). Reversible and universal [Langdon,
2003b].

6. The “average” computer [Langdon, 2002a; 2002b; 2003a].

7. AND, NAND, OR, NOR. Not reversible but universal [Lang-
don, 2002a; 2002b; 2003a].

W. B. Langdon 33

Program Outputs Limiting Distribution

In general the distribution of outputs of any computer will con-

verge to a limiting distribution but programs may need to be

exponentially long.

The cyclic computer shows not only is the upper bound expo-

nential but that it can be reasonably tight in that exponentially

long programs can be required for the distribution to be close to

the limit. l > 0.8 3
4π222N

However bit flip, average and four Boolean computers show in

some cases the output distribution of much smaller programs is

close to the limit.

1
4(N+1)(log(m)+4), l ≤ (15 + 2.3 m)/log I, l ≤ 1

2N(log(m)+4).

W. B. Langdon 34

Non Reversible Programs –

Limiting Fitness Distribution is Zero

Linear systems, where the inputs are not write protected, on

average loose information. This means in the limit the fraction

of programs implementing interesting functions goes to zero.

I.e. almost all non reversible linear programs return one of 2m

constants.

In general programs need to be exponentially long for fitness

distributions to converge. In cyclic computers the upper bound

is tight but in some cases (e.g. AND NAND OR NOR) programs

can be much smaller and still be close to the limiting distribution.

W. B. Langdon 35

Reversible Program –

Limiting Fitness Distribution is Gaussian

In the limit of long programs, with large reversible computers

both every output and every possible (i.e. reversible) function

are equally likely.

With a Hamming distance fitness function, fitness follows a

Normal (Gaussian) distribution.

This means almost all programs have near average fitness.

And the fraction of solutions is exponentially small (but bigger

than zero).

CCNOT gates show reversible programs need not be

desperately big before the their fitnesses is Normally distributed
[Langdon, 2003b].

W. B. Langdon 36

Distribution of Reversible Program

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Fr
ac

tio
n

Fitness on 6 Multiplexor, 6 spare lines

Gaussian σ=4
100 CCNOT

W. B. Langdon 37

Convergence of Effect of Mutation

In general the effect on the outputs of a single point mutation

falls at least as quickly as l−1 but the bound on the

convergence threshold length is exponential in the number of

fitness tests [Langdon, 2003a].

However in two cases (cyclic and bit flip), if we consider

changes in fitness, the impact of mutation on fitness is

independent of program size. I.e. convergence is instantaneous

rather than requiring exponentially long programs.

The fitness impact of point mutation on the “average”

computer falls as l−1 but the bound on the convergence

threshold length is exponential in the size of the computer.

The cyclic and bit flip computers are simple enough to allow

analysis of the time to solution (quadratic or faster).

W. B. Langdon 38

Summary: Big Random Tree Programs

• Above a threshold, distribution of performance is

independent of tree size.

• Most trees are asymmetric. The chance of finding a leaf

near the root is ≈ 50%.

• Even if instruction set is symmetric, some functions are

more likely than others.

• Solutions to problems where the function set requires them

to be bushy will be rare.

• The number of solutions grows exponentially with size.

W. B. Langdon 39

So what?

• Generally random instructions “lose information”.
Unless inputs are protected, almost all long programs are
constants.
Write protecting inputs linear GP like tree GP.

• “Random Trees” a few inputs near root. May be good for
Data Mining, where some inputs are more important.
Other cases each input is equally important. Need bushy
trees. E.g. parity more common in full trees.

• Depth limit promotes near full trees rather than random
Size limit promotes random trees

• Density of solutions indication problem difficulty

• No point searching above threshold?

• Predict where threshold is? Ad-hoc or theoretical.

W. B. Langdon 40

Conclusions

• Size and shape of search space

• Experimental evidence, tree based GP

• Proof linear

• Proof tree (in FoGP book)

• Number of solutions grows exponentially with size

cs.ucl.ac.uk/genetic/gp-code/

ntrees.cc and rand tree.cc

W. B. Langdon 41

ftp://cs.ucl.ac.uk/genetic/gp-code/ntrees.cc
ftp://cs.ucl.ac.uk/genetic/gp-code/rand_tree.cc

Santa Fe Ant Trail

• Systematic exploration of program space

• Its size and the number of solutions

• Rugged landscape ⇒ hard to hill climb

• Looking for Building Blocks ⇒ hard for crossover

• Short solutions ⇒ symmetry not being exploited

• Conclusions

W. B. Langdon 42

Artificial Ant following

the Santa Fe Trail

Complex, iteration and side-effects

• 89 food pellets, twisting trail, 32× 32

• Move, Left, Right

• IfFoodAhead

• Prog2, Prog3

• fitness = food eaten

W. B. Langdon 43

Santa Fe Trail

���
���
���
���

Ant starts from centre (hashed square)

W. B. Langdon 44

Size and Number of Solutions

Cf. slide 18

0.1

1

10

100

1000

1 10 100 1000

N
um

be
r o

f P
ro

gr
am

s
(lo

g
10

)

Program Size

Santa Fe Trail (note log scales)

