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Overview

In theory, there is no difference between

theory and practice. In practice, there is.
- Jan L.A. van de Snepscheut

Evolutionary Computing and the business model
mplementation guidelines

ntegrate & Conquer

Key application areas

Open issues




Academic vs. industrial data analysis
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Special Features of Industrial Data Analysis 1

Operators intervention Curse of closed loops

setpoint ——

. Controller |  System

The maijority of process variables

are in closed loops and depend on
controller adjustments

Operators manually
modify the process

It’s the context,

stupid!




Special Features of Industrial Data Analysis 2

Multiple time scales

Stade-Hz10-000316

Time scales vary from
milliseconds to months
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Data analysis must be explained clearly

Process engineers
prefer to have a generic
understanding of data
analysis approaches
they use

Most of models operate
in real time




Economic advantage of data-driven models

Expensive hardware analyzers

($100-250K)

Empirical models are

often at the economic optimum
($50-70K)

More expensive fundamental
Models ($250-500K)

T
0, = +7(-kVT+ pC,Tu)= 0

Key issue:
Models credibility
l.e. consistently
accurate predictions
according to
expected physics of
thg process

@) A
|l Short longevity




Intelligent Systems in Industrial Data Analysis:
Lessons From the Past

|

The Expert Systems campaign (late 80s)
“We’ll put engineers in the box”

« static rule-based models not linked to
numerical world

* the politics of knowledge acquisition

penti u m- * the efforts of knowledge acquisition
P S S 0O R

ROCE
The Neural Networks campaign (early 90s)

“We’ll turn data into gold”

il

* black-box models with inefficient
structure

* fragile models and model validation

* maintenance nightmare



Application Issues in the Chemical Industry

High dimensionality of the data

Highly correlated data with time delays
Outlier detection

Multiple optima

Intensive number crunching needed

Too much or too little data

— Often sparse, or “statistically insignificant” instances,
but at the same time, physically meaningful or
commercially viable

— Often lots of redundant data



Industrial data analysis components

Linear & The role of evolutionary
( Visualization } Multivariate computing (symbolic
Statistics regression) isto ...

— Facilitate physical/mechanism
insight and understanding

—Summarize data behavior
— Identify data transforms and

( Metasensors ]

Neural
Networks

Problem

Suci‘ess ADEI“H. Symbolic ] metasensors
nalysis i . .
Definition Compoynents ALl —Perform variable selection
—Enable response surface
Support exploration and. optlmlzatlon
[ Cluster ] Vector —Visualize behavior in the form
Analysis Machines of a symbolic expression

The overall goal is to achieve
speed, accuracy & efficiency.
Symbolic regression is part of
an integrated methodology.

Recursive Model .
Partitioning Fitting J ( Boosting )
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Selected Evolutionary Computing Approaches
(used in industrial applications at Dow Chemical)

« Applied EC approaches
— Genetic Programming for Symbolic Regression
— Particle Swarm Optimization
— Genetic Algorithms
« Auxiliary Technologies
— Neural Networks
— Support Vector Machines (for regression)
— Context + Experts + Statistics + Physics

10



Why industry needs Evolutionary Computing?

No a priori modeling assumptions

Derivative-free optimization

Few design parameters

Natural seelction of most important inputs

Why industry
needs EC?

Parsimonious analytical functions as a final result

Facilitates human understanding of derived models

Efficient modeling approach in terms of human time investment

11



Technical issues with Evolutionary Computing

Typical size for
undesigned data is
~30 variables x ~1000 data points

Slow model generation on large data sets

Accuracy of prediction

. ] Model complexity
=Non-trivial model selection

Model interpretability
Y Model diversity

User-friendly software not available

Sensitive to data quality

-Issues with EC

Relatively unknown approach
to engineering community

Theoretical development
still in progress

Applications in infancy

12



Economic benefits from Evolutionary Computing

Resolve complex optimization problems (PSO/GA)
Physical Interpretation & Insight (Symbolic Regression)

— Suggestions for profitable directions for research/sensors/etc.
— Accelerate research & development
— Higher credibility in comparison to black-boxes

Reduce model development cost
— Significantly reduced development time relative to alternatives

Reduce model exploitation cost

— Minimal model implementation cost (no need for specialized
software)

— Reduced maintenance cost (less frequent re-training)

Reduce cost of industrial experiments

— Minimizes the number of additional experiments
13



Benefits of integrating Evolutionary Computing
with other approaches

-10° iqi
Increased productivity of EC Reduced search space (8-10% of original data)

Increased speed of model generation

Data with high information content

Increased quality of generated models

Model complexity measure

Condensed data sets

Reduced model development time and cost

Benefits of integration Faster model selection

Final users

First-principle modelers
Broader support from different stakeholders

Statistical community

Machine learning community

14



Application areas with impact

Understand Variable

Relationships System Modeling
Research
Cues to Physical Acceleration Emulators Coarse Optimization
Mechanisms

o Insight into System
Explore Multivariate

Relationships

Industrial
Applications

Meaningful

Variable Combinations
Infer System States

Inferential Transforms
Sensors Convert into less
gnkrlle Monitoring nonlinear problem
arm
' . Identify Variables
Focus Data Gathering goollﬁlllneal' Variable which drive system
Sensitivity

Model Discrimination DOE
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Implementation guidelines

Requirements for successful empirical
modeling

Key issues to be overcome
Implementation strategy
Implementation tools

16



Requirements for successful data-driven modeling

Objective function:

under broad range of operating conditions

Minimizing modeling cost and maximizing data analysis efficiency

Robustness

ability to withstand minor

changes in targeted system Self-Assessment

ability to estimate
quality of predictions

ability to operate Extrapolations Good Credibility
outside training range Model
Aspects
The t -of- i
e total cost-of-ownership Cost-Effective Interpretability

(development + operation +
maintenance) is proper

the model matches
the observed behavior

humans are able to agree
that the model is "reasonable"

