Industrial Evolutionary Computing

Arthur Kordon, Guido Smits, and Mark Kotanchek

The Dow Chemical Company

GECCO 2004

Overview

In theory, there is no difference between theory and practice. In practice, there is. - Jan L.A. van de Snepscheut

- Evolutionary Computing and the business model
- Implementation guidelines
- Integrate & Conquer
- Key application areas
- Open issues

Academic vs. industrial data analysis

Transfer data into knowledge

Transfer data into value

Special Features of Industrial Data Analysis 1

Operators intervention

Curse of closed loops

Special Features of Industrial Data Analysis 2

Multiple time scales

analysis approaches

they use

Real-time pressure

Economic advantage of data-driven models

Intelligent Systems in Industrial Data Analysis: Lessons From the Past

Application Issues in the Chemical Industry

- High dimensionality of the data
- Highly correlated data with time delays
- Outlier detection
- Multiple optima
- Intensive number crunching needed
- Too much or too little data
 - Often sparse, or "statistically insignificant" instances, but at the same time, physically meaningful or commercially viable
 - Often lots of redundant data

Industrial data analysis components

The role of evolutionary computing (symbolic regression) is to ...

- Facilitate physical/mechanism insight and **understanding**
- Summarize data behavior
- Identify data transforms and metasensors
- Perform variable selection
- Enable response surface
 exploration and optimization
- **Visualize** behavior in the form of a symbolic expression

The overall goal is to achieve speed, accuracy & efficiency. Symbolic regression is part of an integrated methodology.

Selected Evolutionary Computing Approaches (used in industrial applications at Dow Chemical)

Applied EC approaches

- Genetic Programming for Symbolic Regression
- Particle Swarm Optimization
- Genetic Algorithms

Auxiliary Technologies

- Neural Networks
- Support Vector Machines (for regression)
- Context + Experts + Statistics + Physics

Why industry needs Evolutionary Computing?

Technical issues with Evolutionary Computing

Economic benefits from Evolutionary Computing

- Resolve complex optimization problems (PSO/GA)
- Physical Interpretation & Insight (Symbolic Regression)
 - Suggestions for profitable directions for research/sensors/etc.
 - Accelerate research & development
 - Higher credibility in comparison to black-boxes
- Reduce model development cost
 - Significantly reduced development time relative to alternatives
- Reduce model exploitation cost
 - Minimal model implementation cost (no need for specialized software)
 - Reduced maintenance cost (less frequent re-training)
- Reduce cost of industrial experiments
 - Minimizes the number of additional experiments

Benefits of integrating Evolutionary Computing with other approaches

Application areas with impact

Implementation guidelines

- Requirements for successful empirical modeling
- Key issues to be overcome
- Implementation strategy
- Implementation tools

Requirements for successful data-driven modeling

Objective function: Minimizing modeling cost and maximizing data analysis efficiency under broad range of operating conditions

Key issues to overcome

Implementation strategy

Implementation tools

- MATLAB (Dow developed)
 - **GA**
 - GP
 - PSO (single objective and multi-objective)
 - Analytic neural networks
 - Support vector machines
- Mathematica (Dow developed)
 - Symbolic regression package
 - AutoAnalysisTools
 - Analytic neural networks
 - PSO
 - Group Methods of Data Handling (GMDH)
- Tools for model distribution
 - Delphi
 - Web Mathematica
 - Excel
 - Process control systems

Exploitation/Implementation Sequence of Computational Intelligence Approaches in Dow Chemical

Integrate & Conquer

- Integrated methodology for successful EC implementation
- Related approaches
- A case study

Integrated Methodology

Integrated Methodology for Empirical Models Development

- Hybrid approach integrating multiple technologies exploits the strengths of each
- Advantages:
 - Fast development (days)
 - Robust performance (compact models)
 - Direct implementation in any Distributed Control System (no need for specialized software)
 - Very low capital cost (only if hardware for data collection is unavailable)
 - Low average cost of ownership (reduced development and maintenance cost)
 - Process engineers like it (preferable to black-box models)