4.2 1035

7.5 1073

9.4 10768 Number of programs
Number of solutions

W. B. Langdon 45

“Effort” to Solve Santa Fe Trail

Method Effort/1000
Random (len=18) 400
Random (len=25) 1,200
Random (len=50) 2,700
Random (len=500) 4,700
Ramped-half-and-half 15,000
Koza GP [Koza, 1992, page 202] 450
Size limited, EP [Chellapilla, 1997] 136
GP [Langdon and Poli, 1997b] 450
Subtree Mutation [Langdon and Poli, 1998a] 426
Simulated Annealing 50%–150% 748

Subtree-sized 435
Hill Climbing 50%–150% 955

Subtree-sized 1,671
Strict Hill Climbing 50%–150% 186

Subtree-sized 738
Population (data for best) 50%–150% 266

Subtree-sized [Langdon, 1998a] 390
PDGP 336

W. B. Langdon 46

Analysing Fitness Landscape

1. Hill climbing landscape

2. GP schema fitness

• Both use point mutation, no change in size or shape

W. B. Langdon 47

Hill Climbing – Karst Landscape

• Many individuals of intermediate fitness don’t have fitter

neighbour

• len=11 solutions, no neighbour fitness> 36, most < 24

• length ≤ 14 solutions are (almost) isolated

• sampling > 14⇒ similar

• neighbours with same fitness rises ≈ 1.5 length

plateau, fitness gives no guidance

W. B. Langdon 48

Karst Landscape

Solutions

Solutions

surrounded

by deep

moats.

Plateaus –

deep ravines

W. B. Langdon 49

Karst Limestone Landscape

Local optima off in the

distance (behind lake).

Plateaus – deep ravines.

Global optimaa thousands of

miles away.

aNot shown

∗ The Geological Survey of Ireland

W. B. Langdon 50

http://www.mef.org.uk/
http://www.gsi.ie/workgsi/groundwater/karstbook/images/cover.jpg

Looking for Building Blocks

• BB small components of solution with above average fitness

• Length ≤ 13

• Deception

– length, longer programs fitter than those of length 18

– Fittest tree shapes no solutions

– Fittest schema no solutions

– Some components (fixed size/shape) of solutions below

average fitness

W. B. Langdon 51

Fitness of Schema Containing Solutions,

Length=11

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

S
ch

em
a

Fi
tn

es
s

Schema Order

Santa Fe Trail, (Prog3 (= = (Prog3 = = (= = =))) = =)

Mean fitness of all programs of size 11

Schemata containing solutions
(Selected) schemata not containing solutions

Max all schemata of size 11

W. B. Langdon 52

Solutions of length 11

yif

m

x x if

m y

m

x and y can be either Left or Right and the three arguments of

the root can be rotated, giving 12 solutions.

Solutions of size 12, 13 and 14 are similar

W. B. Langdon 53

Conclusions

• Benchmark problem, features typical of real programs?

Details important. Toroid and time limit give “dumb”
programs high score

• Systematic exploration of 889 106 programs

• Neighbourhood analysis, hill climbing search difficult

Schema analysis, deceptive, no building blocks found.
(Problem too simple?)

GA hard ⇒ randomisation techniques with size ≈ 18

• Ramped 1
2-and-1

2 need not be a good form of random search

Tree counting C++ code and 3916 ants available via
cs.ucl.ac.uk cf. slide 41
W. B. Langdon 54

ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/gp-code/antsol.tar.gz

Max

• What is the MAX Problem

Find tree with max value within limited size

Function set {*,+}, terminal set {0.5}

Depth limit D

Max value 42D−3
, 2D−3 optimal trees

• Exponentially hard (but GP � random) because

1. Initial generations deceptive. Price’s Theorem
2. Later difficult because a) depth limit and strong

selection confine crossover so only improvements are
accepted b) little crossover activity near root

Hill climbing model ⇒ time O(22D). Cf. 58 and 59

Search space O
(

22D+1
)

W. B. Langdon 55

MAX Problem Parameters

Objective: Find a program that returns the largest value
Primitives: +,×,0.5
Max depth 3 . . . 8 (NB root node is depth 0)
Init depth 5 or Max depth
Fitness: Value of tree
Selection: Tournament group size of 2 to 8, generational

plus elitism.
Parameters: Pop = 200, G = 500, 99.5% crossover, no mu-

tation. Crossover points selected uniformly be-

tween nodes.

W. B. Langdon 56

Predicting which MAX runs will fail

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Fr
eq

ue
nc

y,
 C

ov
ar

ia
nc

e
w

ith
 fi

tn
es

s

Generation

Mean freq successful runs
Mean covar successful runs

Mean covar failed runs
Mean freq failed runs Initialy +

gives better

score than ×,

so selection

removes ×.

This is

especially

important

near root.

Covariance with fitness and frequency for × in the second level
of the tree.

Means of successful and unsuccessful runs. (D = 5).

W. B. Langdon 57

How Many Steps to Solution

0

50

100

150

200

250

300

3 4 5 6 7 8

M
ea

n
N

um
be

r o
f i

m
pr

ov
in

g
st

ep
s

be
fo

re
 o

pt
im

al
 s

ol
ut

io
n

Depth

t = 6
Functions

Time for

crossover to

replace + by

× near root.

