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Overview

In theory, there is no difference between 
theory and practice. In practice, there is.
- Jan L.A. van de Snepscheut

• Evolutionary Computing and the business model
• Implementation guidelines
• Integrate & Conquer
• Key application areas
• Open issues
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Academic vs. industrial data analysis

Transfer data into knowledge Transfer data into value
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Special Features of Industrial Data Analysis 1

Operators intervention Curse of closed loops

The majority of process variables 
are in closed loops and depend on 

controller adjustmentsOperators manually 
modify the process

It’s the context, 
stupid!
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Special Features of Industrial Data Analysis 2

Multiple time scales Real-time pressure

Time scales vary from 
milliseconds to months

Data analysis must be explained clearly

Most of models operate 
in real timeProcess engineers 

prefer to have a generic 
understanding of data 
analysis approaches 

they use
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Economic advantage of data-driven models

143.0 ppm

Empirical models are
often at the economic optimum

($50-70K)

Key issue:
Models credibility
i.e. consistently 

accurate predictions 
according to 

expected physics of 
the process

Expensive hardware analyzers
($100-250K)

More expensive fundamental 
Models ($250-500K)

Short longevity
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Intelligent Systems in Industrial Data Analysis:
Lessons From the Past

The Expert Systems campaign (late 80s)
“We’ll put engineers in the box”

• static rule-based models not linked to 
numerical world

• the politics of knowledge acquisition

• the efforts of knowledge acquisition

The Neural Networks campaign (early 90s)
“We’ll turn data into gold”

• black-box models with inefficient 
structure

• fragile models and model validation

• maintenance nightmare
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Application Issues in the Chemical Industry

• High dimensionality of the data
• Highly correlated data with time delays
• Outlier detection
• Multiple optima
• Intensive number crunching needed
• Too much or too little data

– Often sparse, or “statistically insignificant” instances, 
but at the same time, physically meaningful or 
commercially viable

– Often lots of redundant data
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Industrial data analysis components

The role of evolutionary 
computing (symbolic 
regression)  is to …

– Facilitate physical/mechanism 
insight and understanding

– Summarize data behavior
– Identify data transforms and 

metasensors
– Perform variable selection
– Enable response surface 

exploration and optimization
– Visualize behavior in the form 

of a symbolic expression
The overall goal is to achieve 
speed, accuracy & efficiency. 
Symbolic regression is part of 
an integrated methodology.
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Selected Evolutionary Computing Approaches
(used in industrial applications at Dow Chemical)

• Applied EC approaches
– Genetic Programming for Symbolic Regression
– Particle Swarm Optimization
– Genetic Algorithms

• Auxiliary Technologies
– Neural Networks
– Support Vector Machines (for regression)
– Context + Experts + Statistics + Physics
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Why industry needs Evolutionary Computing?
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Technical issues with Evolutionary Computing

Typical size for 
undesigned data is

~30 variables x ~1000 data points



13

Economic benefits from Evolutionary Computing

• Resolve complex optimization problems (PSO/GA)
• Physical Interpretation & Insight (Symbolic Regression)

– Suggestions for profitable directions for research/sensors/etc.
– Accelerate research & development
– Higher credibility in comparison to black-boxes

• Reduce model development cost
– Significantly reduced development time relative to alternatives

• Reduce model exploitation cost
– Minimal model implementation cost (no need for specialized 

software)
– Reduced maintenance cost (less frequent re-training)

• Reduce cost of industrial experiments
– Minimizes the number of additional experiments
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Benefits of integrating Evolutionary Computing 
with other approaches
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Application areas with impact

Focus  Data Gathering
Identify  Variables
which drive system

Convert  into  less
nonlinear  problem

Meaningful
Combinations

Insight  into  System

Coarse  Optimization

System  Modeling

Online  Monitoring
& Alarm

Infer  System  States

Explore  Multivariate
Relationships

Cues to Physical
Mechanisms

Understand  Variable
Relationships

Model  Discrimination  DOE

Nonlinear
DOE Variable

Sensitivity

Variable
Transforms

Emulators

Inferential
Sensors

Research
Acceleration

Industrial
Applications
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Implementation guidelines