Steps Based on Analytic Neural Nets

Key idea behind analytic neural networks

Key technique for input-to-hidden layer initialization

Analytic Neural Network Benefits

- **Robust** algorithm
 - No tunable parameters
 - One global optimum
- Very fast,
 - possible to use a whole range of cross-validation principles from statistics
 - No longer an NP-complete problem
- Strong theoretical foundation
 - statistical learning theory
 - Direct measure for the model capacity (VC-dimension)

Stacked Analytic Neural Nets (SANN)

- Fast development
- Diverse subnet consensus indicator of model output quality
- Allows explicit calculations of input/output sensitivity
- Can handle time-delayed inputs by convolution functions
- Gives more reliable estimates based on multiple models statistics

Internally developed in Dow Chemical by Guido Smits

An example of stacked analytical NN application a model for catalyst efficiency

Steps Based on Support Vector Machines

Support Vector Machines

Advantages

- Solid theoretical basis => Statistical Learning Theory
- Model building is based on global optimum
- Explicit control over model complexity

Issues

- ad hoc Kernel selection
- Complex theory
- No commercial software
- Computationally intensive

The generic scheme of SVM

Support Vector Machines and Neural Networks

VC-dimension

- In general, VC-dimension does not coincide with the number of parameters (can be larger or smaller)
- VC-dimension of the set of functions is responsible for the generalization ability of learning machines
- Opens remarkable opportunities to overcome the "curse of dimensionality" (large number of parameters, but low VCdimension)
Structural Risk Minimization Principle

Structural Risk Minimization Principle

- Trade-off between quality of approximation of the given data and the complexity of the approximating function.
- The VC-dimension is now a controlling variable
- Chooses the set of functions with the lowest VCdimension for which minimizing the empirical risk gives the best bound on the actual risk.
- Minimize

F

$$R(\alpha) \le R_{emp}(\alpha) + \Phi(\frac{\ell}{h})$$
Prediction error
Complexity

Where α is the model parameter of interest, *I* is the sample size and *h* is the complexity measure

Structural Risk Minimization in learning algorithms

• Keep $\Phi(\frac{\ell}{h})$ fixed, minimize $R_{emp}(\alpha)$ - Neural Networks

- Keep $R_{emp}(\alpha)$ fixed, minimize $\Phi(\frac{\ell}{h})$
 - Support Vector Machines

Neural Networks and Support Vector Machines are two sides of the same coin

SVM for Regression: Constructing a tube

Genetic Programming

Phenotypes (Expressions)

Parents

-(-0.787701)^x + x

Children

- Based on artificial evolution of millions of potential nonlinear functions => survival of the fittest
- Many possible solutions with different levels of complexity
- The final result is an explicit nonlinear function
- Better generalization capabilities than neural nets
- Low implementation requirements
- Time delays

y^{2 x}

-X+Y

x -x+y

- Sensitivity analysis of large data sets
- Relatively slow (several hours of computational time)

Steps Based on Genetic Programming

Problem 1: Where are the Building Blocks in GP? Does the Schema Theorem apply?

We are working with dynamic structures that can arbitrarily grow in size.
We're doing Empirical Risk Minimization on a small subset of the available information (we ignore all the sub equations).

Problem 2: How do we make sure the Structural Risk Minimization Principle Applies?

- SRM = Trade-off between quality of approximation of the given data en the complexity of the approximating function.
- Can we determine something like the VCdimension for an arbitrary tree-structure?
- Can we choose the set of functions with the lowest VC-dimension for which minimizing the empirical risk gives the best bound on the actual risk?
- Minimize $R(\alpha) \le R_{emp}(\alpha) + \Phi(\frac{\ell}{h})$

New Approach to GP: Optimize the Pareto front of Fitness vs. Complexity instead of just Fitness.

All sub-equations are also taken into account. This results in effective population sizes of a few thousand instead of a few hundred with no additional computational cost. ⁴⁶

Pareto Optimality

A decision vector $x^* \in S$ is Pareto optimal if there does not exist another $x \in S$ such that $f_i(x) \leq f_i(x^*)$ for all $i=1,\ldots,k$ and $f_j(x) < f_j(x^*)$ for at least one index j.

