Current and Future Directions for Genetic Algorithms
in DNA Array Analysis

E.C. Keedwell and A.Narayanan
{E.C.Keedwell, A.Narayanan}@ex.ac.uk
School of Engineering, Computer Science and Matliemaiarrison Building,
University of Exeter, Exeter, EX4 4QF, United Kirogd

Abstract. DNA arrays are currently one of the fastest-grgwiareas of
bioinformatics as they allow biologists unpreceeeraccess to the workings of
an organism. Genetic algorithms in recent yeange lfaund a number of
applications in the analysis of DNA arrays. Thaper outlines some of the
successful genetic algorithm approaches, some gmabWith their application
in this domain and some potential solutions togh@®blems. Also, the future
possibilities for both genetic algorithms and DNAags are considered.

1. Introduction — DNA Array Analysis

DNA array analysis and transcriptomics are amomgf#istest growing areas of
bioinformatics and for good reason. Whereas bistegvere previously restricted to
monitoring a handful of genes at one time, DNA ysrallow them to simultaneously
measure the expression levels of thousands of g#mesgh their corresponding
MRNA (the transcript of a gene prior to translatit;m protein). The complete
collection of mMRNAs and their alternative splicenfis is usually referred to as the
transcriptome, the set of instructions for creattigof the different proteins found in
an organism. DNA arrays cover two types of techgpladepending on how DNA
nucleotide sequences are put onto the chip. ‘Micaya’ use pre-synthesized DNA
(about 100 bases) for probing, whereas ‘gene chis® in situ synthesized
oligonucleotide probes (e.g. 25 bases for Affymegigne chips). Generally speaking,
the analysis of these DNA arrays falls into twoaateclassification and temporal
analysis. The task for classification is to gr@upet of DNA arrays (samples - often
patients with a diagnosis) into separate groupdasses, according to the profiles of
their genes. In temporal analysis the same orgarngs sampled repeatedly to
determine the change in activity of genes over tiriere the analysis technique can
look at clustering the genes according to the changvalue over time or more
ambitiously, attempt to reverse engineer the genagtwork, a set of causal



connections between genes. However, the major gmolig that typically thousands
of genes are measured (Affymetrix gene chips caeady measure the full
transcriptome equivalent of the human genome oO@D,or so genes) for each
sample, and only a few dozen samples exist. Ibdataterms, there is often a 1:100
ratio between rows of a database (samples, orithdils) and attributes (or genes). A
typical DNA array database, for instance, congidtabout 100 rows (samples) and
minimally 10,000 columns (genes). Clustering antieotstandard data analysis
techniques often face difficulty in returning sséiially significant results given the
sparsity of samples in comparison to attributess |tso assumes that the data is
reliable and free of noise, which is currently io¢ case given the early stage of
DNA array technology.

The sparsity and noise problems have led some rdds@a to look for
alternative, ‘softer’ analytical methods, such &umal networks and decision trees
(see Narayanan, Keedwell and Olsson (2002) forerview of these alternative
approaches). Genetic algorithms (GA), howeverehalgo been at the forefront of
these approaches and the following sections dis@rgsus aspects of GA approaches
to these DNA array analyses and future direction&As in this domain.

2. Genetic Algorithms in DNA Array Analysis

2.1 Success - GA Applications to DNA array Data

Whilst genetic algorithms have found applicationsat number of problems in
bioinformatics, it seems that the majority of thésearch has focussed on analysing
DNA array data. Ando and Iba (2000, 2001a, 200Hve applied genetic algorithms
in a number of ways to DNA array data to discoviasgification rules and gene
expression pathways. Similarly Keedwell and Nanaya (2003) have created a
neural-genetic hybrid which can classify data aederse engineer gene networks
from DNA array data. Along with the applicatioh reeural networks and decision
trees in bioinformatics, the application of genetigorithms to gene expression data
is still at a preliminary stage. Yet the domain egms highly suitable for the
application of GAs. So why are there not more geragorithm, or more generally
evolutionary computation, solutions to DNA arrapiplems?

Let us first sketch out the domain in more detail:

1. DNA arrays are a major step forward in the psscef understanding the
underlying genetics of disease. They can discdler simultaneous expression
values of thousands of genes where previously anhandful could be identified.



Therefore they represent an unprecedented vielWweofrtechanics of life at the most
fundamental level.

2. The data is amenable to machine learning amaly3ihe output of an actual
DNA array is noisy and full of statistical effe@ach as print-head and slide effects
where the mechanics of the DNA array process affectiata. However, a number of
statistical algorithms can be used to mitigate éheffects and the output is often a
reasonably noise-free set of floating point or bimaumbers.

3. The data is prevalent on the internet. A varadtgites offer experimental DNA
array data online and therefore this is an easyceoaf real data to test machine
learning approaches.

Therefore it is understandable that many of the lAnformatics applications so
far relate to the analysis of DNA array data. Bhecess of the GA on this type of
data can be attributed to the fact that they agealig suited to this type of task. In
most DNA array data there are a vast number oflsées (genes) and only a small
number of records (samples). This is due to tlet tleat DNA arrays are costly to
experiment with and therefore samples are at aipremA number of gene reduction
approaches (such as principal component analysis) e used to reduce the
dimensionality of DNA array data, but GAs remaireasf the few approaches which
can act directly on the full data. The ability®As to efficiently search these large
spaces is one of the reasons for their succebssifield.

2.2 Problems — Why GAs don’t work

The reasons why GAs are difficult to apply to DN&ay tasks are similar to those
that can be used against the algorithm in othelicgijns.