• Requirements for successful empirical 
modeling

• Key issues to be overcome
• Implementation strategy
• Implementation tools
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Requirements for successful data-driven modeling

Objective function:
Minimizing modeling cost and maximizing data analysis efficiency

under broad range of operating conditions

The  total  cost-of -ownership
(development  + operation  +
maintenance)  is proper

humans  are able  to agree
that  the  model  is "reasonable"

ability  to estimate
quality  of predictions

ability  to operate
outside  training  range

ability  to withstand  minor
changes  in targeted  system

the model  matches
the observed  behavior

Cost-Effective Interpretability

Self-Assessment

Extrapolations

Robustness

CredibilityGood
Model

Aspects
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Key issues to overcome
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Implementation strategy

Define business opportunities

Evaluate/introduce new emerging
technology

Define implementation methodology

Demonstrate potential in small 
scale projects

Improve/leverage methodology

Apply on large scale projects
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Implementation tools
• MATLAB (Dow developed)

– GA
– GP
– PSO (single objective and multi-objective)
– Analytic neural networks
– Support vector machines

• Mathematica (Dow developed)
– Symbolic regression package
– AutoAnalysisTools
– Analytic neural networks
– PSO
– Group Methods of Data Handling (GMDH)

• Tools for model distribution
– Delphi
– Web Mathematica
– Excel
– Process control systems
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Exploitation/Implementation Sequence of 
Computational Intelligence Approaches in Dow 

Chemical

1990 1995 2000

Integrated 
methodology

Classical NN GA/GP

Analytic NN SVM PSO
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Integrate & Conquer

• Integrated methodology for 
successful EC implementation

• Related approaches
• A case study
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Integrated Methodology 
Problem & success definition

Data preprocessing and classification 

Variable selection

Data condensation

Model generation

Model selection & combination

Model validation 

Model exploitation

Model maintenance & support

Statistics

Analytic neural networks

Support Vector Machines

Genetic Programming

Statistics

Pareto front, boosting
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Integrated  Methodology for Empirical Models Development

• Hybrid approach integrating multiple 
technologies exploits the strengths of 
each

• Advantages:
– Fast development (days)
– Robust performance (compact 

models)
– Direct implementation in any 

Distributed Control System (no 
need for specialized software)

– Very low capital cost (only if 
hardware for data collection is 
unavailable)

– Low average cost of ownership 
(reduced development and 
maintenance cost)

– Process engineers like it (preferable 
to black-box models)

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generation

Support Vector Machines

Symbolic regression
Functional solutions selection

Genetic Programming

Full data set

Reduced 
inputs
data

Condens
ed data 

Y = f(x) Selected on Pareto
front

Original spreadsheet
50 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 120 data 

points

Final model
Analytical function
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Steps Based on Analytic Neural Nets

Outlier detection and data set condensation

GP function generation
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Eliminated inputs

Nonlinear model can be build 
only with most sensitive inputs

Convolution function maximum
is at the time delay

Representative data collection 

Data preprocessing and classification 

NN sensitivity analysis of all inputs

Convolution parameters’ estimation

Analytical function selection/verification

On-line implementation

Objective: to supply GP with clean, informative, and
parsimonious data set

Model maintenance
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Structural difference between classical 
and analytic neural networks
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Classical NN Analytical NN
An additional link between inputs 
Xi and the output Y is introduced

Hidden nodes calculation
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Key idea behind analytic neural networks
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Unique least-squares solutions for bi and ci
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Key technique for input-to-hidden layer initialization

Z1
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The “temperature” 
depends also on the 

number of inputs to the 
hidden node
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Empirical expression for a 
normalized “temperature” of a 

sigmoid function

Weights from the input-to-hidden layer are 
Sampled from a normal distribution 
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Analytic Neural Network Benefits

• Robust algorithm
– No tunable parameters
– One global optimum

• Very fast, 
– possible to use a whole range of cross-validation principles 

from statistics
– No longer an NP-complete problem

• Strong theoretical foundation
– statistical learning theory
– Direct measure for the model capacity (VC-dimension)
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Stacked Analytic Neural Nets (SANN)
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• Fast development
• Diverse subnet consensus 

indicator of model output 
quality

• Allows explicit calculations of 
input/output sensitivity

• Can handle time-delayed 
inputs by convolution 
functions

• Gives more reliable 
estimates based on multiple 
models statistics

Internally developed in Dow Chemical
by Guido Smits
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An example of stacked analytical NN application -
a model for catalyst efficiency
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various process 
parameters on

catalyst efficiency
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Steps Based on Support Vector Machines

