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Abstract. Evolutionary relationships among species are usually (i) il-
lustrated by means of a phylogeny and (ii) inferred by optimising some
measure of fitness, such as the total evolutionary distance between species
(given the tree), the parsimony (number of different assumptions re-
quired to fit the data to the tree), the likelihood of the tree (given an
evolutionary model and a data set) or the posterior probability of the
tree (given an evolutionary model, a data set, and the distribution of
prior probabilities). A large variety of different types of data can and
have been used in reconstructing evolutionary relationships including nu-
cleotide sequences, anatomical features, metabolic processes, behaviour
or even the words of languages. Difficulties arise when different sources of
evidence provide conflicting information about the inferred ‘best’ tree(s).
The Total Evidence Debate focusses on how to assess, combine, modify
or reject different types of data. We begin with a review of evolution-
ary algorithms (EA) used for phylogenetic inference. Then we discuss
whether the population-based searches that are an intrinsic attribute of
EA and multi-objective optimisation (MOO) can provide a powerful new
approach to this area.

1 Introduction

“The affinities of all beings of the same class have sometimes been rep-
resented by a great tree.” [1]

The first diagram in Darwin’s notebook Transmutation of Species and the
only diagram to occur in Darwin’s Origin of the Species is a phylogenetic tree [2].
Phylogenetic inference is the construction of trees to represent the genealogical
relationships between different species. Other entities, such taxonomic groups
higher than species, languages, documents or texts, can also be studied. Here-
after, we only use species as a generic term to cover all of these. The difference



between phylogenetic classification (or cladistics) and other forms of taxonomy
or systematics is that the classification should only be based on common ances-
try and not on mere similarity of appearance or function. Thus, a phylogenetic
tree is an hypothesis of the evolutionary history and relationships among species.
Its construction depends on the quality and quantity of the evidence available
(i.e., the data) and the reliability of the algorithms used to analyse these data.

Phylogenetic inference begins with obtaining a data set comprising of char-
acters for each species. These characters might be nucleotide and amino acid
sequences, protein shapes, anatomical characters, embryo development, biosyn-
thetic pathways, behavioural traits, and linguistic data. The judicious choice
of appropriate characters is a critically important skill and disagreements have
often arisen over the appropriate choice and relative weight of different charac-
ters. Characters that are likely to arise often and independently will not provide
useful information about common ancestry. Characters that have experienced
too much selection pressure may exhibit convergent evolution or no evolution
at all. Characters that have undergone too rapid evolution will provide a low
signal-to-noise ratio for the reconstruction algorithms. These problems can arise
even if one arbitrarily restricts oneself to purely genetic sequences, since different
parts of the genome undergo different rates of mutation and respond to selection
pressures in different ways. Recombination and horizontal gene transfer can also
render genetic data less useful for phylogenetic inference.

The availability of easy-to-use powerful algorithms has created a situation
where evolutionary trees are often produced and published without due consid-
eration of the underlying assumptions [3, 4]. The danger of ad hoc approaches
is the human tendency to consciously or sub-consciously eliminate or downplay
evidence that disagrees with expectations [2].

The choice of characters and weighting of evidence between different sources
is precisely analogous to dealing with multiple criteria in MOO. Each data set,
each model, each method can be regarded as an independent optimisation crite-
rion. By using MOO, one is never forced to merge or discard criteria. We hope in
this paper to open up discussion on the value of this approach to phylogenetics.

We first give an overview of phylogenetic algorithms, followed by a review of
existing applications of EA to phylogenetics. We then discuss the total evidence
debate and recent ideas about not focussing purely on just the optimal solution.
We finally present some ideas about the relevance of MOO to these issues.

2 A Cursory Look at Phylogeny Algorithms

Salemi and Vandamme’s [5] excellent book on Phylogenetic Methods gives the-
oretical details and case studies on most of the algorithms. Open source code
for almost all the algorithms is freely available. There are three main types
of methods: Maximum Parsimony, Maximum Likelihood (including Bayesian)
and Distance-Based methods; and there are various implementations of all these
methods. In this paper, we will only discuss those that can be regarded as opti-
mising some measure of fitness of the trees.



The search for the best tree often includes a local search consisting of modifi-
cations to the best tree found so far. These local search operations are discussed
together in a later subsection. Exhaustive search (or the Branch and Bound algo-
rithm [6]) is the only algorithm guaranteed to find the correct tree topology. This
is computationally feasible for up to 12 to 25 species depending on whether one
uses maximum likelihood or maximum parsimony. Thus for larger sets, heuristic
search algorithms, such as EA, are required.