17



Key issues to overcome

Data pre-processing and condensation

Model selection

User-friendly implementation tools

Marketing of EC to different
modeling communities

[ = Key implementation issues Resistance to implement empirical
models (inherited from black-box models)

Seamless integration into existing
maintenance and support infrastructure

Critical mass of model
developers familiar with
EC

18



Implementation strategy

Define business opportunities

A 4

Evaluate/introduce new emerging
technology

A 4

Define implementation methodology

A 4

Demonstrate potential in small
scale projects

A 4

Improvel/leverage methodology

A 4

Apply on large scale projects

19



Implementation tools

MATLAB (Dow developed)
- GA
- GP
— PSO (single objective and multi-objective)
— Analytic neural networks
— Support vector machines

Mathematica (Dow developed)
— Symbolic regression package
— AutoAnalysisTools
— Analytic neural networks
- PSO
— Group Methods of Data Handling (GMDH)

Tools for model distribution
— Delphi
— Web Mathematica
— Excel
— Process control systems

20



Exploitation/Implementation Sequence of
Computational Intelligence Approaches in Dow

Chemical
Classical NN :| GA/GP Integrated
methodology
| ‘ | |
1990 1995 2000

|: Analytic NN |: SVM j PSO :|

21



Integrate & Conquer

 Integrated methodology for
successful EC implementation

« Related approaches
* A case study

22



Integrated Methodology

Statistics >

Problem & success definition

\ 4

Data preprocessing and classification

'

Variable selection

v

Support Vector Machin>

Data condensation

'

Model generation

\ 4

Model selection & combination

Pareto front, boostil>

A

Model validation

v

Model exploitation

'

Model maintenance & support

@lytic neural networks
@netic Programming

<

Statistics

23



Integrated Methodology for Empirical Models Development

Original spreadsheet
50 variables X 1000 data
points

I

Full data set

—

v

« Hybrid approach integrating multiple
technologies exploits the strengths of
each

« Advantages:

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Reduced spreadsheet
5 variables X 1000 data
points

il

Reduced
inputs

data
v

Reduced spreadsheet
5 variables X 120 data
points

Outliers detection
Condensed data set generation

Support Vector Machines

|

— Condens
ed data

v

Final model
Analytical function

Symbolic regression
Functional solutions selection

Genetic Programming

Selected on Pareto
front

Fast development (days)

Robust performance (compact
models)

Direct implementation in any
Distributed Control System (no
need for specialized software)

Very low capital cost (only if
hardware for data collection is
unavailable)

Low average cost of ownership
(reduced development and
maintenance cost)

Process engineers like it (preferable
to black-box models)

24



Steps Based on Analytic Neural Nets

Representative data collection

\ 4

Data preprocessing and classification

v

Nonlinear model can be build - -

only with most sensitive inputs

NN sensitivity analysis of all inputs

v

Convolution parameters’ estimation

v

Outlier detection and data set condensation

A 4

GP function generation

A 4

Analytical function selection/verification

v

On-line implementation

v

Model maintenance

Eliminated inputs

25 30

Convolution function maximum
is at the time delay

Objective: to supply GP with clean, informative, and

parsimonious data set

25



Structural difference between classical

and analytic neural networks
Classical NN Analytical NN

An additional link between inputs
Xi and the output Y is introduced

Z, =F,(a, +a, X, +a,X, +a;X;) Z, =F, (a,+a,X +a,X,+a;X;)

- ) Z, =F(ay +ay X, +a, X, +ayX5) Z,=F,(ay+a, X, +a,X,+ayX;)
Hidden nodes calculation

Zy =F,(ay + a3 X, + a, X, +a;, X;) Z,=F (a,, +a, X, +a,X,+a,,X;)
Z,=F(ay +a, X, +a,X, +a,X;) Z,=F (a,+a,X +a,X,+a;X;)

Y=F(by+bZ +b7Z,+b7Z,+b,7Z,) Y=F(b,+bZ +b,Z,+bZ, +b,Z,+c X, +c,X, +c;X;)

26



Key idea behind analytic neural networks

If input-to-hidden layer weights aij
are fixed, there is an analytical
solution for the weights bi and ci

bo
FJ(Y)[IXZ]*{q]
b,

J
Z, =F,(a,+a, X, +a,X,+a;X;)

Z,=F(ay +a, X, +a,X, +a,X;)
Z,=F, (a30 +ay X, +a,X, +a33X3)
Z,=F(a,+a,X, +a,X, +a,,X;)

Y=F (b, +bZ +b7Z,+bZ,+b,Z,+c X +c,X,+c,X;)

Standard linear regression problem
X — inputs data matrix (known)
7 — hidden layer values vector (known)

Unique least-squares solutions for bi and ci

27



Key technique for input-to-hidden layer initialization

FSigix1) Hidden nodes have to be
a within the active region

L/// /\Of the nonlinear function

0.8

0.6

0.4

A ©

The width of the active zone is

The “temperature”
depends also on the
number of inputs to the

defined by the steepness of the hidden node
function or the“temperature” / \ —
Empirical expression for a
normalized “temperature” of a \ }\ }\ /\
sigmoid function
lo g(z + \/5 ) Weights from the input-to-hidden layer are

In=n

Sampled from a normal distribution

ni—0.5

28



Analytic Neural Network Benefits

* Robust algorithm
— No tunable parameters
— One global optimum

* Very fast,

— possible to use a whole range of cross-validation principles
from statistics

— No longer an NP-complete problem

« Strong theoretical foundation
— statistical learning theory
— Direct measure for the model capacity (VC-dimension)

29



Stacked Analytic Neural Nets (SANN)

1066

« Fast development

« Diverse subnet consensus
indicator of model output
quality

« Allows explicit calculations of
input/output sensitivity

« Can handle time-delayed
inputs by convolution
functions

 Gives more reliable
estimates based on multiple
models statistics

Internally developed in Dow Chemical
by Guido Smits

30



An example of stacked analytical NN application -
a model for catalyst efficiency