Data compression 
(industrial data from a chemical reactor)

Only 40% of data used

Representative data collection 

Data preprocessing and classification 

NN sensitivity analysis of all inputs

Convolution parameters’ estimation

Outlier detection and data set condensation

GP function generation

Analytical function selection/verification

On-line implementation

Model maintenance

Reliable outlier
detection
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Support Vector Machines

1+=iy

1−=iy

optimal hyperplane

w

Advantages
• Solid theoretical basis => 

Statistical Learning Theory
• Model building is based on 

global optimum
• Explicit control over model 

complexity

Issues
• ad hoc Kernel selection
• Complex theory
• No commercial software
• Computationally intensive

Key to robust modeling

Support vector

Only 3 support vectors needed
to define optimal  hyperplane

Support vector

Support vector
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The generic scheme of SVM

Nonlinear transformations based on 
support vectors: x1, x2, …, xN

Weights α1, α2 … αN

Decision rule based on weights 
and support vectors

Input vector: xi, i = 1, 2, …, λ
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Support Vector Machines and Neural Networks

L

L

Neural Network

Feature space

Input space

Optimal hyperplane
in feature space

Support Vector Machine
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VC-dimension

• In general, VC-dimension does not 
coincide with the number of parameters 
(can be larger or smaller)

• VC-dimension of the set of functions is 
responsible for the generalization ability 
of learning machines 

• Opens remarkable opportunities to 
overcome the “curse of dimensionality” 
(large number of parameters, but low VC-
dimension)
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Structural Risk Minimization Principle

1h nh∗h h
Empirical 
Risk

Guaranteed 
Risk
Generalization 
ability

underfitting -- overfitting

(VC-dimension)

In case of polynomial kernel h is 
the polynomial order
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Structural Risk Minimization Principle

• Trade-off between quality of approximation of the given 
data and the complexity of the approximating function.

• The VC-dimension is now a controlling variable
• Chooses the set of functions with the lowest VC-

dimension for which minimizing the empirical  risk gives 
the best bound on the actual risk.

• Minimize
)()()( emp hRR lΦ+≤ αα

Prediction error
Complexity

Where α is the model parameter of interest,  l is the sample size 
and h is the complexity measure 
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Structural Risk Minimization in learning algorithms

• Keep fixed, minimize
- Neural Networks

• Keep fixed, minimize 
- Support Vector Machines

)(emp αR)( h
lΦ

)(emp αR )( h
lΦ

Neural Networks and Support Vector Machines are 
two sides of  the same coin
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SVM for Regression: Constructing a tube
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Insensitive zone (tuning 
parameter)
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Generalization capabilities of SVM based on mixed 
kernels 

Training range

Support Vector Machine 
model based on

mixed polynomial and 
RBF kernels

Impressive generalization 
50% outside the  training 

range!

Data set from a chemical 
reactor  inferential 

sensor
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Genetic Programming

• Based on artificial evolution of 
millions of potential nonlinear 
functions => survival of the 
fittest

• Many possible solutions with 
different levels of complexity

• The final result is an explicit 
nonlinear function 

• Better generalization capabilities 
than neural nets

• Low implementation 
requirements 

• Time delays
• Sensitivity analysis of large data 

sets
• Relatively slow (several hours of 

computational time)

Genome Tree Plots

Example of Crossover 
Operation

Parents

Children

Parents

Phenotypes (Expressions)
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Steps Based on Genetic Programming

Representative data collection 

Data preprocessing and classification 

NN sensitivity analysis of all inputs

Convolution parameters’ estimation

Outlier detection and data set condensation

GP function generation

Analytical function selection/verification

On-line implementation

Model maintenance
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Problem 1: Where are the Building Blocks in GP?
Does the Schema Theorem apply?

- We are working with dynamic structures that can arbitrarily grow in size.
- We’re doing Empirical Risk Minimization on a small subset of the                        
available information (we ignore all the sub equations).
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Problem 2: How do we make sure the Structural Risk 
Minimization Principle Applies?

