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GAs —.

GA with no selection, 1-pt crossover and mutation
GA with 1-pt crossover and unitation landscape
GA with 2-pt crossover and unitation landscape
GA with 2-pt crossover and unitation landscape and
mutation

GA with uniform crossover and weak epistasis
GA with uniform crossover and “quasilinear” fitness
GA with uniform crossover and NK-landscape

GA with inversion and n-city TSP landscape

GA for a 555-job job-shop scheduling problem with
three point crossover with probability 0.9 and mutation
probability 0.015

GA for the Multi-Resource Traveling Gravedigger
Problem with Variable Coffin Size
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EC Theory

What should it do?
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The Problem of Taxonomy...

Initial
Population
P(0)

EA “black box”
Parameters p

Fitness landscape
Parameters f

EA-Problem
Pairs
“MODELS”

| /\ “Similarity
“Metric” Measure”
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The Space of EAS

How “far apart” are a GA with one-point crossover, pc=0.8, mutation, p=0.08,
and a NK fitness landscape, N=27, K=3 and GP for K-SAT, K=4, sub-tree
crossover, pc=0.5, mutation, p=0.05?

How “far apart” are a giraffe and a grasshopper?
How “far apart” are hydrogen and uranium?

How “far apart” are a GA with one-point crossover, pc=0.8, mutation, p=0.08,
and a NK fitness landscape, N=27, K=3 and a GA with one-point crossover, pc=1,
mutation, p=0.1, and a NK fitness landscape, N=35, K=3?

How “far apart” are a giraffe and a horse?

How “far apart” are sodium and potassium?

Taxonomy Is easier with “distance” measures
11



Taxonomy| .

tell us? E.g.
B | “electronic
enomenology - A structure”
we want more of that!

e.g. “periodic table” History —

contingency, that’s what

Universality

12



Phenomenology

13
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Unlversallty — when is the devil in the details?

Eigen model/Needle-In-a-haystack | Master sequence/needle

Characteristic of viruses and real world
BRITTLE problems (it works or it doesn’t!)

Qualitative behavior dominated

by existence of error threshold -
doesn’t depend on “details” - UNIVERSAL

1 w

1.00 - — E ZS}mmllﬂ < 53' ~
0.80 — =1
| ‘Disordered”
Wy £@rdered?
0.20 —
o | Errpr threshold
0.00 0.05 6.10 0.15

f1
selection

J

_. fitness

v

genotype

Value of critical mutation
rate does depend on details
(N, f1, 0 ...)

— NON-UNIVERSAL
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Universality — when is the devil in the details?

Master sequence/needle
Same UNIVERSALITY CLASS o selection
as NIAH & i‘
Noisy “background”
Master sequence/needle ]
genotype
< selection
| 7
Vs
periodic “background”
genotype

15



Universality — when is the devil in the details?

NOT in the same UNIVERSALITY

CLASS as NIAH!

1

'

ZS}IEEdlE < Sj' -

10—l L
All 1’s state .
0.50 :
dominates
m 0.00- Error threshold
-0.50 -
. All -1’s state
dominates
e 0.08 0.12

0.00

0.04

Master sequence/needle
All -1’s state  All 1's state
(Vp]
§ Sub-needle
= N,
N
selection
genotype

Corresponds to a system where there’s
several “it kind of works” states as
well as a “it definitely works” state

16
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Unlversallty — when is the devil in the details?

Same UNIVERSALITY CLASS
as NIAH? YES

What typically happens?

fitness

—> | <

Initial pop. 1

Master sequence/needle

selection

Initial pop. 2

genotype

fitness

Master sequence/needle

selection
e

O 000

Initial population

»
»

genotype
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Unlversallty — when is the devil in the details?

Phase transition for K-SAT

10408084608 - | :
0.9 F'rcn‘mbﬂan af being satisfiable -$— -
; Y - H0%—satisfiable point -
03 : i
0T F : i
0.6 : i
Probability ;
05~  Easy Hard -
0.4 F : |
0.4 - !
0.2 - |
0.l -
0 ' ' e $
2 3 4 5 6 7 8

Ratio of clanses—to—variables
IMgure 4= Probalihiy of satisfiability of S0—vanable formulas, as a funetion of the ratio of clauses—to—variables.

From: Mitchell et al.(1992) Hard and easy distributions of SAT problems



Need objective criteria by which to judge the degree of affinity
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Similarity measures

between different models. There are many possibilities...e.g.