Task in (Multi-Objective Optimization Problem- MOOP): Determine the Pareto front

The Standard GP is Extended with an Archive

Archive (t) = set of *best* equations found so far during the run = *best* estimate of the Pareto front

Archive(0) = Best(Initial equations from the population)
Archive(t+1) = Best (Archive(t) [] Current paretofront of the population)

Crossover only occurs between the Members of the Population and the Archive

This ensures very quick propagation of the building blocks through the population.
Population Diversity is always high by construction.

Both features result in a much more effective exploration of the function space

Post run Analysis is much faster (The focus is on the Pareto Front Population)

	Norm.	Adj.	Raw	Complexity	Vars	Function	
1	0.	0.663	0.663	1	ж2	×2.	
2	0.205	0.731	0.731	5	ж1 ж2	x ₁ x ₂ .	
3	0.516	0.833	0.833	11	ж2	4. ^{−∞} 2. _{№2.}	
4	0.608	0.864	0.864	19	ж2	(1.955 [∞] 2·) ^{-∞} 2· _{∞2} .	
5	0.661	0.881	0.881	25	ж1 ж2	$\frac{\mathbf{x}_{1,}}{\mathbf{x}_{2}^{4} \cdot \mathbf{+2. x}_{1,} + 4.}$	All equations
6	0.767	0.916	0.916	33	ж1 ж2	$\frac{\mathbf{x}_{1}, \mathbf{x}_{2}}{\mathbf{x}_{2}^{5}; +2, \mathbf{x}_{1}, \mathbf{x}_{2}, +1.955}$	front in increa
7	0.86	0.947	0.947	41	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\mathbf{x}_{2}^{4}:+2.\mathbf{x}_{1.}+1.955+\frac{1.955}{\mathbf{x}_{2.}}}$	complexity a
8	0.884	0.955	0.955	49	ж1 ж2	$\frac{\mathbf{x}_{1}}{\mathbf{x}_{2}^{4};+2,\overset{\mathbf{x}_{1}}{\ldots},\mathbf{x}_{1},+1,955+\frac{1.955}{\mathbf{x}_{2}}}$	
9	0.939	0.973	0.973	51	ж1 ж2	$\frac{\mathbf{x}_{1.}}{0.512^{\mathbf{x}_{1.}} \cdot \mathbf{x}_{1.}^{\mathbf{x}_{1.}} \cdot \mathbf{x}_{2.}^{\mathbf{x}_{1.}} + \mathbf{x}_{2.}^{\mathbf{x}_{2.}} + \frac{2}{\mathbf{x}_{2.}} + 1.955}$	
10	0.956	0.979	0.979	59	ж1 ж2	$\frac{\mathbf{x}_{1.}}{0.512^{\mathbf{x}_{1.}} \cdot \mathbf{x}_{1.}^{\mathbf{x}_{1.}} + \mathbf{x}_{2.}^{\mathbf{x}_{1.}} - \mathbf{x}_{2.} + \frac{1.955}{\mathbf{x}_{0.}} + 1.955}$	