• SRM = Trade-off between quality of 
approximation of the given data en the 
complexity of the approximating function.

• Can we determine something like the VC-
dimension for an arbitrary tree-structure?

• Can we choose the set of functions with the 
lowest VC-dimension for which minimizing the 
empirical  risk gives the best bound on the 
actual risk?

• Minimize )()()( emp hRR lΦ+≤ αα
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New Approach to GP: 
Optimize the Pareto front of Fitness vs. Complexity 

instead of just Fitness.
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All sub-equations are also taken
into account.  This results in effective 
population sizes of a few thousand 
instead of a few hundred with no 
additional computational cost.
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Pareto Optimality

Sx∈ )()( *xfxf ii ≤
ki ,,1K=

such that 
and )()( *xfxf jj <

Sx ∈* is Pareto optimal if there does not 

exist another
A decision vector

for all

for at least one index j.

2f

1f

Objective space

 Pareto front

Z

)( *xf

Task in (Multi-Objective
Optimization Problem- MOOP):
Determine the Pareto front
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The Standard GP is Extended with an Archive

Archive (t) =  set of best equations found so far during the run 

=  best estimate of the Pareto front

)population  thefrom equations (Initial   Archive(0) Best=

) population  theoft paretofronCurrent   )(Archive(t1)Archive(t U  Best   =+

1f

2f

Pareto front

Archive 

Population
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Crossover only occurs between the Members of 
the Population and the Archive
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Population Archive
- This ensures very quick propagation of the building blocks through the population.
- Population Diversity is always high by construction.
Both features result in a much more effective exploration of the function space.
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Post run Analysis is much faster 
(The focus is on the Pareto Front Population)

All equations on the Pareto 
front in increasing order of 
complexity and fitness
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Advantages of Pareto-front GP

• Initial results indicate 10-100 times increased 
efficiency vs. conventional GP.

• Building Blocks (Transforms) are generated 
automatically.

• Effective population sizes are much higher with 
no additional computational cost.

• The post-run Analysis is much faster – Only the 
functions in the Archive need to be inspected.

• No need anymore for multiple runs with different 
levels of parsimony control.
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Particle swarm optimization

At each time step t
For each particle i

Update the position change (velocity)

Then move )1()()1( ++=+ tVtXtX iii

+⋅=+ )( ()1( tVtV ii χ ))()(( )1,0(1 tXtPrandc ii −⋅⋅

))()(()1,0(2 tXtPrandc ig −⋅⋅+

Global best

Local best

Local best

An efficient technique to find the global optimum 
for model inversion and non-linear parameter estimation

χ,, 21 cc
Note: - stochastic component

default values (2.05, 2.05, 0.73)- parameters
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Particle’s Movement – A Compromise

Current 
position!

Personal best 
position

Global best 
position

New position!

)(tXi

)1( +tXi

)(tPbest i

)(tGbesti

)(tVi
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Software tools 
Representative data collection 

Data preprocessing and classification 

NN sensitivity analysis of all inputs

Convolution parameters’ estimation

Outlier detection and data set condensation

GP function generation

Analytical function selection/verification

On-line implementation

Model  maintenance

MATLAB Toolbox

MATLAB &MATHEMATICA Toolboxes

DAP, Cave, IP21

DAP, Cave, IP21

Excel, JMP, SIMCA,
Mathematica

MATLAB, Excel

G2, MOD, IP21
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Case Study: Inferential Sensors

143.0 ppm

Training
data

Inferential Sensors
Development Software

Simple
formulas

Easy On-Line
implementation

Inferential Sensor
An empirical model based on 

analytical equations with built-
in self-assessment capability

Key objective:
To predict difficult-to-measure 

parameter (melt index) from easy-
to-measure data (temperature, 

pressure, flow, etc.)
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Issues with neural net-based inferential sensors
Issues with existing neural net-based inferential sensors:
- High sensitivity to process changes
- Frequent re-training
- Complicated development & maintenance
- Low survival rate after 3 years in operation
- Engineers hate black-boxes