Sequence of inputs elimination C/212A may 30NN

T T T u 40 .« . . .
a0 Sensitivity analysis of
° 20 various process
. - 10

ol I parameters on
— catalyst efficienc
g * Il T =W = — L 20 L b
B -30
20 - -40
-50
25+ -60
5 1‘0 1‘5 2‘0
Number of eliminated inputs
NN model for catalyst efficiency on C/Y212A 05/07 2000 (inputs 3, 5,6,15,249
600 T T T T T \ T T .
‘ ‘ ‘ 3 3 ‘ ‘ ‘ NN model performance with
il R B R T B model disagreement indicator
400 xﬂ ; ¥ -
sanl Ay 1o _
Mg N T R I . . .
F L R | Model disagreement indicator
N U U NS S TS I e
| X | I | i | | h |
N R T T M};Mbw W
° (o) 100 200 300 400 500 600 700 800 900
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Steps Based on Support Vector Machines

+ Learning Set (120) —

------ Test Set

. . # Support Vectors 24)

Representative data collection * % & * — SVM Approximation
*o(_ > Outliers Detected (1

Reliable outlier
detection

\ 4

Data preprocessing and classification

v

NN sensitivity analysis of all inputs

v

Convolution parameters’ estimation

T Data compression

Outlier detection and data set condensatio 19961997 Data set using Inve (industrial data from a Chemical reactor)

S A Only 40% of data used

. . — Learning Set (8552)
GP function generation 5 ---- SYM Approximation -
2621 Suppont Wectors (40 %)

\ 4

Analytical function selection/verification

output

v

On-line implementation

v

Model maintenance

Aug Sep Oct Nov Diec Jan Feh

32



Support vector

N\

[]

DW

Support Vector Machines

Only 3 support vectors needed
to define optimal hyperplane

Advantages
* Solid theoretical basis =>
Statistical Learning Theory
* Model building 1s based on
global optimum
 Explicit control over model

Support vector complexity

Issues
ptimal hyperplane | * ad hoc Kernel selection

[]
L

Support vector

* Complex theory
* No commercial software
« Computationally intensive

Key to robust modeling

33



The generic scheme of SVM

Decision rule based on weights
and support vectors

Weights a1, a2 ... aN

Nonlinear transformations based on
support vectors: x1, x2, ..., xN

2 : j Input vector: x1,1=1,2, ..., A

It



Support Vector Machines and Neural Networks

Neural Network Support Vector Machine

Optimal hyperplane
in feature space

Feature space
QOO0 O0O0O0O0O0OOOO0

O O O O O O| Input space

35



VC-dimension

* In general, VC-dimension does not
coincide with the number of parameters
(can be larger or smaller)

* VC-dimension of the set of functions is
responsible for the generalization ability
of learning machines

* Opens remarkable opportunities to
overcome the “curse of dimensionality”
(large number of parameters, but low VC-
dimension)

36



Structural Risk Minimization Principle

A

In case of polynomial kernel 7% is

the polynomial order

———ee]

Guaranteed

Risk

<ﬂderﬁtting -- overfitti@

./ Generalization
-/ ability

“I7™———_ | Empirical

h*

Risk "
h J1 (VC-dimension)

n

—




Structural Risk Minimization Principle

Trade-off between quality of approximation of the given
data and the complexity of the approximating function.

The VC-dimension is now a controlling variable

Chooses the set of functions with the lowest VC-
dimension for which minimizing the empirical risk gives
the best bound on the actual risk.

Minimize

R(a) <R, () +D(5)

E:’rediction erroi/
Complexity

Where a is the model parameter of interest, /is the sample size
and h is the complexity measure

38



Structural Risk Minimization in learning algorithms

» Keep @ (§) fixed, minimize R, (&)
- Neural Networks

« Keep R.., (@) fixed, minimize @ ()
- Support Vector Machines

Neural Networks and Support Vector Machines are
two sides of the same coin

39



SVM for Regression: Constructing a tube

parameter)

Insensitive zone (tuning

40




Generalization capabillities of SVM based on mixed
kernels

Support Vector Machine
model based on

m
=

v-5VM (Learning Set)

. mixed polynomial and
- :m‘-“@ B RBF kernels
g R 1@@ /
5 30 L by
% aSedt 88
= 20 —
= ey
f// ®®“ "
Data set from a chemical | o3
reactor inferential +SVM (Tost Seq
sensor —
\ / T . .
o] raining range '
S
S 40
W
-]
=l
Impressive generalization

50% outside the training
range!

41



Genetic Programming

Genome Tree Plots « Based on artificial evolution of
Parents millions of potential nonlinear
l functions => survival of the
l_ j( fittest
-0.79 @ « Many possible solutions with
T B different levels of complexity
0. 7 P r 1  The final result is an explicit
nonlinear function
 Better generalization capabilities
Example of Crossover han If;ff;ﬁ:ftaﬁon
Operation
£ requirements
* Time delays
Phenotypes (Expressions)  Sensitivity analysis of large data
sets
Parents
_(-0.787701)% + x ye*  Relatively slow (several hours of
Children . o computational time)
_(-0.787701)7°° 4+ x X
—H4¥V

42



Steps Based on Genetic Programming

Representative data collection

\ 4

Data preprocessing and classification

v

NN sensitivity analysis of all inputs

v

Convolution parameters’ estimation

v

Outlier detection and data set condensation

A

GP function generation

\ 4

Analytical function selection/verification

v

On-line implementation

v

Model maintenance

Predicted |sooctane train C [LB/DAY]

Isooctane train C [LBE/DAY]

200

y=-257138 + 6731027 p2(({(«2 + »B) ./ xd) ./ wd))]

T T T T T T T T T
o A
150F----4----- :______' _____ :*____'___ [ :____' _____
100fF----7----- - Mgl R

- &
B - - Do b T T deceec Coses
D 1 1 1 : :
D Z0 A G G M = ¢ (Em 2

Actual lsooctane train C [LE/DAY]
Plot of Predicted and actual Isooctane train C [LB/DAY] with R2 = 0.87501

A
:r Response surface for Isooctane
D : 1 1 1 1 .
0 50 100 150 200 250 300

time samples in 2 hrs (1-7812000, (79-281) 2001
=— 150
=
g
i
=100
i
=
T .
o s
2 &04.-
o

0.
3 |
230

x 10°

. 210
200

hipp waht o 190 termperature
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Foq140

Foq120

7100

B0
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Where are the Building Blocks in GP?
Does the Schema Theorem apply?