11	0.962	0.981	0.981	61	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\mathbf{x}_{2.}^{1.955}\mathbf{x}_{2.}^{\mathbf{x}_{2.}} + \mathbf{x}_{2.}^{\mathbf{x}_{1.}} + 0.512^{\mathbf{x}_{1.}} \mathbf{x}_{1.}^{\mathbf{x}_{1.}} + \frac{1.955}{\mathbf{x}_{2.}}}$	
12	0.98	0.986	0.986	69	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\mathbf{x}_{2.}^{1.955^{\mathbf{x}_{2.}}} + 0.512^{\mathbf{x}_{1.}} \mathbf{x}_{1.}^{\mathbf{x}_{1.}^{1.}} - \mathbf{x}_{1.} + 1.955 + \frac{1.95}{\mathbf{x}_{2.}}}$	55
13	0.992	0.99	0.991	99	ж1 ж2	$\frac{\mathbf{x}_{1.}}{(\mathbf{x}_{2}^{4}] + \mathbf{x}_{1.} + \mathbf{S}_{}) \left(0.512^{\mathbf{x}_{1}} \cdot \mathbf{x}_{1}^{\mathbf{x}_{1}} - \mathbf{x}_{1} + \mathbf{x}_{2}^{\mathbf{x}_{2}} + \frac{1.955}{\mathbf{x}_{2}} \right)}$	+1.955)
14	0.997	0.992	0.992	121	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\left(4, \mathbf{x}_{1.}^{\neg \mathbf{x}_{1.}} + 2, \mathbf{x}_{1.} + 1.955\right) \left(\mathbf{x}_{2.}^{1}, 955^{\mathbf{x}_{2.}} + 0.512^{\mathbf{x}_{1.}} \cdot \mathbf{x}_{1.}^{\mathbf{x}_{1.}} - \mathbf{x}_{1.}\right)}$	$(+1.955+\frac{1.955}{x_2})$
15	1.	0.993	0.994	133	ж1 ж2	$\frac{\mathbf{x}_{1,}}{\left(4,\mathbf{x}_{1},\left(\frac{1}{\mathbf{x}_{1}^{2}}\right)^{\mathbf{x}_{1}}+2,\mathbf{x}_{1,}+1.955\right)\left(\mathbf{x}_{2}^{1}\right)^{955}\mathbf{x}_{2}}+0.512^{\mathbf{x}_{1}},\mathbf{x}_{1}^{\mathbf{x}_{1}}\right)}$	$-x_{1,}+1.955+\frac{1.955}{x_{2,}}$
16	1.	0.993	0.994	149	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\left(4.\frac{\mathbf{x}_{1.}}{\mathbf{x}_{1.}^{2}}\right)^{\mathbf{x}_{1.}}+1.762\mathbf{x}_{1.}}\left(\mathbf{x}_{2.}^{1}\right)^{955^{\mathbf{x}_{2.}}}+0.512^{\mathbf{x}_{1.}}\mathbf{x}_{1.}^{\mathbf{x}_{1.}^{1}}\neq$	$(x_{1,}+1.955+\frac{1.955}{x_{2,}})$
17	0.99	0.99	0.994	193	ж1 ж2	$\frac{\mathbf{x}_{1.}}{\left(\mathbf{x}_{2.}^{1.955^{\mathbf{x}_{2.}}} + 0.512^{\mathbf{x}_{1.}} \cdot \mathbf{x}_{1.}^{\mathbf{x}_{1.}} + 1.955 + \frac{1.955}{\mathbf{x}_{2.}}\right) \left(4, \mathbf{x}_{1.} \cdot \left(\frac{1.}{\mathbf{x}_{1.}^{2.}}\right)^{\mathbf{x}_{1.}} + \mathbf{x}_{1.}\right)}$	$1.512 + \frac{1}{x_{2.}^{x_{2.}^{x}} + x_{2.}^{x_{2.}} + x_{1.}^{x_{1.}} + \frac{1.955}{x_{2.}^{x_{2.}}}} \right)$