Black box Analytical expression

Directly coded into 
most on-line systems

Specialized run-time
software
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Inferential sensor for emission monitoring: A case study 
Data Collection

8 inputs

143.0 ppm

251 training data 
points

Design Of ExperimentsChemical
Process

VOC

107 test data points
(~140% outside training range)

Emission
variable
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Inferential sensor for emission monitoring: A case study 
Sensitivity analysis by SANN

Input x3 
removed after 
first sequence

Input x7 
removed after 

second 
sequence

Input x6 has the 
strongest 

sensitivity

A NN with 4 inputs: x2, x5, x6, 
and x8 is selected after discussion 

with process engineers
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Inferential sensor for emission monitoring: A case 
study (SANN model performance)  

Reduced number of inputs 
from 8 to 4  

Bad extrapolation
(test data is 140% outside 
the range of training data)

Model based on 30 stacked  NN
with 10 neurons in hidden layer

Fast test of the hypothesis about
potential nonlinear relationship

(in 20-30 min)  
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Inferential sensor for emission monitoring: A case 
study (SVM parameters)

Parameters:
% support vectors: 10
C = 106

Mixed Kernels: Polynomial and RBF
Range of Polynomial kernels: 1-3
Range of RBF kernel: 0.25-0.75
Range of ratio 0.5 – 0.99
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Inferential sensor for emission monitoring: A case study 
(SVM model performance)

Model based on a mixture of 2nd order
polynomial global kernel and RBF local kernel

with width of 0.5 and ratio of 0.95

Impressive extrapolation
(test data is 140% outside 
the range of training data)

Reduced number of training data points 
from 251 to 34 (based on support vectors)
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Inferential sensor for emission monitoring: A case 
study (GP parameters)

Parameters for a GP simulated evolution

Reference data                         :34  
Random subset selection [%]            :100
Number of runs                         :20
Population size                        :500
Number of generations                  :100
Probability for function as next node  :0.6
Optimization function                  :Corr.Coef
Parsimony pressure                     :0.1
Prob. for random vs guided crossover   :0.5
Probability for mutation of terminals  :0.3
Probability for mutation of functions  :0.3
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Inferential sensor for emission monitoring: 
A case study 

(Selected symbolic regression model)

Simple expression with acceptable 
performance (R2 = 0.87)

Response surface of model 
according to process 

physics

Selected model on Pareto 
front



64

Inferential sensor for emission monitoring: 
A case study 

(Final solution: Stacked Symbolic Regression model)

In operation since August 
2001

Model based on 8 Stacked 
Symbolic Predictors

Shorter evolutionary process based 
on 8.44% of the original training

data set
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Key application areas

Robust Inferential Sensors
Mass-scale on-line empirical models

Automated Operating Discipline
Consistent intelligent on-line supervision

Empirical Emulators of Fundamental Models
Effective on-line process optimization

Fundamental model building based on GP
Accelerated new product development

Nonlinear DOE based on GP
Minimizing expensive process experiments
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EC Applications in Dow Chemical
Application Domains Examples

Material Design
• Color Matching
• Appearance Engineering
• Polymer Design
• Synthetic Leather

Materials Research

• Diverse Chemical Library Selection
• Fundamental Model Building
• Reaction Kinetics Modeling
• Combi-Chem Catalyst Exploration
• Combi-Chem Data Analysis

Production Design
• Acicular Mullite Emulator
• EDC/VCM Nonlinear DOE
• Bioreactor Optimization

Production Monitoring
& Analysis

• Epoxy Holdup Monitoring
• Isocyanate Level Es timation
• FTIR Calibration Variable Selec tion
• Poly-3 Volatile Emission Monitoring
• Epoxy Intelligent Alarm Processing
• PerTet Emulator for Online Optimization
• Emissions Monitoring

Business Modeling
• Diffusion of Innovation
• Hydrocarbon Trading & Energy Systems Optimization
• Scheduling Heuristics
• Plant Capacity Drivers
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Automating Operating Discipline

• Heuristic rules defined verbally 
by process engineers/operators

• holdup predictor designed by 
stacked analytic NN and GP

• all decision blocks have fuzzy 
thresholds defined by 
membership functions

• simple empirical models and 
mass balances

• fundamental model predictions 
are used in the heuristic rules

• reduced major shutdowns
• reduced lab sampling
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Emulator for optimization of an industrial chemical process