B-Mov-35, RUM 1/, GEMERATION : 30, FITMESS : 0.5612 0.6034 0.9302

|:| L
At 5612
2r 3337 £.923
3r 2519 1812
Ay 4007 B33
Ste 028 5.797 232
BraE 5,904 1.6
T 4.007
at

05 0 05 1 15

[ elll “[In[«5).3.635) + "[«6.0.2018]) - «5]] + [ e[ In In[ «8]]).3.784]]

- We are working with dynamic structures that can arbitrarily grow in size.
- We’re doing Empirical Risk Minimization on a small subset of the

available information (we ignore all the sub equations).
44



How do we make sure the Structural Risk
Minimization Principle Applies?

SRM = Trade-off between quality of
approximation of the given data en the
complexity of the approximating function.

Can we determine something like the VC-
dimension for an arbitrary tree-structure?

Can we choose the set of functions with the
lowest VC-dimension for which minimizing the
empirical risk gives the best bound on the
actual risk”?

Minimize  R(a) <R, (a)+D(+)

emp

45



fitness

Paretofront
LNC LU et
! oot 00 :
09, 1™ . |
Settlttlenes 0.
et
0.8fz, ... " B
.
0.7f - i
0.6 B
(OXTETY
0.5 ® : B
0.4 . . -
oI
0.3 - :
@
0.2 i
®' . ‘e
® o, -
0.1 O o
0 Il Il Il Il Il
0 20 40 60 80 100

New Approach to GP:
Optimize the Pareto front of Fithess vs. Complexity
instead of just Fitness.

Number of nodes

120

04-0ct-2003, RUN : 1/20, GENERATION : 25, FITNESS : 0.86463 0.92048 0.86463
T T T T T T T

All sub-equations are also taken

*86.463
-2 -85.5049 *63.9085
184.506 -36.6928 T éiboss
-4 17,7826 182268 +43.0726
-26154 [59.0287 139 5286 ‘deos d8.0783
-6 70.1837 ‘283152 18018006
‘36,6928 -8 2178 828005
-8r [37.0885 882769
#4154 38.715
-10F
12
—141
-16F
718\7 | | | Bl
-15 -1 -05 0 05 1 15 2 25
e((x1 -sin((x4 - e((x3./(x3./ e(sin((x4 - e((x3./(x3./0.97327)))N))) + p2(In(x2))) 1) - —(em((x1 - In(

into account. This results in effective
population sizes of a few thousand

instead of a few hundred with no
additional computational cost.
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Pareto Optimality

A decision vector x €S is Pareto optimal if there does not

eX1st another xeS such that f(x)< S, (X ) for all
i=L...k and f (x) < f (x ) for at least one index J.

A

/ Objective space

Task in (Multi-Objective
Optimization Problem- MOOP):

Determine the Pareto front

47



The Standard GP is Extended with an Archive

Archive (t) = set of best equations found so far during the run

= pest estimate of the Pareto front

Archive(0) = Best(Initial equations from the population)
Archive(t+1) = Best (Archive(t) U Current paretofront of the population )

f A
2

Population

Archive

Pareto front

48



Crossover only occurs between the Members of

the Population and the Archive

Paretofront Paretofront
I rrr Ty 1

09F -, 09

08F i, 0.8F .

o7F - .l 07}

0.6 0.6
@ L. @
7] @ o o o o 0 o o o a ®
L osf @ gosr ®

0.4F . 0.4F

® [ ®
8- &
0.3 o 03r ®
@, 1
+ ® . H =
0.2 g o 0.2
01 ® oL, 01
® ® © ® & ®
0 1 1 1 1 1 1 | | 0 1 1 1 | |
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30
Number of nodes Number of nodes

- This ensures very quick propagation of the building blocks through the population.
- Population Diversity is always high by construction.
Both features result in a much more effective exploration of the function spacegy
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Post run Analysis is much faster
(The focus is on the Pareto Front Population)
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Advantages of Pareto-front GP

Initial results indicate 10-100 times increased
efficiency vs. conventional GP.

Building Blocks (Transforms) are generated
automatically.

Effective population sizes are much higher with
no additional computational cost.

The post-run Analysis is much faster — Only the
functions in the Archive need to be inspected.

No need anymore for multiple runs with different
levels of parsimony control.
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Particle swarm optimization

An efficient technique to find the global optimum
for model inversion and non-linear parameter estimation

At each time step t
For each particle i
Update the position change (velocity)

Vit +1) = 2 (V) + ¢ rand(0.1)-(B(1)- X, (1)
+c, -rand (0,1)- (P, (1) — X, (2))

Then move Xl.(t+l):Xl.(t)+Vi(l‘+1)

Note: - stochastic component

- parameters C,,C,, ¥ default values (2.05, 2.05, 0.73)
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Particle’s Movement — A Compromise

Current

position!