Model 2. p55

O(22D) is

reasonable.

Improvements made before optimal solution in successful runs.

Number of steps ≈ functions in tree

W. B. Langdon 58

Mean number of generations to solve

(successful runs)

0.1

1

10

100

1000

10000

3 4 5 6 7 8

A
ve

ra
ge

 N
um

be
r o

f G
en

er
at

io
ns

Depth

500

5000

2(2D-5.75)

W. B. Langdon 59

MAX Problem Conclusions

• Can understand how GP solves MAX problem by analysis

• MAX is a hard problem, but GP exponentially better than

random search

• Hard because initialy deceptive. Fitness selection drives

population in wrong direction.

Using Price’s covariance theorem in first few generations

can predict which runs will fail many generations later.

• Hard because only crossovers which make immediate

improvements are accepted into the population. Many

improvements are needed from random start. C.f. GA long

path problems.

W. B. Langdon 60

Bloat = Convergence

• Convergence in GP

• Evolution of Size and Shape

• No worse than parabolic growth prediction (binary trees)

W. B. Langdon 61

Convergence

Genetic Algorithms Genetic Programming

Geneotype

2. Crossover and Mutation

1. Fitness Selection

Phenotype

3. Converges after many generation

Mutation and selection balanced

Geneotype

2. Crossover and Mutation

1. Fitness Selection

Genotype continues to change

Phenotype converged

Phenotype

3. After many generations

W. B. Langdon 62

Fitness Selection Acts on Phenotype

GeneotypePhenotype GeneotypePhenotype

GA 1-to-1 mapping genotype-

to-phenotype

GP 1-to-many mapping

Spread of phenotypes (unequally) reduced

1:1 mapping, identical

reduction in genotypes

Complex mapping, uneven

reduction in genotypes

W. B. Langdon 63

Crossover and Mutation Spread the Genotype

GeneotypePhenotype GeneotypePhenotype

fixed mapping, spread of

phenotype

Most genotype slightly

changed,
map to (nearly) original ellipse.
Some more diverse, new

(small) ellipses,
map to new phenotype ellipses.

W. B. Langdon 64

Genetic Programming Phenotype Convergence

Genotype continues to change

Phenotype converged

W. B. Langdon 65

GP Convergence Genotype Continue to Change

Some GP genotypes resist crossover and mutation more and

“breed true”. I.e. more of their offspring have the same

phenotype. If it is fit, these genotypes quickly dominates.

Population convergences to contain just the descendents of one

phenotype-genotype mapping (a bit like GA).

Genotype cluster does not stabilise but continues to evolve from

a single point. The population’s ancestor, i.e. the individual

program where most of its genetic material came from.

Since each fit child’s genotype tends to be bigger than its

parents there is a progressive increase in size, which we know

as bloat.

W. B. Langdon 66

What is Bloat

• Tendency for programs to increase in size without a

corresponding increase in fitness

• In the absence of counter measures always(?) happens

• Trees and linear

• Often size decrease in first 1..3 generations

• Steady increase (max, average, standard deviation) after

≈ 10 generations

• No limit to increase??

W. B. Langdon 67

Experimental Evidence

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45 50

P
ro

gr
am

 S
iz

e

Generations

GP Sextic Polynomial, 50 Runs

Mean, 50 runs

Size increase in most genera-

tions

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35 40 45 50

M
ea

n
E

rr
or

Generations

GP Sextic Polynomial, Representative Run

Best of Generation, run 108

No change in best fitness in

most generations

Smooth “average” curves conceal wide variation between runs.

Also wide variation within each population [Langdon et al.,

1999]

W. B. Langdon 68

Convergence of Phenotype

Sextic Polynomial, Phenotype of Best of Generation, Run 100

 10
 20

 30
 40

 50
Generations -1 -0.5 0 0.5 1

Input

-1

-0.5

 0

 0.5

 1Output

Plot of output of evolved program from a range of inputs

(excludes training points)

Note similarity of behaviour (i.e. phenotype) of nearby

generations

W. B. Langdon 69

Fitness Needed for Bloat

Expected change in frequency of a gene ∆q in the population
from one generation to the next = covariance of the gene’s
frequency in the original population with the number of
offspring z produced by individuals in that population, divided
by the average number of children z

∆q = Cov(z,q)
z

[Price, 1970]

Holds if genetic operations are random with respect to gene.