Four
levels  
DOE

Reactor
Model

20-25 min/
prediction

10 inputs 12 outputs

Training
Data set On-line process

optimizationSymbolic
Regression
Emulator

5 ms/
prediction

Test
Data set
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Symbolic regression-based emulator’s performance

Y5 Symbolic Regression Training (R 2 = 0.94)
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Actual Y5
Predicted Y5

Acceptable performance

Simple expression for on-line 
implementation
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Accelerated Fundamental Model Building Based on GP

1. Problem
definition

2. Identify
key factors

4. Construct
the model

6. Verify the
model solution

7. Validate
the model

Classical fundamental
model building steps

3. Evaluate the
problem data

5. Solve the model

GP

Accelerated fundamental
model building steps

1. Problem
definition

2. Run symbolic
regression

3. Identify key
factors&transforms

6. Select&verify the
final model solution

7. Validate
the model

4. Select GP
generated models

5. Construct first
principle models

Can we accelerate
hypothesis search

by simulated evolution?
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Fundamental Model Building Based on GP

Accelerated fundamental
model building steps

1. Problem
definition

2. Run symbolic
regression

3. Identify key
factors&transforms

6. Select&verify the
final model solution

7. Validate
the model

GP

4. Select GP
generated models

5. Construct first
principle models

[ ] 00545.1
x

)(xln1013868.3

4

2
2

3
x217

k
1

+
×

=
− xeS

Run simulated evolution
before beginning

fundamental modeling

Virtual modelers

The evolutionary process identifies 
the key input variables as well as 
natural groupings & relationships. 
Combining this with a domain 
knowledge and first-principles 
insights is very powerful.
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Approaches to accelerate fundamental model 
building process

AI approach GP as automated
invention machine

Mimic the expert

Maximize creativity of the expert

Eliminate the expert

out

Reduce hypothesis
search by GP  
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The problem of structure-properties 
in fundamental modeling

Modeling issues:
• nonlinear interaction
• large number of preliminary 

expensive experiments required
• large number of possible mechanisms
• slow fundamental model building
• insufficient data for training neural nets

Key modeling effort
for new product

development

Material structure
Properties:
- molecular weight
- particle size
- crystallinity
- volume fraction
- material morphology
- etc.



74

Case Study with Structure-Property Relationships

Theoretical Analysis Hypothesis Search Fundamental model

dT
dt

= a
¶2 T
¶z2 -

DH
Cp r

dc
dt

Fundamental
Model Building

5
k

21  xd e )]log(x c   x[b  a y 3 +++= x

3 months

Fundamental Model Building + Symbolic 
Regression = Accelerated New Product 

Development
Structure-
property 
data sets

Sensitivity Analysis

Symbolic
Regression

Simulated Evolution Symbolic Regression Model
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Results from hypothesis search
Key transforms

Physical interpretation found
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Results from hypothesis search
Selected symbolic regression empirical model

5
k

21  xd e )]log(x c   x[b  a y 3 +++= x

Linear
form for x5

Fundamental model

Selected empirical model

GP-generated empirical model
captured correctly the functional forms 

of the fundamental model

Square root
form for x1

Exponential
form for x3 Logarithmic

form for x2
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Results from hypothesis search
Response surface  analysis of the selected symbolic 

regression empirical model

x1x5

Y

Quick assessment
of the type of nonlinear 

behavior

Quick assessment
do we need more

experiments?
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Comparative Analysis of Symbolic Regression in 
Fundamental Model Building

Model Development Speed
• 10 hours vs. 3 months

Summarize Multivariate Data
• convert data into equations to 

facilitate human insight 
• can explore parameter 

sensitivity and play what-if 
games

Accuracy
• achieved > 90% correlation

with experimental results 
Identify Key Variables and 
Transforms

• with the exception of x1, 
symbolic regression captured 
correctly all other functional 
forms in the model 

Suggest Physical Mechanisms
• evolved expressions and 

equation “building blocks” 
may be interpreted from a 
first-principles viewpoint