All equations on the Pareto front in increasing order of complexity and fitness Advantages of Pareto-front GP

- Initial results indicate 10-100 times increased efficiency vs. conventional GP.
- Building Blocks (Transforms) are generated automatically.
- Effective population sizes are much higher with no additional computational cost.
- The post-run Analysis is much faster Only the functions in the Archive need to be inspected.
- No need anymore for multiple runs with different levels of parsimony control.

Particle swarm optimization

Note: - stochastic component

- parameters c_1, c_2, χ default values (2.05, 2.05, 0.73)

Particle's Movement – A Compromise

Software tools

Case Study: Inferential Sensors

Issues with neural net-based inferential sensors

Issues with existing neural net-based inferential sensors:

- High sensitivity to process changes
- Frequent re-training
- Complicated development & maintenance
- Low survival rate after 3 years in operation
- Engineers hate black-boxes

Inferential sensor for emission monitoring: A case study Data Collection

Inferential sensor for emission monitoring: A case study Sensitivity analysis by SANN

Inferential sensor for emission monitoring: A case study (SANN model performance)

Inferential sensor for emission monitoring: A case study (SVM parameters)

📣 Support Vector Machines: Setting Parameters					
File Other_Settings Ex	kecute Results				
Dataset	Size Input Data : (n x m)				
Problem Type	C Classification C Regression				
Applications	Model Building C Redundancy Detection C Outlier Detection				
Kernel Choice	Radial Basis Function (RBF) Enter Parameter(s) Width 0.3				
Complexity	Ratio Support Vectors Enter Parameter Nu 0.6				
Regularization	Enter Parameter C				
Loss-Function	Linear Loss Function				
	E	xit			

Parameters: % support vectors: 10 C = 10⁶ Mixed Kernels: Polynomial and RBF Range of Polynomial kernels: 1-3 Range of RBF kernel: 0.25-0.75 Range of ratio 0.5 – 0.99

Inferential sensor for emission monitoring: A case study (SVM model performance)

Impressive extrapolation (test data is 140% outside the range of training data)

Model based on a mixture of 2nd order polynomial global kernel and RBF local kernel with width of 0.5 and ratio of 0.95

Reduced number of training data points from 251 to 34 (based on support vectors)

Inferential sensor for emission monitoring: A case study (GP parameters)

🛃 GENPRO+ Settings		<u> </u>
	Ref. Set	Test Set
Calculate fitness	Yes 💌	No 💌
Starting pattern nr	1	1
Ending pattern nr	9	9
Random subset selection [%]	100	
Run number	0	
Number of runs	20	
Print figures between runs	No 💌	
Use system defined inputs / level	No 🔽	3
Number of generations	30	
Population size	100	
Reproductions/generation	0	
Prob. for function selection	0.6	
Fitness function	Corr.C	-
Insensitive zone [0:1]	0	
Parsimony pressure [0:1]	0.1	
Number of variables to eliminate	0	
Probability for random vs. guided crossover [0:1]	0.5	
Probability for mutation of terminals [0:1]	0.3	
Probability for mutation of functions [0:1]	0.3	
Run Defaults Functions	F	Help

Parameters for a GP simulated evolution

Reference data	:34
Random subset selection	[%] :100
Number of runs	:20
Population size	:500
Number of generations	:100
Probability for function as	next node :0.6
Optimization function	:Corr.Coef
Parsimony pressure	:0.1
Prob. for random vs guide	ed crossover :0.5
Probability for mutation of	terminals :0.3
Probability for mutation of	functions :0.3

Inferential sensor for emission monitoring: A case study (Selected symbolic regression model)

63

Inferential sensor for emission monitoring: A case study (Final solution: Stacked Symbolic Regression model)

Key application areas

EC Applications in Dow Chemical

Application Domains	Examples	
Material Design	 Color Matching Appearance Engineering Polymer Design Synthetic Leather 	
Materials Research	 Diverse Chemical Library Selection Fundamental Model Building Reaction Kinetics Modeling Combi-Chem Catalyst Exploration Combi-Chem Data Analysis 	
Production Design	 Acicular Mullite Emulator EDC/VCM Nonlinear DOE Bioreactor Optimization 	
Production Monitoring & Analysis	 Epoxy Holdup Monitoring Isocyanate Level Es timation FTIR Calibration Variable Selection Poly-3 Volatile Emission Monitoring Epoxy Intelligent Alarm Processing PerTet Emulator for Online Optimization Emissions Monitoring 	
Business Modeling	 Diffusion of Innovation Hydrocarbon Trading & Energy Systems Optimization Scheduling Heuristics Plant Capacity Drivers 	

Automating Operating Discipline

- Heuristic rules defined verbally by process engineers/operators
- holdup predictor designed by stacked analytic NN and GP
- all decision blocks have fuzzy thresholds defined by membership functions
- simple empirical models and mass balances
- fundamental model predictions are used in the heuristic rules
 - reduced major shutdowns
 - reduced lab sampling