Applies to program size in GP with crossover and mutation
operators which have no size bias [Langdon et al., 1999]

With tournaments t, fitness is given by ranking r in the
population (of size p). If p� 1 [Price, 1970] can be
approximated:

E∆size ≈ t
zCov((r/p)t−1, size) [Langdon and Poli, 1998a]

W. B. Langdon 70

Covariance of Size and Fitness

-10

-5

0

5

10

15

20

25

30

35

40

-10 0 10 20 30 40 50

C
ha

ng
e

in
 m

ea
n

le
ng

th
 in

 n
ex

t g
en

er
at

io
n

Covariance

GP Sextic Polynomial, Mean of 50 Runs

 gen 1
 gen 4

 gen 14

 gen 22

gen 49
Covariance

Prediction

Covariance of fitness and program size gives change in mean
size from one generation to the next

Positive increase (e.g. bloat) requires positive covariance, i.e.
fitness variation in current generation

W. B. Langdon 71

Linear Increase in Depth (Standard Crossover)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

P
ro

gr
am

 D
ep

th

Generations

Evolution of Program Depth, Sextic Polynomial, Mean of 50 runs

Note on average linear growth in tree depth during bloat

(≈ 1 level per generation)

W. B. Langdon 72

Evolution of Shape

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

M
ea

n
P

ro
gr

am
 L

en
gt

h

Mean Program Depth

Mean of 50 GP Sextic polynomial regression runs. Plotted on top of Distribution of all Program Shapes
full 5% peak 95%

mean
Flajolet

minimal

Sextic Polynomial

Note movement from bushy (full) trees towards random trees

Note only bushy half of search space is used
W. B. Langdon 73

Sub-quadratic Growth in Binary Trees

• Predicted limt→∞ program size = O(t2)

• Measured bloat O(t1.2−1.5) t ≤ 50 generations

• Test O(t2) 600 generations, size 106

• Theory

• Experiments

• Conclusions

W. B. Langdon 74

Theory

• If program size� problem and fitness level dependent

threshold, distribution of fitness does not change with

length

• Above threshold, number of programs with fitness f of size

l is distributed ∝ total number of programs of size l

• Total number of programs grows exponentially with size

• Most programs are near mean depth = 2
√
π(internal nodes)

(ignoring terms O(N1/4) [Flajolet and Oldyzko, 1982], cf.

slide 73

W. B. Langdon 75

Rate of Bloat

• In a variety of problems linear increase in mean depth,

cf. slide 72 and [Daida et al., 2003]

∆depth = 0.5 . . .2.2 per generation

Variable between problems and individual runs

• If population remains near ridge, size can be predicted from

depth

– If limt→∞ depth ≈ 2
√
π bsize/2c

limt→∞ size = O(depth2) = O(gens2)

– Fitting a power law to ridge (50–500) yields

size = O(gens1.3)

W. B. Langdon 76

Experiments

• Hundreds of generations, size = million on rapidly bloating

populations

– continuous: symbolic regression quartic polynomial
[Koza, 1992]).

– Discrete: 6-multiplexer (binary function set)

64 fitness cases in parallel, submachine code GP [Poli

and Langdon, 1999]

W. B. Langdon 77

Quartic Symbolic Regression

Objective: Find a program that produces the given value of the quartic
polynomial x2(x+1)(x−1) = x4−x2 as its output when given
the value of the one independent variable, x, as input

Terminal set: x and 250 floating point constants chosen at random from
2001 numbers between -1.000 and +1.000

Functions set: + − × % (protected division)
Fitness cases: 10 random values of x from the range -1 . . . 1
Fitness: The mean, over the 10 fitness cases, of the absolute value

of the difference between the value returned by the program
and x4 − x2

Hits: The number of fitness cases (between 0 and 10) for which
the error is less than 0.01

Selection: Tournament group size of 7, non-elitist, generational
Wrapper: none
Pop Size: 50
Max program: 106 program nodes
Initial pop: Created using “ramped half-and-half” with depths between

8 and 5 (No uniqueness requirement)
Parameters: 90% one child crossover, no mutation. 90% of crossover

points selected at functions, remaining 10% selected uni-
formly between all nodes.

Termination: Maximum number of generations 600 or maximum size limit
exceeded

W. B. Langdon 78

Binary 6-Multiplexor

Objective: Find a Boolean function whose output is the

same as the Boolean 6 multiplexor function
Terminal set: D0 D1 D2 D3 A0 A1
Functions set: AND OR NAND NOR
Fitness cases: All the 26 combinations of the 6 Boolean argu-

ments
Fitness: number of correct answers
Selection: Tournament group size of 7, non-elitist, gener-

ational
Pop size: 500
Max program: 106 program nodes
Initial pop: Ramped half-and-half max depth between 2 and

6
Parameters: 90% one child crossover, no mutation. 90% of

crossover points selected at functions, remaining

10% selected uniformly between all nodes.
Termination: Maximum number of generations G = 50 or ex-

ceeding size limit

W. B. Langdon 79

Results: Continuous

• 9 of 10 bloat (1 trapped at local optima in generation 7)

At least 400 generations

3 runs reach 1,000,000 limit before 600 generations

In all runs most new generations do not find better fitness
I.e. changes in size and shape are due to bloat

• Each population close to the ridge and moves up it,

• Depth varies widely between runs. However mean of all ten
runs increases ≈ 2.4 levels per generation

• The size power law varies widely. On average starts near
1.0 (generations 12–50) and steadily rises to 1.9 (12–400).