® Ghest (1) Global best
position
- @ Pbest (1)

X(t+1)

Personal best

position

New position!
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Software tools

DAP, Cave, IP21

Representative data collection | ==

Excel, JMP, SIMCA,
Mathematica A

——
Data preprocessing and classification

¢ MATLAB, Excel

NN sensitivity analysis of all inputs

-} Support fector Machines [_O][x]
Fle Edt View Insst Tooks ‘window Help
Filename Input Variables Input Data 4 GENPRO+ Settings o i 4|
‘ ‘ stat C 1 t t ’ t t
Fief. Set  [|TestSet
e e e Erd indes [~ onvolution parameters estimation
Calculate fitness Yes =l =
Tupe of SYM Loss Funclion Seale Data TestData Starting pattern nr 1 1
€ Classification © sdnssnsiive Fi-Soals Sl Erving pattam - -
¢ Regession € Quadrati =
R andom subset selection [%] 100
Z . . .
CorFirire | O MATLAB Toolbox Outlier detection and data set condensation — .
€ Linear Functions r
Murnber of runs
€ Polyromial Functions ansduction H(‘ SHI0 Optimizer £l
. —— Print figures betwesn uns Mo =
€ Sigmoid Funcion Fiegularzstion Parsmeter PO A Uze spstem defined inputs / level Mo =B
€ Walueof ;
€ Spline Functions - DE:E” o £ Cached Kemel . . Murnber of gensrations 20
© 8pine Furchons comefned GP function generation Fopulation size | S~ 100
€ Fourer Function Kemel Parameters . - \ 0
" ANDYA Kernel M e
Closs ik MATLAB &MATHEMATICA Toolboxes = -
A 4 TrTTETTIIT T / 0
. . . . . Parsimony pressure [0:1])_—~" 01
Analytical function selection/verification I TR vy e e g e =
Praobability for randam wz. guided crossower [0:1] 0.5
G2 MOD IP2 1 ¢ Probability far mutation of terminals [0:1] 03
s s
Probability for mutation of functions [0:1] 0.3
- . . .
On-line implementation Fun || Defaults || Functions Heln

v

Model maintenance —

DAP, Cave, IP21
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Case Study: Inferential Sensors
~ Key objective: Y / \

To predict difficult-to-measure aT
06,79 (kVT+ 00, 7)- €

parameter (melt index) from easy-
. Dpressure, flow, etc.) \ ~

to-measure data (temperature,

Training
data
Process
Process input Process Quality Inferential Sensors
g Development Software
- I T e ——
| i .
Lab-test Imple
formulas
3 c
e — - y=a+h-[e-x——dD
Quality Prediction 25
Easy On-Line

implementation

Inferential Sensor

An empirical model based on
analytical equations with built-
in self-assessment capability
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Issues with neural net-based inferential sensors

- Frequent re-training

Qgineers hate black-boxes

m with existing neural net-based inferential senm
- High sensitivity to process changes

- Complicated development & maintenance
- Low survival rate after 3 years in operation

S

%k box )

L

| W .

rate’ [vac: +

Analytical expression

rate~hopp wt

] pllt wt temp
temp

density » temp?

Specialized run-time
software

Directly coded into
most on-line systems
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Inferential sensor for emission monitoring: A case study
Data Collection

Chemical
Process

251 training data
points 107 test data points

(~140% outside training range)

=

Emission
variable

121241

1.13851

8 inputs

1.0865
1.12363 !

2 B 8 & g2 8 |

Design Of Experiments

o7



Inferential sensor for emission monitoring: A case study
Sensitivity analysis by SANN

Input x3
removed after
first sequence

[nput numher

Input x7
removed after
second
sequence

Sequence of inputs elimination for Y0

3 4 B 7
Murnber of eliminated |

Input x6 has the
strongest
sensitivity

Correlation coefficient

0

08

0.y

0B

04

0.4

03

0z

0.1

A NN with 4 inputs: x2, x5, x6,
and x8 is selected after discussion
with process engineers

Model structure selecti\ /by insensitive inputs elimination

L T T
___________________________ A | E S | £
parsimonious structure
! ! test data
_______________ Y R MUt SO
I
1 2 E 4 5 B 7 g

Mumber of eliminated inputs



Inferential sensor for emission monitoring: A case
study (SANN model performance)

Stacked MM model with R2=0.89058

---------------------------------------

T I I I
1 1 1 1

______________________________________________

o= AR, R
B rabmand indil
. i odel agraement Idl:-dlur\l

e

1 2 25 3 35 4
key input

45

x 10"

Bad extrapolation
(test data 1s 140% outside

- /\the range of training data)

---------------------------------------

Model based on 30 stacked NN
with 10 neurons in hidden layer

Reduced number of inputs
from 8 to 4

Fast test of the hypothesis about
potential nonlinear relationship
(in 20-30 min)

oY




Inferential sensor for emission monitoring: A case
study (SVM parameters)

<} Support Yector Machines: Setting Parameters -0 x|

File Other_Settings Execute Resultz

Dataset | Size lnput Data: [nsm]
Problem Type " Clagsification Regression Parameters

% support vectors: 10
App"ca‘[‘iong & Wodel Building " Redundancy Detection ™ Dutlier Detection C - 106

Mixed Kernels: Polynomial and RBF
Kernel Choice IHadialEasis Function [FlBF]j |Enter Parameters) j Range Of P0|yn0mla| kerne|S 1'3

widh | 03 Range of RBF kernel: 0.25-0.75
Complexi’(y IF!atio Support Wectors j IEnter Pararneter j Range Of ratiO 0.5 - 0.99
Mu I 0E

Reqgularization |Enter Parameter - cf

Loss-Function |LinearLoss Function — x]

E uit |
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Inferential sensor for emission monitoring: A case study
(SVM model performance)

Sy rodel wath R2=0.248 . .
o - Impressive extrapolation

(test data is 140% outside

\the range of training data)

Model based on a mixture of 2nd order
polynomial global kernel and RBF local kernel
with width of 0.5 and ratio of 0.95

Reduced number of training data points

1 15 2 25 3 35 4 45 from 251 to 34 (based on support vectors)
key input gt
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Inferential sensor for emission monitoring: A case
study (GP parameters)

+ GEMPRO+ Settings

Calculate fitness

Starting pattern nr

Ending pattern nr

R andom subset zelection [%]

Fun number

MNurmber of runs

_ o] x]
b Set
|

Fef. Set Tes
res j Ma

0

-
{mm]

Frint figures bebween runs

Lze zypstem defined inputs £ level

MNumber of generations

Fopulation size

R eproductions/generation

Frob. far function selection

Fitness function

Inzenszitive zone [0:1]

Parzimany pressure [0:1]