Suggest Future Experiments
• optima in evolved expressions 

may be validated in future 
experiments

Blind to Physics and Chemistry
• genetic programming does not 

currently take into account the physical 
or chemical laws

• expressions may have no physical 
meaning - mathematical consistency is 
how fitness is defined

• inclusion of physical constraints is a 
research topic

Garbage-In/Garbage Out
• appropriate variables must be supplied
• data is assumed to be accurate
• operational range should be covered

Disadvantages of Symbolic Regression
Advantages of Symbolic Regression

Experts (Scientists) are Still Required
domain expert  is an absolute must for 
interpretation of evolved expressions
The domain expert delivers the final 
fundamental model
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GP and Design Of Experiments (DOE)
Models Showing Lack of Fit

Situations of Lack  of Fit
2. A response surface DOE

already had all experiments to fit 
second order model

1. Simple factorial DOE
Enough experiments to fit first order 
model

∑ ∑∑∑
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+++=
k

i ji
jijiiiiiiok xxxxS

1

2 ββββ∑ ∑∑
= <

++=
k

i ji
jijiiio xxβxββy

1

Classical approach if LOF
add experiments to fit second 
order model

Classical approach if LOF
no alternative (use model as it is)

∑ ∑∑∑
= <

+++=
k

i ji
jijiiiiiiok xxxxS

1

2 ββββ

Suggested approach:
Use GP to transform inputsMore costly experiments
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1. Generate GP models 2. Generate input transforms

3. Fit response surface model in 
transformed variables

Selected solution

∑ ∑∑∑
= =<

+++=
4

1

4

1

2

i i
iii

ji
jijiiiok ZZZZS ββββ

Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 2 0.00049190 0.000246 2.2554
Pure Error 2 0.00021810 0.000109 Prob > F
Total Error 4 0.00071000 0.3072

Max RSq
0.9999

Note that Lack Of Fit is not significant (p=0.3072)

No Lack Of Fit
(p=0.3037)
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PSO application: Optimizing color spectrum of 
plastics  

0

10

20

30

40

50

60

Frequency

0 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 More
Residual error of match

ColourPro Formulation Optimization

Frequency Swarm
GA

Multiple-objective PSO 
with 15 variables

PSO and GA
convergence

Real-time optimization
in 2-3 seconds
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Other PSO applications

• Drug release predictor
– 6 parameters
– population size = 30
– optimization time: ~ 30 seconds

• Foam acoustics performance predictor
– 8 parameters
– population size = 50
– optimization time: ~ 5 seconds

• Crystallization kinetics predictor
– 4 parameters
– population size = 30
– optimization time: ~ 2 seconds
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Open Issues

Should we be doing  Cultural Programming?

Diversity  Detection

Identifying Metavariables

Blending Heuristics & Prior  Knowledge

Complexity Control & Smoothness Characterization

Convert  Hard  GP Problems  into Easy Ones

Open
Issues
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• What is going on between 
the data points?

• How do we identify and 
eliminate pathologies?

• How do we recognize and 
characterize the overall and 
local smoothness 
(complexity)?

Observed

Truth

Complexity Control & Smoothness 
Characterization

Early 
Results

Later Results
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Cultural Programming?

• Particle swarm optimization has replaced most 
of GA for our applications

• Does the cultural algorithm metaphor have a 
similar potential with GP?
– Coevolution of symbiotic species?
– Sociological niches?
– Population size dynamics?
– Cascaded Evolutionary Programming?
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Business potential for ensemble-based predictors
Robustness toward input measurement faults

Prediction still available by models 
not based on fault measurements

Problem detected by model 
disagreement indicator

Measurement fault between
Samples 1100 and 1300
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Business potential for ensemble-based predictors
Analytical instrument drift detection

Model disagreement indicator is within 
critical limit

Growing error between analytical 
instrument and model prediction

Probable root cause:
analytical instrument drift
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Summary
• Evolutionary Computing can create significant value to industry by 

reducing model development time and model exploitation cost
• Integrating EC with Neural Networks, Support Vector Machines, and 

Statistics is recommended for successful industrial applications
• This strategy works for many real applications in the chemical 

industry
• The key application areas are:

– Inferential sensors
– Improved process monitoring and control
– Accelerated new product development
– Effective design of experiments

• And this is only the beginning …
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