W. B. Langdon 80

Evolution of Tree Shape: Quartic

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

M
ea

n
P

ro
gr

am
 L

en
gt

h

Mean Program Depth

Gen 0

102

Flajolet

Note log scales

W. B. Langdon 81

Mean Tree Depth: Quartic symbolic regression

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000

P
ro

gr
am

 D
ep

th

Number of Programs Created

Mean

W. B. Langdon 82

Evolution Power Law Coefficient: Quartic

-0.5

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000

M
ea

n
pr

og
ra

m
 s

iz
e

po
w

er
la

w
 fi

t

Number of Programs Created

 Mean
 Quadratic

Nine bloating runs. Error bars show standard error

W. B. Langdon 83

Results: Boolean Benchmark

• In all runs most new generations do not find better
programs

⇒ changes in size and shape are due to bloat

• On average each population evolves to lie close to the ridge
and moves along it, slide 85

• Mean population depth varies between runs but the mean
of all ten runs increases at about 0.6 levels per generation,
slide 86

• Power law coefficient of programs v. generations varies
widely between runs.

On average starts at 1.25 and rises. By the end of the runs
(generations 12–600) it reaches 1.5.

W. B. Langdon 84

Evolution of tree Shape: binary 6-multiplexor

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

M
ea

n
P

ro
gr

am
 L

en
gt

h

Mean Program Depth

Gen 0

Flajolet

Note log scales

W. B. Langdon 85

Evolution of tree Depth: binary 6-multiplexor

0

100

200

300

400

500

600

700

800

900

0 50000 100000 150000 200000 250000 300000

M
ea

n
P

ro
gr

am
 D

ep
th

Number of Programs Created

Mean

W. B. Langdon 86

Evolution of power law coefficient:

binary 6-multiplexor

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 50000 100000 150000 200000 250000 300000

M
ea

n
pr

og
ra

m
 s

iz
e

po
w

er
la

w
 fi

t

Number of Programs Created

 Mean

Error bars indicate standard error
W. B. Langdon 87

Why Quadratic Limit is Not Reached

• Standard crossover may cease to be disruptive when the

programs become very large

• In 6-multiplexor there are whole generations when every

program in the population has the same fitness

• Therefore the selection pressure driving bloat falls as the

populations grow in length. Cf. slide 70 and [McPhee and

Poli, 2001].

Which is why the quadratic limit is not reached

W. B. Langdon 88

Evolution of Selection: binary 6-multiplexor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

P
ec

en
ta

ge
 R

an
do

m
 T

ou
rn

am
en

ts

Number of Programs Created

Fraction of tournaments where all 7 candidates have the same
fitness (smoothed)
W. B. Langdon 89

Discussion

• Ridge divides search space in half. In fact the region
searched is much less than 50% [Daida et al., 2003].

• Can predict when program size or depth restrictions will be
effective

In practise limits are quickly reached

but may be beneficial in some problems

Even Parity v. Santa Fe artificial ant

• Other genetic operators and non-tree GP have different
bloat behaviour

• Benchmarks here simple but subtree crossover ineffective
on programs of 106

Many smaller trees? Different genetic operators?

W. B. Langdon 90

Bloat Conclusions

• Bloat explained as evolution towards popular tree shapes
Subtree crossover leads to growing ≈ 1 level per generation

• Predict average evolution of size, depth and shape

Continuous limg→∞mean size = O(generations2.0)
Discrete mean size ≤ O(generations2.0)

(Wide variation in population and between runs)

New type of GP fitness convergence in discrete case

Memory O(gens1.2−2.0) or ≤ O(gens) (DAGs)
Run time O(gens2.2−3.0) or = O(gens2.0) (DAG caches)

• Understanding bloat provides insights into GP dynamics
Understand GP biases ; new operators, better biases

• GP theory developed, tested, Works! (in part)

W. B. Langdon 91

Conclusions

• Foundations of Genetic Programming covers many other

topics

• Fitness Landscapes metaphor

• Fitness search space convergence

• Santa Fe Ant. GA hard, no regularities?

• Max. Qualitative prediction

• Bloat. Manifestation of GP convergence (of phenotype)

Sub-quadratic growth predicted and tested

W. B. Langdon 92

http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english

[Angeline, 1994] Peter John Angeline.
Genetic programming and emergent
intelligence. In Kenneth E. Kinnear, Jr.,
editor, Advances in Genetic Programming,
chapter 4, pages 75–98. MIT Press, 1994.

[Angeline, 1998] Peter J. Angeline. Subtree
crossover causes bloat. In John R. Koza,
Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max H. Garzon, David E.
Goldberg, Hitoshi Iba, and Rick Riolo,
editors, Genetic Programming 1998:
Proceedings of the Third Annual
Conference, pages 745–752, University of
Wisconsin, Madison, Wisconsin, USA,
22-25 July 1998. Morgan Kaufmann.

[Blickle, 1996] Tobias Blickle. Evolving
compact solutions in genetic
programming: A case study. In
Hans-Michael Voigt, Werner Ebeling, Ingo
Rechenberg, and Hans-Paul Schwefel,
editors, Parallel Problem Solving From
Nature IV. Proceedings of the
International Conference on Evolutionary
Computation, volume 1141 of LNCS,
pages 564–573, Berlin, Germany, 22-26
September 1996. Springer-Verlag.