Average population fitness vs. time

Best in population versus time

Diversity versus time

“Order parameter” (e.g. % of population that is optimal as
function of EA parameters)

Time to find optimum

“Hardness”

“Robustness”

Fixed points (asymptotic behaviour)

19
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Example of a similarity measure

I 103 OHNEMAX, sting l=2ngth 18, mutaton raj= 001
T T T T
r——T T T = -
3.5 _,.'—""'-FF_;- - L —— o

< 10% difference between
One-point and genepool

]
[E] L
Py
-
™
'\-\.‘"x
AN
LR
W
W
|
=

]
T

-
L
1

1| “Model”/”Toy” problems
1| tell us much more than you
1| think!

-
]

Courd of indviduals of mazimum finess

Q.3

L 1 1 1 1
a0 50 &0 Ta a0 a0 100
Ganaration

Figure 2: The number of optimal individuals for different

types of recombination

Wright, Rowe, Poli and Stephens - GECCO2002
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Example of a similarity measure
Stephens, Waelbroeck and Aguirre - FOGA 7

M(L) - (nopt(L) ) nopt(l—max))/ nopt(l—max)

5

Nopt(L) = no. of optimal
2-schemata/total no.
possible per string

Interested in whether short or long building blocks are
preferred. M(L) > 0 ==) preference for short blocks,
M(L) < 0 =) preference for long blocks

21
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Example of a similarity measure

Experiment: popsize =5,000; L. . =8; 30runs

MmaX

0015 T T T T T aa1s

- —
-1 —
[ R
oo | L = — |
0 s —
= -—
0005 L
- L
a ',,"'l'll-'ll el . ||!II .
5 d = ; Y e T
- R e
-0005 - -0 005 L \u}a "'._ e T o rF"',-J—_—_—.-f
G - bt Teee, __.f"'-"___d ‘_',.,-'-"’f -
. S
I". \"‘{ H\\ [ - r
) .
o 01 N N
0015 F 1 -0015 |
-002 1 1 1 L 1 0aa 1 1
a 5 10 15 X0 25 o) ] 5 [T 15 o ac Ei)
gen=rallan genaradlan
Figure 1: Graph of M (1) versus t in the unitation model with g = 0. Figure 2: Graph of M(I) versus ¢ in unitation model with p. = 1.

Without crossover — no preference for ~ With crossover — large schemata grow,
one Size versus another short schemata diminish — opposite of
Building Block Hypothesis 29
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Example of a S|m|Iar|ty measure

Y = Add pair epistasis: + =>repulsion;
flei) = 2 1i+ ¢ I _
{ Z Z - —>attraction

JEE(

am T T T T T T T a0

- |y — |

0005 (] 0005 |
R
M
i

a K ..: o _..'1__

________________

ooos | Y -0 00s -

il
il

001 F on b

0015 F

VT “Repulsion” | -
P pe = 1.
-002 b Pt Tj'l_l = { } I 7] 002 r

-0 025
4]

-0pas 1 1 1 1 1 1 1 1 1
& i 15 = 25 ] = 0 0 5 10 15 20 2 a0 2 a0 45 50
— generdlan

Results for p. = 1. with no epistasis  Results for p, = 0.with no epistasis are
are similar to those with = =0.and an Similar to those with 7= = 1. and an

epistatic repulsion between bits epistatic attraction between bits

UNIVERSALITY 93
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Example of a similarity measure

“Deceptive” landscape
f{ll} 3. f{{}l} = f{ll[}} =1, f{l[}'[}} —2 for every palr

---------

-------

Without crossover - no preference  With crossover — short blocks

for one size versus another preferred
24






The “ideal”
A5 26



New Applications
New Algorithms

e.g. Multi-Resource Traveling Gravedigger
Problem with Variable Coffin Size

“Most algorithms are NEVER used (except by the people who
created them)” - Darrell Whitley, GECCO 2003 tutorial

27



The Problem of Theory
The EC Expectation Gap

"The Hare and %

the Tortoise"

What theoreticians think practitioners
are and what practitioners think
theoreticians should be

What practitioners think theoreticians
are and what theoreticians think
practitioners should be

28



The Problem of Theory

“Professors in every branch of the sciences prefer their own theories
to truth; the reason is that their theories are private property, but truth
Is common stock” — Charles Caleb Colton, Lacon (1825).

“It i1s the nature of an hypothesis, when once a man has conceived It,
that is assimilates everything to itself as proper nourishment, and,
from the first moment of your begetting it, it generally grows the
stronger by everything you see, hear, read, or understand” — Laurence

Sterne, Tristram Shandy (1767).