Mumber of wariables to eliminate

Probahbility for random vz guided crozsowver [0:1]

Frobability for mutation of terminals [0:1]

Probahbility for mutation of functions [0:1]

Defaults

T

Parameters for a GP simulated evolution

Reference data :34
Random subset selection [%] 100
Number of runs :20

Population size :500
Number of generations 100
Probability for function as next node :0.6
Optimization function :Corr.Coef
Parsimony pressure :0.1

Prob. for random vs guided crossover :0.5
Probability for mutation of terminals :0.3
Probability for mutation of functions :0.3
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Inferential sensor for emission monitoring:

A case study

(Selected symbolic regression model)

Pareto Frant far R2 (training data)

T - === === ememmnmns [eemE s

opld ]
I:I_S.._-l _____________ : _________________

® ., !
B DA f-oomee oo

02 b e _ﬂ{%;,?;. ;

DS ""'"';:"',:'"I'i'i'""""""""'

I].IE
Ratio of Nodes

Selected model on Pare
front

a

ctane train C [LB/DAY]

Predicted Isoo

octane train C [LB/DAY]

100

200

i h
0 20 40 G0

i I
0 50 100

Simple expression with acceptable
performance (R2 = 0.87)

= 257138 + 67,3102 p2(({{ 52 + xB) ./ x4) ./ xd))]
T T T T T T T

T
: : : E
il Eahh R AN = o SRR
----- T BT e ekt co Nt A LSRR
I L LW I
IS . R . . A S SOOIt SO S AU
¥

h
80

! H H h !
lom 2@ el e Em 2

Actual Isooctane train C [LB/DAY]
Plot of Predicted and actual Isooctane train C [LB/DAY] with R2 = 087501

—————————————————————————————

|
150

H I
200 250 300

tirne samples in 2 hrs (1-78)2000, (79-281) 2001

Response surface of model
according to process
physics

esponse surface for Isooctane

160
140
120

100

Izooctane [LBE/DAY]

hpp wght o 1s0 temperature
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Dt pot

Inferential sensor for emission monitoring:
A case study
(Final solution: Stacked Symbolic Regression model)

180 —

Stacked GP model with R2=0 66348

______________________________________

------------------------------------------

""""""""""""""""""""""""

o sl st ik,
i i i : 5—

3 2 25 3 35 4 45

key input

In operation since August
2001

Model based on & Stacked
Symbolic Predictors

Shorter evolutionary process based
on 8.44% of the original training
data set
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Key application areas

Robust Inferential Sensors
Mass-scale on-line empirical models

Process input Process Quality

|

Automated Operating Discipline
Consistent intelligent on-line supervision

Empirical Emulators of Fundamental Models
Effective on-line process optimization

Fundamental model building based on GP
Accelerated new product development

Nonlinear DOE based on GP
Minimizing expensive process experiments




EC Applications in Dow Chemical

Application Domains

Examples

Material Design

Color Matching
Appearance Engineering
Polymer Design
Synthetic Leather

Materials Research

Diverse Chemical Library Selection
Fundamental Model Building
Reaction Kinetics Modeling
Combi-Chem Catalyst Exploration
Combi-Chem Data Analysis

Production Design

e Acicular Mullite Emulator
e EDC/VCM Nonlinear DOE
e Bioreactor Optimization

e Epoxy Holdup Monitoring
¢ Isocyanate Level Estimation
: P e FTIR Calibration Variable Selec tion
Production Mor"tormg ¢ Poly-3 Volatile Emission Monitoring

& Analysis o Epoxy Intelligent Alarm Processing
e PerTet Emulator for Online Optimization
¢ Emissions Monitoring
e Diffusion of Innovation

. . e Hydrocarbon Trading & Energy Systems Optimization

Business Modeling ¢ Scheduling Heuristics

¢ Plant Capacity Drivers
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Automating Operating Discipline

g el - Heuristic rules defined verbally
File Process Alarms Preferences About Help by process engineers/operators

E Logic for Alarm Gase }T‘.hsn-%;?i:ile‘%[);:;i:z:a:mre = saction 4 wet point by 1C L d h 0 | d u p p red iCtO r d eS i g n ed by
vice || Excess Cooling of R206B .
Ll 4 i.NgectionGTenperatlre:secﬂonBsetpointby‘l & StaCked analytlc N N and GP
Ml 3. Chilled water flow to epoxidizer = 30 gpm ..
4. IEi)errigersdion Unit Qutlet Tem pamture decresze by ° al | d eCISIO n b | OCkS h ave fu Zzy
| N thresholds defined by

membership functions

« simple empirical models and
mass balances

« fundamental model predictions
are used in the heuristic rules

o
i | :
EXCESS-COOLING-Q i' POXIDIZER-R20GE-
B 7
D L=
2
LI_F6-EP-CP

& L— 3 —
EXCESS-COOLI
Chilled Water Flow
A0
"l——- 139 2 7 |

LI_FPE-EF-CP

Fefrigeration Unit Outlet Tem pemture

 reduced major shutdowns
 reduced lab sampling

E Interface Frablems EWater lett in epoxidizer at startup Z00 000
L m e ) 1 oy | | LT M) v P o g Tt e T | HOLDUR-CH




Emulator for optimization of an industrial chemical process

Four z@
levels
DOE
Training |,
Data set
10 inputs 12 outputs
P Reactor P
Model
20-25 min/
prediction
Test -
Data set

Symbolic
Regression
Emulator
5 ms/
prediction

On-line process
optimization

—)
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Symbolic regression-based emulator’s performance

|iSimple expression for on-line
implementation

J:E—EI ®q -.1.':5+"q' Xg -1 X-Xg+I|(Q
Log[x2]2

6 X+ Hy + X5+ 2 X+ Xy Hg — 3 X -

Y5 = 3 xg+
X0

i Acceptable performance
Y5 Symbolic Regression Training (R 2 = 0.94) 27

-o-- Actual Y5

900 5 r— 4 —=— Predicted Y5

800 % % ; % %ﬂl %

700 m? ; o] & W
? 600 % % o L“ ‘ % % %
:o: 500 ; k. | ° 3 d :
3 ® ° ° 3 o %
; 400 : d K ‘é MO & "g ﬁ