Emulator for optimization of an industrial chemical process

Symbolic regression-based emulator's performance

Accelerated Fundamental Model Building Based on GP

Fundamental Model Building Based on GP

Approaches to accelerate fundamental model building process

AI approach

Reduce hypothesis search by GP

GP as automated invention machine

Mimic the expert

Eliminate the expert

Maximize creativity of the expert
The problem of structure-properties in fundamental modeling

Material structure

Properties:

- molecular weight
- particle size
- crystallinity
- volume fraction
- material morphology
- etc.

Modeling issues:

- nonlinear interaction
- large number of preliminary
 expensive experiments required
- large number of possible mechanisms
- slow fundamental model building
- insufficient data for training neural nets

Key modeling effort for new product development

Case Study with Structure-Property Relationships

Results from hypothesis search Key transforms

Comparative Analysis of Symbolic Regression in Fundamental Model Building

dvantages of Symbolic Regression

Model Development Speed

- 10 hours vs. 3 months Summarize Multivariate Data
 - convert data into equations to facilitate human insight
 - can explore parameter sensitivity and play what-if games

Accuracy

• achieved > 90% correlation with experimental results

Identify Key Variables and Transforms

• with the exception of x1, symbolic regression captured correctly all other functional forms in the model

Suggest Physical Mechanisms

 evolved expressions and equation "building blocks" may be interpreted from a first-principles viewpoint

Suggest Future Experiments

 optima in evolved expressions may be validated in future experiments

Disadvantages of Symbolic Regression

Blind to Physics and Chemistry

- genetic programming does not currently take into account the physical or chemical laws
- expressions may have no physical meaning - mathematical consistency is how fitness is defined
- inclusion of physical constraints is a research topic

Garbage-In/Garbage Out

- appropriate variables must be supplied
- data is assumed to be accurate
- operational range should be covered

Experts (Scientists) are Still Required

domain expert is an absolute must for interpretation of evolved expressions The domain expert delivers the final fundamental model

GP and Design Of Experiments (DOE) Models Showing Lack of Fit

Situations of Lack of Fit

1. Simple factorial DOE Enough experiments to fit first order model

 $y = \beta_o + \sum_{i=1}^k \beta_i x_i + \sum_{i < j} \beta_{ij} x_i x_j$

Classical approach if LOF add experiments to fit second order model

$$S_k = \beta_o + \sum_{i=1}^k \beta_i x_i + \sum \beta_{ii} x_i^2 + \sum \sum_{i < j} \beta_{ij} x_i x_j$$

Classical approach if LOF no alternative (use model as it is)

$$S_{k} = \beta_{o} + \sum_{i=1}^{n} \beta_{i} x_{i} + \sum \beta_{ii} x_{i}^{2} + \sum \sum_{i < j} \beta_{ij} x_{i} x_{j}$$

More costly experiments

Suggested approach: Use GP to transform inputs

1. Generate GP models

2. Generate input transforms

Variable transformations suggested by GP model

Original Variable	Transformed Variable
x ₁	$Z_1 = \exp\left(\sqrt{2x_1}\right)$
x ₂	$Z_2 = x_2$
X ₃	$Z_3 = \ln[(x_3)^2]$
X ₄	$Z_4 = x_4^{-1}$

3. Fit response surface model in transformed variables

$$S_{k} = \beta_{o} + \sum_{i=1}^{4} \beta_{i} Z_{i} + \sum_{i < j} \sum_{i < j} \beta_{ij} Z_{i} Z_{j} + \sum_{i=1}^{4} \beta_{ii} Z_{i}^{2}$$

Source	DF	Sum of Squares	Mean Square	F Ratio	
Lack Of Fit	2	0.00049190	0.000246	2.2554	
Pure Error	2	0.00021810	0.000109	Prob > F	
Total Error	4	0.00071000		0.3072	No Lack Of Fit
				Max RSq	(n=0.3037)
				0.9999	(p 0.5057)