“EC theory is hard!” - Chris Stephens (most weeks).

The EC
“Expectation Gap”

The Population Biology
“Lesson”

“How does this help practitioners...?” — most referees

29
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EC Theory — the “Bare Necessities”

GP

2 GAS

“Objects”
Dim = [X]

Linear GP

VariabIE'Iength GAS — (1.321,2.463,3.149)

e | Y
X ES
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EC Theory — the “Bare Necessities”

Objects have fitness: Jx: X = R"

Objects have interactions: f W

Object; > Object; ]  Selection

Object; ~—— Object; P;;  Mutation Object
Object; + Object j < Object;, + Object, Recombination
k m — recombination “mode”

P(t +1) =H(p,f, P(t))

4N Dynamics .







EC Theory — the “Bare Necessities”

M K.L

Pt +1) = M,’ ({1 — PPy +pe DD ;—{p{M} +p(M)) A, HL{;H}P;{PL)

Pr(t +1) - Probability to find “object” |

P - Probability to select “object” J

M, - Probability to mutate “object” J to “object” |

p(M) - Probability for recombination mask/mode M

Pr - Probability to implement recombination

Ay E (M) - Probability that given “objects” K and L and mode M

“object” Jis created (=0, 1).

Sums are over all possible recombination modes and all objects

J and K. e.g. for GA and homologous crossover 2% terms 23



Pt +1) = M,’ ({1 — PPy +pe DD ;—{p{M} +p(M)) A, HL{;H}P;{PL)

M K.L
- e / - ~
Probability that 1t
“object” J is P ropabl’llty_ tha Probability that parent “objects” K
) object” J is cloned | oy
mutated to and L are se ec_ted and “mixed” to
“object” | form child “object” J via mode M

Example: 2-bit GA withp(M) =1/4 forall M, I = (11)

0000 0000
0000 0000 !
A (00) = 5900 Aan(OD) =1 6101 Holy’
1111 0101
M1 ((11)) = Ay ((00)) M1 ((10) = Ay ((01)"

34



EC Theory - the ) Bare Necessmes

Can integrate the equation and represent the solution graphically -

It Term exclusively due
I t to constructive effect
of recombination

Pr(t)y= 2>, | * X > > L t=n

JKL n=0 &

K L
j t=0

It . Probability that object J propagates from t to

=  Grg(t,t") t andconvertsto I on the way
Jt fic f

1 - KL s JL  Measures strength of
g E—{p{M} +p(M)) A, (M) f(t) f(t) interaction between

objects J, Kand L
K e =

Pr(t)
35



Iterate ... by recursively substituting for « untilgettot=0

Example — 2-bits 1-point crossover

It " 11 11 11 11
< +A+)\+A+?J\ T
e # o A4 & &4 0 18 %01

S

®®e (0 01 00%11

+  Eachtree tells us the probability
of forming 11 by a given process.
In principle can see which processes
are most important. But ...
Tree depth bounded only by t!
COMPLICATED!

36
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EC Theory — the “Bare Necessities”

General (Feynman) rules:

1) Draw all possible tree diagrams that contribute to creation of “object”

2) For each internal line attach a propagator
(FM);;'
2 (EM);" Py(t)

3) To each vertex © attach a weight

Gryp(t,t") =(1 - Pf.-}t_tJ

L) + o800 KE oy S5 TE
3 (P + D)X H (M) £ 2o

4) Toeachroot ¢ attachafactor Pr(t')

5) Carry out integration over time for all vertices

37
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EC Theory — the “Bare Necessities”

So what do we have so far from the “microscopic” theory?

Exact

Mathematically rigorous
Unifies Phenomena
Intuitive

Predicts well

Useful for Practitioners

Yes
Yes ?
Yes/No
NoO

NoO

No

39
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EC Theory — the “old stuff”

Let’s compare with the old Schema theorem and Building
Block Hypothesis approach

Exact No
Mathematically rigorous Yes ??
Unifles Phenomena Yes/No
Intuitive Yes/No
Predicts well No ?
Useful for Practitioners Yes/No

40



Coarse Graining

41



What?

How?

42



Coarse Graining
Why?

1. Emergence of “Effective Degrees of Freedom”
(EDOF)/Collectivity/Universality

2. Curse of dimensionality/intractable dynamics

Coarse-grained degrees of freedom are combinations

of the underlying “microscopic” degrees of freedom.
EDOF are those coarse-grained degrees of freedom that
are important for the dynamics

43
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Coarse Graining
What?