[Chellapilla, 1997] Kumar Chellapilla.
Evolutionary programming with tree

mutations: Evolving computer programs
without crossover. In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max Garzon, Hitoshi Iba, and
Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the
Second Annual Conference, pages
431–438, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

[Christensen and Oppacher, 2002] Steffen
Christensen and Franz Oppacher. An
analysis of Koza’s computational effort
statistic for genetic programming. In
James A. Foster, Evelyne Lutton, Julian
Miller, Conor Ryan, and Andrea G. B.
Tettamanzi, editors, Genetic
Programming, Proceedings of the 5th
European Conference, EuroGP 2002,
volume 2278 of LNCS, pages 182–191,
Kinsale, Ireland, 3-5 April 2002.
Springer-Verlag.

[Daida et al., 2003] Jason M. Daida,
Adam M. Hilss, David J. Ward, and
Stephen L. Long. Visualizing tree
structures in genetic programming. In
E. Cantú-Paz, J. A. Foster, K. Deb,
D. Davis, R. Roy, U.-M. O’Reilly, H.-G.
Beyer, R. Standish, G. Kendall, S. Wilson,
M. Harman, J. Wegener, D. Dasgupta,

W. B. Langdon 93

http://www.natural-selection.com/Library/1994/aigp.ps.Z

M. A. Potter, A. C. Schultz, K. Dowsland,
N. Jonoska, and J. Miller, editors, Genetic
and Evolutionary Computation –
GECCO-2003, volume 2724 of LNCS,
pages 1652–1664, Chicago, 12-16 July
2003. Springer-Verlag.

[Ehrenburg, 1996] Herman Ehrenburg.
Improved direct acyclic graph handling
and the combine operator in genetic
programming. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual
Conference, pages 285–291, Stanford
University, CA, USA, 28–31 July 1996.
MIT Press.

[Ekart and Nemeth, 2001] Aniko Ekart and
S. Z. Nemeth. Selection based on the
pareto nondomination criterion for
controlling code growth in genetic
programming. Genetic Programming and
Evolvable Machines, 2(1):61–73, March
2001.

[Feller, 1970] William Feller. An
Introduction to Probability Theory and Its
Applications, volume 1. Wiley, 3rd edition,
1970.

[Flajolet and Oldyzko, 1982] Philippe
Flajolet and Andrew Oldyzko. The
average height of binary trees and other
simple trees. Journal of Computer and
System Sciences, 25:171–213, 1982.

[Gathercole and Ross, 1996] Chris
Gathercole and Peter Ross. An adverse
interaction between crossover and
restricted tree depth in genetic
programming. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual
Conference, pages 291–296, Stanford
University, CA, USA, 28–31 July 1996.
MIT Press.

[Handley, 1994] S. Handley. On the use of a
directed acyclic graph to represent a
population of computer programs. In
Proceedings of the 1994 IEEE World
Congress on Computational Intelligence,
pages 154–159, Orlando, Florida, USA,
27-29 June 1994. IEEE Press.

[Hooper and Flann, 1996] Dale Hooper and
Nicholas S. Flann. Improving the accuracy
and robustness of genetic programming
through expression simplification. In
John R. Koza, David E. Goldberg,

W. B. Langdon 94

http://dx.doi.org/10.1023/A:1010070616149
http://dx.doi.org/10.1023/A:1010070616149

David B. Fogel, and Rick L. Riolo, editors,
Genetic Programming 1996: Proceedings
of the First Annual Conference, page 428,
Stanford University, CA, USA, 28–31 July
1996. MIT Press.

[Iba et al., 1994] Hitoshi Iba, Hugo de Garis,
and Taisuke Sato. Genetic programming
using a minimum description length
principle. In Kenneth E. Kinnear, Jr.,
editor, Advances in Genetic Programming,
chapter 12, pages 265–284. MIT Press,
1994.

[Keijzer, 1996] Maarten Keijzer. Efficiently
representing populations in genetic
programming. In Peter J. Angeline and
K. E. Kinnear, Jr., editors, Advances in
Genetic Programming 2, chapter 13,
pages 259–278. MIT Press, Cambridge,
MA, USA, 1996.

[Kinnear, Jr., 1993] Kenneth E. Kinnear, Jr.
Evolving a sort: Lessons in genetic
programming. In Proceedings of the 1993
International Conference on Neural
Networks, volume 2, pages 881–888, San
Francisco, USA, 28 March-1 April 1993.
IEEE Press.

[Kinnear, Jr., 1994] Kenneth E. Kinnear, Jr.
Alternatives in automatic function

definition: A comparison of performance.
In Kenneth E. Kinnear, Jr., editor,
Advances in Genetic Programming,
chapter 6, pages 119–141. MIT Press,
1994.

[Koza, 1992] John R. Koza. Genetic
Programming: On the Programming of
Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA, 1992.

[Koza, 1994] John R. Koza. Genetic
Programming II: Automatic Discovery of
Reusable Programs. MIT Press,
Cambridge Massachusetts, May 1994.