500 - , 2 S ¥ % & X O

i »

%

200

100 -%

0

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Sample Number
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Accelerated Fundamental Model Building Based on GP

1. Problem

definition
A 4
2. Identify
—> key factors
Y
—— 3. Evaluate the

problem data

A 4

4. Construct —
the model
\ 4
5. Solve the model —

A 4

6. Verify the
model solution

1. Problem
definition

A 4

2. Run symbolic

f regression

A 4

3. Identify key
factors&transforms

A 4

4. Select GP
generated models

\_{'

5. Construct first
principle models

A 4

7. Validate
the model

Classical fundamental
model building steps

\_{"

6. Select&verify the
final model solution

A 4

7. Validate
the model

Can we accelerate
hypothesis search
by simulated evolution?

Accelerated fundamental

model building steps
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Fundamental Model Building Based on GP

1. Problem
definition

A 4

2. Run symbolic
f regression

A 4

GP

3. Identify key
< factors&transforms

A 4
I I
\ 4. Select GP —
generated models
e
5. Construct first
principle models

\_{"

6. Select&verify the
final model solution

A 4

7. Validate
the model

Accelerated fundamental
model building steps

Run simulated evolution
before beginning

fundamental modeling

GPFunctionl = e ™7 —Log[—Log[x%] - xﬁ + X5 + x—_.]2 - Xy + Xy + 3y

y=a+b (e |22 —af]

¢ 3.13868x 10717 V2% 1n[(x3)2]x2
-

+1.00545

Virtual modelers ’

The evolutionary process identifies
the key input variables as well as
natural groupings & relationships.
Combining this with a domain
knowledge and first-principles
insights is very powerful.
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Approaches to accelerate fundamental model
building process

Reduce hypothesis GP as automated
search by GP invention machine

Al approach

€00 @

=

Mimic the expert

Maximize creativity of the expert
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The problem of structure-properties
iIn fundamental modeling

Properties:
- molecular weight

- particle size MIT o
crystallinity ——> o

- volume fraction
- material morphology
- etc.

Material structure

L Key modeling effort
Modeling issues: S

, , _ or new product
* nonlinear interaction development
* large number of preliminary

expensive experiments required
* large number of possible mechanisms
* slow fundamental model building

« insufficient data for training neural nets
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Case Study with Structure-Property Relationships

Theoretical Analysis Hypothesis Search

Fundamental T PT
Model Building ¢ ~

=g — - —
dt 122

Fundamental model

y=a+[bx, +clog(x,)]e" +dx;

3 months

Structure-
property
data sets

Fundamental Model Building + Symbolic
Regression = Accelerated New Product
Development

Sensitivity Analysis

Simulated Evolution

Ao T

Symbolic Regression Model

Symbolic
Regression

.
& log (xg xg%)

+ 1 + ¥t
e *3 + log (xz)

(2]

200

E]

£
Massered DETTIC)

e 10 hours

N ! ¥ 74
R i
¥ W W ®m % W %



Results from hypothesis search
Key transforms

Xy .
Transform1: — with R? of 0.74;
A Physical interpretation found

L ]
Transform2: T with R of 0.81;
X5

Xy Xa

J5

with R of 0.84;

Transform 3:
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Results from hypothesis search
Selected symbolic regression empirical model

Fundamental model

GP-generated empirical model
aptured correctly the functional forms
of the fundamental model

y=a+[bx, +clog(x,)]e" +dx,

Selected empirical model

2

Square root
form for x1 CD

\f log (:-: 1% 5
= a+ h e -
¥ ==¥3 + log (3z) 1 Z Linear
form for x5
Exponential
form for x3 Logarithmic

form for x2
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Results from hypothesis search
Response surface analysis of the selected symbolic
regression empirical model

Fedpirms sulsts i

Duick assessment
do we need more
experiments?

: A Quick assessment
- -‘-.___.- ﬂ .
X5 s of the type of .nonhnear
behavior

77



Comparative Analysis of Symbolic Regression in
Fundamental Model Building

Model Development Speed

* 10 hours vs. 3 months
Summarize Multivariate Data
» convert data into equations to
facilitate human insight
* can explore parameter
sensitivity and play what-if
games
Accuracy
» achieved > 90% correlation
with experimental results
Identify Key Variables and
Transforms
« with the exception of x1,
symbolic regression captured
correctly all other functional
forms in the model
Suggest Physical Mechanisms
» evolved expressions and
equation “building blocks”
may be interpreted from a
first-principles viewpoint
Suggest Future Experiments
* optima in evolved expressions
may be validated in future
experiments

Blind to Physics and Chemistry
* genetic programming does not
currently take into account the physical
or chemical laws
» expressions may have no physical
meaning - mathematical consistency is
how fitness is defined
* inclusion of physical constraints is a
research topic
Garbage-In/Garbage Out
» appropriate variables must be supplied
+ data is assumed to be accurate
* operational range should be covered

| Experts (Scientists) are Still Required

domain expert is an absolute must for
interpretation of evolved expressions
The domain expert delivers the final
fundamental model

78



GP and Design Of Experiments (DOE)
Models Showing Lack of Fit

Situations of Lack of Fit

1. Simple factorial DOE 2. A response surfacg DOE
Enough experiments to fit first order already had all experiments to fit
model second order model
y=45, +é:ﬂixi +ZZIBijxixj S, =5, +[Z::ﬂixi +Zﬂiixi2 +Z;ﬁij‘xi‘xj
Classical approach if LOF Classical approach if LOF
add experiments to fit second no alternative (use model as it is)

order model

k
Sk = :Bo + Zﬂixi + Zﬂnxzz + Zzlgijxixj
i=1 i<j

More costly experimer[bﬁ

Suggested approach:
Use GP to transform inputs
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1. Generate GP models 2. Generate input transforms