8.

No gk wdE

“Direct” dimensional reduction
Phenotypes

Schemata

Hyperschemata

Building Blocks

LLowest cumulants of fitness distribution
“Normal (e.g. Walsh) modes”

Others

What is the most natural coarse graining depends on the
operators and their corresponding parameters, the fitness

landscape and the population.

44
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Coarse Graining

How?

Phenotype Dynamics
Schemata Dynamics
Hyperschemata Dynamics
Building Block Dynamics
Aggregation of Markov chain
Truncation of cumulants
Walsh analysis

Others

©ONOoOOTAEWNE

IS It exact?

45



Coarse Graining By
Coordinate
Transformations

Identifying “Effective Degrees of Freedom”

) R O~ - n
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46






Coarse graining via Coordinate Transformations

Pt +1) = M,’ ({1 — PPy +pe DD ;—{p{M} +p(M)) A, HL{;H}P;{PL)

M K.L

IS COVARIANT, I.e. has the same content in ANY coordinate system

P(t} isINVARIANT in any coordinate system, its components
Pr(t) however, do change

4 P(t) Implemented by rotation matrix 2’ P(t)

Pr = i‘L'IP, y’
=2 A —

48



Coarse graining via Coordinate Transformations

o Appropriate choice of coordinate system can make manifest the
Effective Degrees of Freedom and greatly facilitate calculations

(x,y,2) = (R,0,¢) [W/VVW

<“—>

Exploit spherical ufzi)
symmetry u(k) = ;1,,_; >, explikzi)u(z;)

Normal modes - waves

Coordinate system used up to now is the “object” system — e.qg.
strings, trees etc. == > OK when EDOF are strings, trees etc.

Appropriate in ““strong” selection regime

49



.
# gl i 2 .. Sy S -
# % el L s e R
L Bt . R

Coarse graining via Coordinate Transformations
Mutation ...

Walsh basis (for fixed length binary strings)

(1 1 1 17

, . @) o, 1[1 -1 1 -1
W; ; = 282 (_1)#(i®1) w=211 71 1
1 -1 -1 1]

Coordinate transformation matrix is

orthonormal
(1-p?* pll—-p) pl-p) P 1 0 0 0
Mo | PA-p (1-pF pF  pl-p | [0 (1-2p 0 0
pl—-p P (1-p)* pll-p) 0 0 (1—2p) 0
P opl-p) pl-p) (1-p? 0

0 0 (1—2p)?
_/

—~

“Frequencies” of normal modes
EDOF are discrete versions of normal modes
50



Coarse graining via Coordinate Transformations

In Walsh basis ...

e Mutation matrix Is diagonal
e Selection matrix is non-diagonal

» Crossover — O(n) Walsh coefficients made up from
crossing O(m) and O(n-m) coefficients

 “Normal modes” not simply interpretable

 Useful for landscape analysis

Appropriate in “strong” mutation regime

ol
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Coarse gralnlng via Coordlnate Transformatlons
Crossover..

Bu||d|ng Block basis 111 110 101 011 100 010 001 00O

1111 0 0 O 0 0 0O 0

I T o T 5
A= (%111 0 0 1 0 0 0 0O

1«%(1 1 1 0 1 0 0 0

*1x| 1 1 0 1 0 1 0 0

‘\*ﬁ\‘ **x1/1 0 1 1 0 0 1 0

(0,0) (1,0) , (1,%) kxx/1 1 1 1 1 1 1 1

&ﬁﬁ(m} = Aaidiji A g; JAZL =0 unless 7Y is the complement
of ﬂ with respect to @ and 3 is equivalent to 7
Example: 2-bit GA with (M)} =1/4 for all M, I = (11)

0001 * In Building Block basis interaction matrix is skew

diagonal
m L0010 I\(j:k' ly tell hich skew diagonal el
[11} _ 4 ﬂ 1 ﬂ ﬂ ° ask simply tells you wnich skew diagonal elements

Interact, e.g. mask 101011 points to building block
1000 1*1*11 which interacts with *1*1** to give 111111



S A:f;

Coarse gralnlng via Coordlnate Transformatlons

Iterate ... by recursively substituting for ¢ until gettot=0
Example — 3-bits 1-point crossover