[Langdon and Nordin, 2000] W. B. Langdon
and J. P. Nordin. Seeding GP
populations. In Riccardo Poli, Wolfgang
Banzhaf, William B. Langdon, Julian F.
Miller, Peter Nordin, and Terence C.
Fogarty, editors, Genetic Programming,
Proceedings of EuroGP’2000, volume
1802 of LNCS, pages 304–315,
Edinburgh, 15-16 April 2000.
Springer-Verlag.

[Langdon and Poli, 1997a] W. B. Langdon
and R. Poli. An analysis of the MAX
problem in genetic programming. In
John R. Koza, Kalyanmoy Deb, Marco

W. B. Langdon 95

http://ieeexplore.ieee.org/iel3/1059/7404/00298674.pdf?isNumber=7404
ftp://cs.ucl.ac.uk/genetic/papers/WBL_eurogp2000_seed.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/WBL_eurogp2000_seed.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/papers/WBL.max_gp97.ps
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/papers/WBL.max_gp97.ps

Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors,
Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages
222–230, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

[Langdon and Poli, 1997b] W. B. Langdon
and R. Poli. Fitness causes bloat. In P. K.
Chawdhry, R. Roy, and R. K. Pant,
editors, Soft Computing in Engineering
Design and Manufacturing, pages 13–22.
Springer-Verlag London, 23-27 June 1997.

[Langdon and Poli, 1998a] W. B. Langdon
and R. Poli. Fitness causes bloat:
Mutation. In Wolfgang Banzhaf, Riccardo
Poli, Marc Schoenauer, and Terence C.
Fogarty, editors, Proceedings of the First
European Workshop on Genetic
Programming, volume 1391 of LNCS,
pages 37–48, Paris, 14-15 April 1998.
Springer-Verlag.

[Langdon and Poli, 1998b] W. B. Langdon
and R. Poli. Genetic programming bloat
with dynamic fitness. In Wolfgang
Banzhaf, Riccardo Poli, Marc Schoenauer,
and Terence C. Fogarty, editors,
Proceedings of the First European
Workshop on Genetic Programming,

volume 1391 of LNCS, pages 96–112,
Paris, 14-15 April 1998. Springer-Verlag.

[Langdon and Poli, 1998c] W. B. Langdon
and R. Poli. Why ants are hard. In
John R. Koza, Wolfgang Banzhaf, Kumar
Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick
Riolo, editors, Genetic Programming
1998: Proceedings of the Third Annual
Conference, pages 193–201, University of
Wisconsin, Madison, Wisconsin, USA,
22-25 July 1998. Morgan Kaufmann.

[Langdon and Poli, 2002] W. B. Langdon
and Riccardo Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

[Langdon et al., 1999] William B. Langdon,
Terry Soule, Riccardo Poli, and James A.
Foster. The evolution of size and shape.
In Lee Spector, William B. Langdon,
Una-May O’Reilly, and Peter J. Angeline,
editors, Advances in Genetic Programming
3, chapter 8, pages 163–190. MIT Press,
Cambridge, MA, USA, June 1999.

[Langdon, 1998a] W. B. Langdon. The
evolution of size in variable length
representations. In 1998 IEEE

W. B. Langdon 96

http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/papers/WBL.wcci98_bloat.ps.gz

International Conference on Evolutionary
Computation, pages 633–638, Anchorage,
Alaska, USA, 5-9 May 1998. IEEE Press.

[Langdon, 1998b] William B. Langdon.
Genetic Programming and Data
Structures: Genetic Programming + Data
Structures = Automatic Programming!,
volume 1 of Genetic Programming.
Kluwer, Boston, 24 April 1998.

[Langdon, 1999] W. B. Langdon. Scaling of
program tree fitness spaces. Evolutionary
Computation, 7(4):399–428, Winter
1999.

[Langdon, 2000] William B. Langdon. Size
fair and homologous tree genetic
programming crossovers. Genetic
Programming and Evolvable Machines,
1(1/2):95–119, April 2000.

[Langdon, 2002] W. B. Langdon.
Convergence rates for the distribution of
program outputs. In W. B. Langdon,
E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors,
GECCO 2002: Proceedings of the

Genetic and Evolutionary Computation
Conference, pages 812–819, New York,
9-13 July 2002. Morgan Kaufmann
Publishers.

[Langdon, 2003a] W. B. Langdon.
Convergence of program fitness
landscapes. In E. Cantú-Paz, J. A. Foster,
K. Deb, D. Davis, R. Roy, U.-M. O’Reilly,
H.-G. Beyer, R. Standish, G. Kendall,
S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C.
Schultz, K. Dowsland, N. Jonoska, and
J. Miller, editors, Genetic and
Evolutionary Computation –
GECCO-2003, volume 2724 of LNCS,
pages 1702–1714, Chicago, 12-16 July
2003. Springer-Verlag.

[Langdon, 2003b] W. B. Langdon. The
distribution of reversible functions is
Normal. In Rick L. Riolo and Bill Worzel,
editors, Genetic Programming Theory and
Practise, chapter 11, pages 173–188.
Kluwer, 2003.

