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Abstract. DNA arrays are currently one of the fastest-growing areas of 
bioinformatics as they allow biologists unprecedented access to the workings of 
an organism.  Genetic algorithms in recent years have found a number of 
applications in the analysis of DNA arrays.  This paper outlines some of the 
successful genetic algorithm approaches, some problems with their application 
in this domain and some potential solutions to these problems.  Also, the future 
possibilities for both genetic algorithms and DNA arrays are considered. 

1. Introduction – DNA Array Analysis 

DNA array analysis and transcriptomics are among the fastest growing areas of 
bioinformatics and for good reason.  Whereas biologists were previously restricted to 
monitoring a handful of genes at one time, DNA arrays allow them to simultaneously 
measure the expression levels of thousands of genes through their corresponding 
mRNA (the transcript of a gene prior to translation to protein). The complete 
collection of mRNAs and their alternative splice forms is usually referred to as the 
transcriptome, the set of instructions for creating all of the different proteins found in 
an organism. DNA arrays cover two types of technology, depending on how DNA 
nucleotide sequences are put onto the chip. ‘Microarrays’ use pre-synthesized DNA 
(about 100 bases) for probing, whereas ‘gene chips’ use in situ synthesized 
oligonucleotide probes (e.g. 25 bases for Affymetrix gene chips). Generally speaking, 
the analysis of these DNA arrays falls into two areas, classification and temporal 
analysis.   The task for classification is to group a set of DNA arrays (samples - often 
patients with a diagnosis) into separate groups or classes, according to the profiles of 
their genes.  In temporal analysis the same organism is sampled repeatedly to 
determine the change in activity of genes over time.  Here the analysis technique can 
look at clustering the genes according to the change in value over time or more 
ambitiously, attempt to reverse engineer the genetic network, a set of causal 



connections between genes. However, the major problem is that typically thousands 
of genes are measured (Affymetrix gene chips can already measure the full 
transcriptome equivalent of the human genome of 30,000 or so genes) for each 
sample, and only a few dozen samples exist. In database terms, there is often a 1:100 
ratio between rows of a database (samples, or individuals) and attributes (or genes). A 
typical DNA array database, for instance, consists of about 100 rows (samples) and 
minimally 10,000 columns (genes). Clustering and other standard data analysis 
techniques often face difficulty in returning statistically significant results given the 
sparsity of samples in comparison to attributes. This also assumes that the data is 
reliable and free of noise, which is currently not the case given the early stage of 
DNA array technology.  

The sparsity and noise problems have led some researchers to look for 
alternative, ‘softer’ analytical methods, such as neural networks and decision trees 
(see Narayanan, Keedwell and Olsson (2002) for an overview of these alternative 
approaches).  Genetic algorithms (GA), however, have also been at the forefront of 
these approaches and the following sections discuss various aspects of GA approaches 
to these DNA array analyses and future directions for GAs in this domain. 

2. Genetic Algorithms in DNA Array Analysis 

2.1 Success - GA Applications to DNA array Data 

Whilst genetic algorithms have found applications to a number of problems in 
bioinformatics, it seems that the majority of this research has focussed on analysing 
DNA array data.  Ando and Iba (2000, 2001a, 2001b) have applied genetic algorithms 
in a number of ways to DNA array data to discover classification rules and gene 
expression pathways.  Similarly Keedwell and Narayanan (2003) have created a 
neural-genetic hybrid which can classify data and reverse engineer gene networks 
from DNA array data.   Along with the application of neural networks and decision 
trees in bioinformatics, the application of genetic algorithms to gene expression data 
is still at a preliminary stage. Yet the domain appears highly suitable for the 
application of GAs. So why are there not more genetic algorithm, or more generally 
evolutionary computation, solutions to DNA array problems?    

Let us first sketch out the domain in more detail:  
1. DNA arrays are a major step forward in the process of understanding the 

underlying genetics of disease.   They can discover the simultaneous expression 
values of thousands of genes where previously only a handful could be identified.  



 

Therefore they represent an unprecedented view of the mechanics of life at the most 
fundamental level. 

2. The data is amenable to machine learning analysis.  The output of an actual 
DNA array is noisy and full of statistical effects such as print-head and slide effects 
where the mechanics of the DNA array process affect the data.  However, a number of 
statistical algorithms can be used to mitigate these effects and the output is often a 
reasonably noise-free set of floating point or binary numbers. 

3. The data is prevalent on the internet. A variety of sites offer experimental DNA 
array data online and therefore this is an easy source of real data to test machine 
learning approaches. 

Therefore it is understandable that many of the GA bioinformatics applications so 
far relate to the analysis of DNA array data.   The success of the GA on this type of 
data can be attributed to the fact that they are ideally suited to this type of task.  In 
most DNA array data there are a vast number of variables (genes) and only a small 
number of records (samples).  This is due to the fact that DNA arrays are costly to 
experiment with and therefore samples are at a premium.  A number of gene reduction 
approaches (such as principal component analysis) can be used to reduce the 
dimensionality of DNA array data, but GAs remain one of the few approaches which 
can act directly on the full data.  The ability of GAs to efficiently search these large 
spaces is one of the reasons for their success in this field. 

 

2.2 Problems – Why GAs don’t work 

The reasons why GAs are difficult to apply to DNA array tasks are similar to those 
that can be used against the algorithm in other applications. 

Firstly, GAs being a stochastic algorithm, are not guaranteed to find the optimal 
answer for a given problem, even assuming that there is an optimum solution to be 
found.  In many DNA array experiments there are a number of equally good solutions 
and therefore this can mean that the GA will arrive at one of a number of these 
solutions depending on the random seed. 