111 t
P'ul{i'tl|I = )\ /K
11.1 1** *11 1* x *1* **1 1** l* t= O
M=100 M=110 M = 100 + 101
| t
3 1+ Probability that “Building Block”
- G”H' : } | propagates fromtto t’
I't’ Measures strength of
o - 1 f ) 5 KL (A .fﬁ’ f L interaction between
= E—{p{: ) + p(M)) X, (] }f{t} F(t) “Building Blocks” J,
Kand L
Ko — \ Skew-diagonal — only
Pf(t} conjugate “Building Blocks”

Interact! 53



Coarse graining via Coordinate Transformations

Each tree tells us the probability of forming 111 by a
given process. In principle can see which processes are
most important. Tree depth bounded by N. MUCH
SIMPLER THAN STRING (OBJECT) BASIS!

111 111

Examples: — (L=p)"

— {1 - p‘-_.}t Plll{ﬂ} P;_- _»n p
" - (1 o ?'f-}-rt

111 .
Plnn{ﬂ} Pnll(ﬂ}
Moral: No point putting in
. “puilding blocks” of higher order = 2(1 - p.) ({1 — %}* - (1- n.-}t)
than one!

.~ - 2{1 o p'f} ({1 o p‘}t T 2{1 T Igi}t +1) Plnn{ﬂ}Pnln{ﬂ}Pnnl{ﬂ}
1%* **] Dominates in long time limit — Geiringer’s theorem

*1*

o4



Coarse graining via Coordinate Transformations

For a particular recombination “channel” (mode) whether
recombination contributes positively or negatively to the effective

fitness Is determined by
N - Dl L D f SWLD (Selection Weighted
A(m) = Pi(t)- B, WP.() | jnkage Disequilibrium)

BBs of i Coefficient
If A(m) <0 “channel” is non-deceptive [_) long schemata
preferred (see page 21)

If A{m) >0 “channel” is deceptive; deception — just like
BBs - Is dynamic
Standard Two-bit deception: f(0*) >f(1*) ) A(m) >0

i.e. P,(t)— P, (t)P.(t) >0
55






In Building Block basis ...

Building Blocks schemata are the natural EDOF for recombination
They are dynamical and not necessarily “short” or “fit”

They are the ONLY way in which higher order “objects” can be
built up by recombination

Generically, the “construction” term dominates

BBB is complete but not orthonormal

There are | X| equivalent BBB (related by simple permutations)
Only “dual” objects (i.e. conjugate BBs) interact, e.g. line and
plane intersect at a point

Appropriate In ““strong” crossover regime
57
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Coarse Graining
By Projections

Making intractable dynamics more tractable
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Coarse graining via Projections

Introduce a general coarse-graining operator li’.i';t._, ’.if ]

Which coarse grains from the variables n & }L to the
variables 7' € Xy C X,

Given two such coarse grainings:

R (1, ?f)Pﬂ(t) = by (t) R (n, ?}”)Pﬂ(t:] = By ()
gLt R(n', 1" )Py (t) = Py (1)
hence

R(nn") =R(n.v )R, 5"

I.e. coarse grainings form a semi-group — “Renormalization Group”
60
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Coarse graining via Prolectlons

Dynamlcs coarse gralns via

Rin,n yYH(p, t. P'F.I“:}}
If this can be written in the form
H{pr'. fr'. -Fll-r,lJ {ill}}
with suitable “renormalizations”
f—f a0 PP

then the dynamics is form covariant or invariant under the
coarse graining. If f: f'and p = p’ dynamics is “compatible”

61
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Coarse graining via Projections
Examples: Compatible Coarse grainings

1. Selection and Phenotypes

+ Unitation, e.g. :2" genotypes > (N+1) phenotypes

e Eigen model (NIAH), e.g. :2™¥genotypes = 2 phenotypes
2. Mutation and Crossover and Schemata

« 2V genotypes > 2™ coarse grained genotypes

Incompatible Coarse grainings
1. Selection, Mutation and Crossover and Schemata
« 2% genotypes > 2™2 coarse grained genotypes

* fo = Rz, a)fe = Yoo foPe(t)] 3, ., Pu(t). IMe-dependent
62
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Coarse gralnlng via PrOJectlons
In BBB for 1-point crossover...