[Langdon, 2003c] W. B. Langdon. How
many good programs are there? How long
are they? In Kenneth A. De Jong,
Riccardo Poli, and Jonathan E. Rowe,
editors, Foundations of Genetic

W. B. Langdon 97

http://www.wkap.nl/prod/b/0-7923-8135-1
ftp://cs.ucl.ac.uk/genetic/papers/WBL.fitnessspaces.ps.gz
http://dx.doi.org/10.1023/A:1010024515191
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2003.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_reversible.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_foga2002.pdf

Algorithms VII, pages 183–202,
Torremolinos, Spain, 4-6 September 2003.
Morgan Kaufmann.

[Langdon, 2004] W. B. Langdon. Global
distributed evolution of L-systems
fractals. In Maarten Keijzer, Una-May
O’Reilly, Simon M. Lucas, Ernesto Costa,
and Terence Soule, editors, Genetic
Programming, Proceedings of
EuroGP’2004, volume 3003 of LNCS,
pages 349–358, Coimbra, Portugal, 5-7
April 2004. Springer-Verlag.

[Luke, 2003] Sean Luke. Modification point
depth and genome growth in genetic
programming. Evolutionary Computation,
11(1):67–106, 2003.

[McPhee and Miller, 1995] Nicholas Freitag
McPhee and Justin Darwin Miller.
Accurate replication in genetic
programming. In L. Eshelman, editor,
Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95),
pages 303–309, Pittsburgh, PA, USA,
15-19 July 1995. Morgan Kaufmann.

[McPhee and Poli, 2001] Nicholas Freitag
McPhee and Riccardo Poli. A schema
theory analysis of the evolution of size in

genetic programming with linear
representations. In Julian F. Miller, Marco
Tomassini, Pier Luca Lanzi, Conor Ryan,
Andrea G. B. Tettamanzi, and William B.
Langdon, editors, Genetic Programming,
Proceedings of EuroGP’2001, volume
2038 of LNCS, pages 108–125, Lake
Como, Italy, 18-20 April 2001.
Springer-Verlag.

[Nordin and Banzhaf, 1995] Peter Nordin
and Wolfgang Banzhaf. Complexity
compression and evolution. In
L. Eshelman, editor, Genetic Algorithms:
Proceedings of the Sixth International
Conference (ICGA95), pages 310–317,
Pittsburgh, PA, USA, 15-19 July 1995.
Morgan Kaufmann.

[Poli and Langdon, 1999] Riccardo Poli and
William B. Langdon. Sub-machine-code
genetic programming. In Lee Spector,
William B. Langdon, Una-May O’Reilly,
and Peter J. Angeline, editors, Advances
in Genetic Programming 3, chapter 13,
pages 301–323. MIT Press, Cambridge,
MA, USA, June 1999.

[Price, 1970] George R. Price. Selection and
covariance. Nature, 227, August
1:520–521, 1970.

W. B. Langdon 98

http://www.cs.ucl.ac.uk/staff/W.Langdon/pfeiffer.html
ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/icga95-1.ps.gz
ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/icga95-1.ps.gz

[Reeves and Rowe, 2003] Colin R. Reeves
and Jonathan E. Rowe. Genetic
Algorithms–Principles and Perspectives: A
Guide to GA Theory. Kluwer Academic
Publishers, 2003.

[Rosca, 1997] Justinian P. Rosca. Analysis
of complexity drift in genetic
programming. In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max Garzon, Hitoshi Iba, and
Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the
Second Annual Conference, pages
286–294, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

[Smith and Harries, 1998] Peter W. H.
Smith and Kim Harries. Code growth,
explicitly defined introns, and alternative
selection schemes. Evolutionary
Computation, 6(4):339–360, Winter
1998.

[Soule and Foster, 1997] Terence Soule and
James A. Foster. Code size and depth
flows in genetic programming. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the

Second Annual Conference, pages
313–320, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

[Soule and Foster, 1998] Terence Soule and
James A. Foster. Effects of code growth
and parsimony pressure on populations in
genetic programming. Evolutionary
Computation, 6(4):293–309, Winter
1998.

[Soule and Heckendorn, 2002] Terence
Soule and Robert B. Heckendorn. An
analysis of the causes of code growth in
genetic programming. Genetic
Programming and Evolvable Machines,
3(3):283–309, September 2002.

[Zhang and Mühlenbein, 1995] Byoung-Tak
Zhang and Heinz Mühlenbein. Balancing
accuracy and parsimony in genetic
programming. Evolutionary Computation,
3(1):17–38, 1995.

[Zhang and Mühlenbein, 1996] Byoung-Tak
Zhang and Heinz Mühlenbein. Adaptive
fitness functions for dynamic
growing/pruning of program trees. In
Peter J. Angeline and K. E. Kinnear, Jr.,
editors, Advances in Genetic Programming

W. B. Langdon 99

http://dx.doi.org/10.1023/A:1020115409250
http://dx.doi.org/10.1023/A:1020115409250

2, chapter 12, pages 241–256. MIT Press,
Cambridge, MA, USA, 1996.

[Zhang, 1997] Byoung-Tak Zhang. A
taxonomy of control schemes for genetic
code growth. Position paper at the
Workshop on Evolutionary Computation
with Variable Size Representation at
ICGA-97, 20 July 1997.

W. B. Langdon 100