Secondly, the GA uses a large number of objective function evaluations to achieve 
the final solution.  Whilst this number of evaluations is only a minute fraction of the 
total possible combinations of genes, depending on the structure of the chromosome, 
this can incur overly long running times for the algorithm.  It is fair to say that this is 
reasonably algorithm and application dependent, but it remains a hurdle for some GA 
applications. 

Finally, there is a less tangible obstacle to the uptake of genetic algorithm 
technologies in DNA arrays and perhaps the broader topic of bioinformatics, and that 
is the perception of GAs.  In a field where real genetics are the primary concern, the 
biologically-inspired operators used in GAs can plant the first seeds of doubt about 



the algorithm for biologists.   The way GA specialists use the terms selection, 
crossover and mutation can cause difficulty for a variety of people when they try and 
square them with the actual methods of the same name in nature.   

2.3 Solutions  - How these problems can be solved 

As advocated in a number of recent papers including Moore (2003) and  Rowland 
(2003), the problem of the stochastic element in genetic algorithms can be mitigated 
by using correct cross-validation and sampling techniques to verify results.  By using 
a minimum three-fold cross-validation procedure for classification tasks, (that is 
training, tuning and testing on three separate datasets and repeating the process for 
each dataset), a true notion of classification accuracy can be obtained.  This method is 
advantageous in that it can be used on relatively small sample numbers which is 
almost always the case in DNA array experiments  

The second problem of complexity is more difficult to alleviate as genetic 
algorithms currently are one of the most efficient search tools for this purpose.  
However, GA research and computational power are continuing apace so this will 
ease some of the problems of computational complexity.  Another interesting avenue 
of research is the use of hybrid techniques which can enhance genetic algorithms and 
reduce the number of model evaluations required to discover an interesting and 
hopefully near-optimal solution.  As previously described the representation of the 
problem to the GA can also significantly reduce complexity issues.  For instance, 
when reverse engineering genetic networks, it is not necessary to use the GA to 
evolve a complete set of connections between genes. Chaos theory has postulated 
(Kauffman, 1996) and experimental biology (Thieffry et al, 1998) has confirmed that 
only a small number (< 6) genes effect each other in the genetic network.  Therefore 
by making use of these biologically determined constraints the complexity of the GA 
can be reduced dramatically.  

The final problem is not so easily solved as it requires that GAs are perceived 
correctly.  Asserting that evolutionary methods are simply search and optimisation 
techniques rather than a biological metaphor is especially difficult in this domain. 

3. The Future  - Multi-Objective GAs 

Despite the problems shown above, GAs remain one of the most likely 
techniques to discover genuinely interesting information and structures from DNA 
array data.  Problems 1 and 3 however could be mitigated by using multi-objective 
approaches to DNA array data analysis.  Multi-objective algorithms offer the end user 
a much broader perspective on the problem being solved as they allow them to see the 



 

trade-off between conflicting objectives in the problem.  The use of multi-objective 
techniques is now de rigeur in engineering disciplines as it is understood that there is 
potentially more than one answer to a particular problem.  Therefore in a biology 
scenario where there are many seemingly optimal answers, the discovery of a set of 
solutions rather than a single one (which can change with random seed) could find 
success.  In addition to this, the answers that constitute the pareto-front are likely to 
have some similarity in their structure and therefore this can allay the fears of 
biologists who doubt the consistency of the genetic algorithm.  

In traditional DNA array analysis it may appear that there is little scope for multi-
objective optimisation, as classification models and gene networks use a single 
measure, accuracy, on the data to determine their optimality.  However, a number of 
strategies exist to break down the problem into a number of objectives.  One such 
strategy would be to use model complexity as a secondary objective in addition to 
accuracy and thereby converting a single-objective problem to a multi-objective one.  
The domination principle clearly works for this formulation for the classification of 
DNA arrays, as a solution which considers many genes is likely to be less favourable 
than one which requires a small number of genes and has the same accuracy.  It is 
impossible to tell, however, the necessary number of genes to attain a certain accuracy 
on the dataset and this is why a multi-objective approach is required.  

Using multi-objective technology, the biologist therefore can pick a solution 
according to its complexity which is most consistent with the biological experiment 
being conducted.  If, for instance, two genes are suspected to be involved in a disease 
those solutions with 1-3 genes can be most closely scrutinised.  Also, it may be that 
whilst the 2 gene solution is good, the 1 and 3 gene solutions could also be 
interesting, if not better than that 2 gene solution. 
 

4. The Future  - DNA arrays and genetic networks 

The combination of classification and temporal studies enables individuals to be 
classified and compared based on their genetic networks – a model which dictates the 
expression levels of genes in the body based on expression levels at a previous 
timestep.  This type of study would overcome some of the diagnostic obstacles of 
DNA array classification, for instance determining at what point in the development 
of a cancer the sample has been taken.  In addition to this, the progression of diseases 
can be mapped and key points in their development identified.  What this means for 
the GA, however, is even greater complexity.  A two dimensional problem (genes * 
sample (classification) or genes * time (temporal)) has become a three dimensional 
one (genes * sample * time).   This even greater complexity is bound to ensure that 
genetic algorithm researchers have plenty of work in bioinformatics in the future. The 
future challenge for genetic algorithms is the reverse engineering of gene networks 



from temporal DNA array data that samples across individuals as well as time. Such 
networks then provide clinicians with focused drug targets that will enable them to 
control the development of a disease as well as provide individualised drug treatments 
depending on the stage of disease reached (pharmacogenomics).  
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