Piu(t +1) = (1= pIPus(t) + S(Prus(OPuss(t) + Prs()Pons (1)

“Zap” (projection) 111 — 11= :>

Puia(t +1) = (1= )Puaa(t) + S(PLa(t)Pura(t) + Prau(t)Puva(t)

—) Pt +1) =(1 - %}Pu_(t} + %Ph..{ﬂp..l_{t}

Note — coarse grained (projected) 3-bit equation same as
“microscopic” 2-bit equation with “renormalization” p, — £

2
Pyt +1) =(1 = p.)Pri(t) + pPr.(t) Py (t)
FORM INVARIANCE
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Coarse graining via Projections

e Generalizes to the case of variable-length GAs and GP; Building
Block Schemata - Building Block Hyperschemata; “form
Invariance” of equations over different types of EA and form
Invariant upon coarse graining to schemata;

* Gives exact form of the Schema Theorem and generalizes it to
EASs other than GAs

* Neglecting the “construction” terms leads to standard Holland
Schema Theorem as an approximation
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Coarse Grammg by PI‘OjeCtIOn
- “Divide and Conquer”  example: 1-bit

Can we coarse grain an n

t=n  Coarse grain Coarse grain :
. generation problem to a one
_ ' 2
t=n t=n/2 generatlor_l problem?
_ Much easier to solve
t=4 t=4 =2 t=1 :
; the dynamics over only
t‘z t=2 t=1 =0 one generation!
=
t=1 =0 =0 X1(t) - unnormalized
t=0 Rescale Incidence vector

p — mutation rate

(%t 2) = (il A fffa}fg)g (x.00)

Evolves bit two time steps imandscape f(1), f(0) with mutation p6
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Coarse Gramlngby PrOJectlon
- “Divide and Conquer”

(el ) = (U™ %) (o)

—~—

Evolves bit one time step in “renormalized” landscape (1), ’(0)
with asymmetric mutation rates p’(1) and p’(0)

fi=0—-p)f +pifohr
F— (1 — 9
Equivalent dynamics j> | &J_P[:I_]flﬁf]fflﬂ——l_ ;ﬁzh
(all we did was “change P =p ( Ty s )
names”!, 1.e. “renormalize”)
p ( [ )

I
1 —po) fo+ pofi

Po =
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Coarse Gralmng by PI‘OjeCtIOn
- “Divide and Conquer”

Evolution of mutation/selection GA over n time steps with
fitness landscape (1), f(0) and mutation rates p(2) and p(1)
IS same as that of a GA with “renormalized” landscape and
mutation rates, ’(1), f°(0), p’(2), p’(1) over n/2 time steps!

L
UNIVERSALITY

Fixed points of Renormalization Group transformation:
lIn(f(1)/f(0))| = 0, p(1) = p(0) = 0; no selection/mutation — “
lIn(f(1)/f(0))| = infinity, p(1) = p(0) = O; strong selection —
lIn(f(1)/f(0))| = constant, p(1) + p(0) = 1; neutral evolution — “
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Coarse Gralnm'g by Projection
- “Divide and Conquer”

e [terated map takes you to a problem with fewer degrees of
freedom — NOT associated with “trivial” symmetries.

e Linearization around the fixed points of the equations give the
late time asymptotics

 Can understand “universality” of behaviour

e Can coarse grain in both “space” and “time”

e Coarse graining can almost never be done exactly

* Have to decide what coarse graining is most appropriate for a
given model
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EC Theory — Coarse-grained

So what do we have so far?

Exact

Mathematically rigorous
Unifies Phenomena
Intuitive

Predicts well

Useful for Practitioners

Yes
Yes ?
Yes
Yes
NoO
Yes/No
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he Bottom Line ...

Present taxonomy in EC theory is inadequate
Taxonomy can be greatly improved by
using “distance” measures

Taxonomy and universality can also be much better
understood using an appropriate coarse graining

Coarse grained genetic dynamics unifies and makes
compatible different areas of EC and different previous
theoretical formulations

GASs and GP — different sides of the same coin

Old Schema theory/BB hypothesis and VVose type models
— different sides of the same coin

Coarse graining and the Renormalization Group offer a
generic methodology for approximating genetic dynamics
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The Bottom Line

m Theoryin ECis NOT particularly well developed. If it
was there wouldn’t be such a huge expectation gap
between theoreticians and practitioners. No systematic
approximation techniques for attacking problems from
first principles

m Practitioners have to realize what is and isn’t theoretically
feasible (theoretical population biologists have spent
nearly a century achieving things that “practitioners”
would scorn).

m Practitioners could really help by stress testing theory (too
much testing of theory in the hands of people who make
up the theory and too much testing of “never to be used”
algorithms by practitioners)

(2
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