Variable transformations suggested by GP model

17, of2¢, 2 Original Variable Transformed Vanable
5 - 313862107 ]11[{:-:3]1 lxg +1.00545 (2) 2
X4 X Z,= exp[q,,u'zrl ]
X5 Zj — X7
X3 Z; = In[(x;)]
Xy Z,=x4"

Selected solution ’ 3. Fit response surface model in

transformed variables

4 4
Sy ::Bo +Z:Bizi +ZZIBijZiZj +Z:Biizi2
i=1 1

i<j i=

Source DF |Sum of Squares|Mean Square| F Ratio
Lack Of Fit| 2 0.00049190 0.000246 2.2554
Pure Error | 2 0.00021810 0.000109 Prob > F
Total Error| 4 | 0.00071000 0.3072— No Lack Of Fit
Max RSq —
09999 \‘ (p=0.3037)
Note that Lack Of Fit is not significant (p=0.3072)
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PSO application: Optimizing color spectrum of
plastics

- [B]X]

Multiple-objective PSO
with 15 variables

—J
File  Edt Toolz Help
BEH PSR EE Q&[22 » amlos =ll%s] 1]
285 D28 (rarmal) |
Recipe lgddlhvasl Eeﬂactance] Lomection  Optimise |lransm|tlance | Matching ‘ Mixing ‘ K/S |
Palymer R 1 b o o o
mesmsr <[ W0 4 cal-time optimization|
Lower Limit Higher Lirnit Weight Spec. Value
Pigments Pigments Outputs: b
[CIrwhie6RFS - | [ 031082 ¢ b q 3| Matchinglet:  [20 3] o0 0.00 m 2—3 Seconds
[WPBack MG < | [ 0000002 4 ) 0 01%5 | Cuvemstiching [50 2 0o 0,000
(W75l 151 -] | ooossE 4 p i 025 || Transm. doer .00
iP Green 36:1 d [omoszos 4 p 0 0.25 Transm. Max: - | 0.0 0.00
P Red 278 || ooozes 4 p i 1| Mising CMC: T | i 0.00
(W7 Black 7:2 -| | DoooootE 4 0 003125 | | ColorsntsCost 100 3] 0.0
[CIP-velow 180 v| | oD00BIE 4 i 0125 | | HColarants 2 on i
Sum / Factor. | 03360957 | 1 \ 0 | 2
Dyes Dyes Parameters Genetic Algorithm
|5 Green3 | | ooozriEs 4 » i 05 Population Size: 100
ﬁsvuem j CREE I . 0 0125 Max Generations 1000
‘DSYE"UW 33 j ‘ 0o0o0oms 4 p 0 0.0625 Generation:
ﬁsareenza || DomB4s 4 p 0 0125 M aximum Fitriess: 0.950
|05 Orangs £0 -] | oooodzsz 4 p 0 0.0625 Fitriess:
Sum ¢ Factor, | 0.0058315 | 1 [ o 0.25 ColourPro Formulation Optimization
All Colorants: | 03419273 | 1 \ 0 | 2
60
50
g
Frequency 30

B Frequency Swarm
o GA

Standards_

=

0.01

0.02 0.04 0.08 0.16 0.32

Residual error of match

0.64 1.28 2.56 More
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Other PSO applications

* Drug release predictor
— 6 parameters
— population size = 30
— optimization time: ~ 30 seconds
« Foam acoustics performance predictor
— 8 parameters
— population size = 50
— optimization time: ~ 5 seconds
« Crystallization kinetics predictor
— 4 parameters
— population size = 30
— optimization time: ~ 2 seconds

82



Open Issues

Complexity Control & Smoothness Characterization

Diversity Detection

Identifying Metavariables

Convert Hard GP Problems into Easy Ones

Should we be doing Cultural Programming?

Blending Heuristics & Prior Knowledge
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Complexity Control & Smoothness
Characterization

« What is going on between
the data points?

« How do we identify and
eliminate pathologies?

 How do we recognize and
characterize the overall and
local smoothness
(complexity)?

Later Results

.o 0D.989 0,975 x1 £l.
H i W Ay AL

¥2. =2 T15%L. 47, x
- Hix PR e o4l
3'1'

A2



Cultural Programming?

« Particle swarm optimization has replaced most
of GA for our applications

* Does the cultural algorithm metaphor have a
similar potential with GP?
— Coevolution of symbiotic species?
— Sociological niches?
— Population size dynamics?
— Cascaded Evolutionary Programming?
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Business potential for ensemble-based predictors

Robustness toward input measurement faults

Model Prediction when Yariable 18 was Fixed Between Samples 1100 and 1300

-

"

1.8 |-

=

1.6
1.4
12

1
0.8

0.6

- DObservedY
Fredicted ¥
+ Kodel Disagreement Indicator

_____________________________________

___________________________

_________________________________

____________

1000
Sample Mumber

Prediction still available by models
not based on fault measurements

Problem detected by model
disagreement indicator

Measurement fault between
Samples 1100 and 1300 86




Business potential for ensemble-based predictors

Analytical instrument drift detection

(a) Error Between Analytical Instrument and Model

0.5

Upper Limnit
T

Lower Limit ™

Fredicted ¥ - Observed Y
L]

0 500 1000

1500 2000

(b) Model Prediction on Testing Data

Growing error between analytical
instrument and model prediction

Probable root cause:
analytical instrument drift

2 .
- Predicted Y . ) . ) o
15 Observed Y Model disagreement indicator 1s within
+  Kodel Disagreement . N
: critical limit

0 500

1000
Sample Number

1500
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Summary

Evolutionary Computing can create significant value to industry by
reducing model development time and model exploitation cost

Integrating EC with Neural Networks, Support Vector Machines, and
Statistics is recommended for successful industrial applications

This strategy works for many real applications in the chemical
industry
The key application areas are:

— Inferential sensors

— Improved process monitoring and control

— Accelerated new product development

— Effective design of experiments

And this is only the beginning ...
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