Firstly, GAs being a stochastic algorithm, are goaranteed to find the optimal
answer for a given problem, even assuming thaetiean optimum solution to be
found. In many DNA array experiments there areimalmer of equally good solutions
and therefore this can mean that the GA will arrateone of a number of these
solutions depending on the random seed.

Secondly, the GA uses a large number of objectimetfon evaluations to achieve
the final solution. Whilst this number of evalaais is only a minute fraction of the
total possible combinations of genes, dependintherstructure of the chromosome,
this can incur overly long running times for thgaithm. It is fair to say that this is
reasonably algorithm and application dependentjtlremains a hurdle for some GA
applications.

Finally, there is a less tangible obstacle to tiptake of genetic algorithm
technologies in DNA arrays and perhaps the broemg®c of bioinformatics, and that
is the perception of GAs. In a field where reahefics are the primary concern, the
biologically-inspired operators used in GAs cannpltihe first seeds of doubt about



the algorithm for biologists.  The way GA spedtdi use the terms selection,
crossover and mutation can cause difficulty foraaety of people when they try and
square them with the actual methods of the same iamature.

2.3 Solutions - How these problems can be solved

As advocated in a number of recent papers incluogre (2003) and Rowland
(2003), the problem of the stochastic element imetje algorithms can be mitigated
by using correct cross-validation and sampling néplres to verify results. By using
a minimum three-fold cross-validation procedure &dassification tasks, (that is
training, tuning and testing on three separatesg#taand repeating the process for
each dataset), a true notion of classification emucan be obtained. This method is
advantageous in that it can be used on relativelgllssample numbers which is
almost always the case in DNA array experiments

The second problem of complexity is more difficadt alleviate as genetic
algorithms currently are one of the most efficiesgtarch tools for this purpose.
However, GA research and computational power argiraging apace so this will
ease some of the problems of computational compleXAnother interesting avenue
of research is the use of hybrid techniques whah enhance genetic algorithms and
reduce the number of model evaluations requiredliscover an interesting and
hopefully near-optimal solution. As previously delsed the representation of the
problem to the GA can also significantly reduce ptaxity issues. For instance,
when reverse engineering genetic networks, it is mexessary to use the GA to
evolve a complete set of connections between geflesos theory has postulated
(Kauffman, 1996) and experimental biology (Thieféyal, 1998) has confirmed that
only a small number (< 6) genes effect each otheéhé genetic network. Therefore
by making use of these biologically determined t@msts the complexity of the GA
can be reduced dramatically.

The final problem is not so easily solved as ituisgs that GAs are perceived
correctly. Asserting that evolutionary methods amaply search and optimisation
techniques rather than a biological metaphor ie@afly difficult in this domain.

3. The Future - Multi-Objective GAs

Despite the problems shown above, GAs remain onethef most likely
techniques to discover genuinely interesting infation and structures from DNA
array data. Problems 1 and 3 however could begatitd by using multi-objective
approaches to DNA array data analysis. Multi-ofiyecalgorithms offer the end user
a much broader perspective on the problem beingdds they allow them to see the



trade-off between conflicting objectives in the lgem. The use of multi-objective
techniques is nowle rigeur in engineering disciplines as it is understood thete is
potentially more than one answer to a particulartbf@m. Therefore in a biology
scenario where there are many seemingly optimakenss the discovery of a set of
solutions rather than a single one (which can chamigh random seed) could find
success. In addition to this, the answers thastidate the pareto-front are likely to
have some similarity in their structure and themefthis can allay the fears of
biologists who doubt the consistency of the geredtiorithm.

In traditional DNA array analysis it may appeartttigere is little scope for multi-
objective optimisation, as classification modelsd ayene networks use a single
measure, accuracy, on the data to determine tpémality. However, a number of
strategies exist to break down the problem intcumbrer of objectives. One such
strategy would be to use model complexity as arsdmy objective in addition to
accuracy and thereby converting a single-objeqgtiadlem to a multi-objective one.
The domination principle clearly works for this fiaulation for the classification of
DNA arrays, as a solution which considers many gesidikely to be less favourable
than one which requires a small number of geneshaisdthe same accuracy. It is
impossible to tell, however, the necessary numbgepes to attain a certain accuracy
on the dataset and this is why a multi-objectiverapch is required.

Using multi-objective technology, the biologist tefore can pick a solution
according to its complexity which is most consisteith the biological experiment
being conducted. If, for instance, two genes aspacted to be involved in a disease
those solutions with 1-3 genes can be most closaiytinised. Also, it may be that
whilst the 2 gene solution is good, the 1 and 3egsolutions could also be
interesting, if not better than that 2 gene sotutio

4. The Future - DNA arrays and genetic networks

The combination of classification and temporal &adenables individuals to be
classified and compared based on their geneticankéiw~ a model which dictates the
expression levels of genes in the body based omession levels at a previous
timestep. This type of study would overcome sorh¢he diagnostic obstacles of
DNA array classification, for instance determiniagwhat point in the development
of a cancer the sample has been taken. In addditimis, the progression of diseases
can be mapped and key points in their developnuenttified. What this means for
the GA, however, is even greater complexity. A smensional problem (genes *
sample (classification) or genes * time (tempor&Bs become a three dimensional
one (genes * sample * time). This even greatengiexity is bound to ensure that
genetic algorithm researchers have plenty of workioinformatics in the future. The
future challenge for genetic algorithms is the regeengineering of gene networks



from temporal DNA array data that samples acrodwitiuals as well as time. Such
networks then provide clinicians with focused dtaggets that will enable them to
control the development of a disease as well agigeandividualised drug treatments
depending on the stage of disease reached (phagerammics).
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