Note that Lack Of Fit is not significant (p=0.3072)

PSO application: Optimizing color spectrum of plastics

Other PSO applications

- Drug release predictor
 - 6 parameters
 - population size = 30
 - optimization time: ~ 30 seconds
- Foam acoustics performance predictor
 - 8 parameters
 - population size = 50
 - optimization time: ~ 5 seconds
- Crystallization kinetics predictor
 - 4 parameters
 - population size = 30
 - optimization time: ~ 2 seconds

Complexity Control & Smoothness Characterization

- What is going on between the data points?
- How do we identify and eliminate pathologies?
- How do we recognize and characterize the overall and local smoothness (complexity)?

Cultural Programming?

- Particle swarm optimization has replaced most of GA for our applications
- Does the cultural algorithm metaphor have a similar potential with GP?
 - Coevolution of symbiotic species?
 - Sociological niches?
 - Population size dynamics?
 - Cascaded Evolutionary Programming?

Business potential for ensemble-based predictors

Robustness toward input measurement faults

Business potential for ensemble-based predictors

Analytical instrument drift detection

Summary

- Evolutionary Computing can create significant value to industry by reducing model development time and model exploitation cost
- Integrating EC with Neural Networks, Support Vector Machines, and Statistics is recommended for successful industrial applications
- This strategy works for many real applications in the chemical industry
- The key application areas are:
 - Inferential sensors
 - Improved process monitoring and control
 - Accelerated new product development
 - Effective design of experiments
- And this is only the beginning ...

Acknowledgement

We would like to acknowledge the contribution of the following researchers from The Dow Chemical Company:

Alex Kalos

Kip Mercure

Flor Castillo

Elsa Jordaan

Leo Chiang

Irina Graaf

References

- 1. M. Kotanchek, G. Smits, and A. Kordon, Industrial Strength Genetic Programming, In GP Theory and Practice (R. Riolo and B. Worzel-Eds), Kluwer, 2003.
- 2. A. Kordon, G. Smits, A. Kalos, and E. Jordaan, *Robust Soft Sensor Development Using Genetic Programming*, In *Nature-Inspired Methods in Chemometrics*, (R. Leardi-Editor), Elsevier, 2003.
- Kordon A.K, G.F. Smits, E. Jordaan and E. Rightor, Robust Soft Sensors Based on Integration of Genetic Programming, Analytical Neural Networks, and Support Vector Machines, Proceedings of WCCI 2002, Honolulu, pp. 896 – 901, 2002.
- Kotanchek M., A. Kordon, G. Smits, F. Castillo, R. Pell, M.B. Seasholtz, L. Chiang, P. Margl, P.K. Mercure, A. Kalos, *Evolutionary Computing in Dow Chemical*, Proceedings of GECCO'2002, New York, volume Evolutionary Computation in Industry, pp. 101-110., 2002
- Kordon A. K., H.T. Pham, C.P. Bosnyak, M.E. Kotanchek, and G. F. Smits, Accelerating Industrial Fundamental Model Building with Symbolic Regression: A Case Study with Structure – Property Relationships, Proceedings of GECCO'2002, New York, volume Evolutionary Computation in Industry, pp. 111-116, 2002

- Castillo F., K. Marshall, J. Greens, and A. Kordon, Symbolic Regression in Design of Experiments: A Case Study with Linearizing Transformations, Proceedings of GECCO'2002, New York, pp. 1043-1048.
- Kordon A., E. Jordaan, L. Chew, G. Smits, T. Bruck, K. Haney, and A. Jenings, Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic Programming, accepted for GECCO 2004, 2004.
- 8. Smits G. and M. Kotanchek, *Pareto-Front Exploitation in Symbolic Regression*, In *GP Theory and Practice* (R. Riolo and B. Worzel-Eds), Kluwer, 2004.
- 9. Kordon A., A. Kalos, and B. Adams, *Empirical Emulators for Process Monitoring and Optimization*, Proceedings of the IEEE 11th Conference on Control and Automation MED'2003, Rhodes, Greece, pp.111, 2003.