2.1 Maximum Parsimony (MP) Methods

MP is based on the principle of Okham’s Razor: in choosing between two hy-
potheses the one with fewer assumptions should be preferred [7–9]. Each species
is assigned a set of characters and placed into an hypothesised evolutionary tree.
For any given tree, there are fast algorithms based on dynamic programming [10]
to infer the character traits of the common ancestors while minimising the total
number of character changes (tree-length) occurring in the tree. Thus for any
tree, the minimum length of that tree (a fitness measure) can be rapidly estab-
lished. Because of its simple fitness function, MP is one of the fastest algorithms
and a common fall-back when computational limits apply to other algorithms.
Situations in which MP gives misleading results have been identified [11, 12].

2.2 Maximum Likelihood (ML) and Bayesian Methods

ML begins with a model of evolution that may contain various free parameters.
These may include the rate and probabilities of various types of mutations, and
other parameters related to the independence or correlation of the evolving char-
acters. Alternatively, these parameters can be chosen based on empirical values.
Each competing hypothesis now consists of three parts: the topology of the tree,
the evolutionary distance or time along the edges of the tree, and the model
parameters. Bayesian methods, in addition, include the distribution of the prior
probabilities of all these parts. The likelihood of each hypothesis is calculated
with respect to the model used, and the most likely tree is inferred by comparing
the likelihood values. The most likely model parameters also emerge from this
search. Although more complex than MP, for a given topology, the optimisation
with respect to model parameters and edge lengths is not considered to be the
most challenging part and can be regarded as part of the fitness calculation.
The main criticisms of ML are that (i) the results are necessarily dependent on
the choice of evolutionary model and (ii) that it is a far more computationally
demanding and time-consuming process.

2.3 Distance-Based Methods

These methods have two separate stages. The first stage determines an evolu-
tionary distance between all pairs of species. This distance can be as simple as
the fraction of nucleotide sites that differ between two genes, or more elaborate



by incorporating assumptions about different probabilities of different types of
mutations. In the second stage, the matrix of pairwise distances is used to con-
struct a tree topology. Two methods are used: cluster analysis and minimum
evolution. We will not discuss cluster analysis here because it is not amenable
to interpretation as a fitness optimising approach; however, it could be useful
in generating candidate trees. for subsequent analysis with local hill climbing
algorithms. Minimum evolution uses the sum the edge-lengths in the tree as a
fitness measure and seeks the tree that minimises this while still consistent with
all the pair-wise distances between species [13].

2.4 Local Search Operations

Most searches through tree-space are in the form of local hill climbing algo-
rithms. A local permutation is performed on the current best tree in the hopes
of constructing a better tree. These permutations are also used later in EA as
mutation operators and as the inspiration for some recombination operators.
The three basic branch-swapping local-search operations are discussed here. Ex-
perience suggests these methods are effective for up to 100 species [14–16].

Nearest-Neighbour Interchange (NNI) Each internal branch of a binary
tree is visited. The three topologically distinct trees that can be obtained
by swapping a sub-tree connected to one end of the branch with a sub-tree
connected to the other end of the branch are considered.

Subtree pruning and re-grafting (SPR) An arbitrary sub-tree is detached
and re-attached at an arbitrary location. All possible sub-trees and insertion
points may be considered. NNI is a special case of SPR.

Tree bisection and Reconnection (TBR) The tree is cut into two subtrees
by cutting an arbitrary branch. The trees are reattached by selecting an
arbitrary re-attachment point on each tree. All variants may be considered.
SPR is a special case of TBR where the detachment/re-attachment point of
one subtree is fixed.

Each method is more computationally expensive than the previous one, but
provides a more complete exploration of the neighbouring tree-space. Extremely
efficient algorithms now exist for all these methods based on problem-specific
knowledge of the tree structures using ‘incremental down-pass optimisation’ [17].

2.5 Methods to Avoid being Trapped in Local Optima

The most commonly used strategy to avoid entrapment in a local optima is to
restart any of the above search algorithm from a different starting point. With a
sufficient number of distinct starting trees, the global optimum may eventually
be uncovered. Though simple to implement, multiple restart is computationally
burdensome. For heuristic algorithms, where the results depend on the order in
which the species are analysed, restarts begin by randomising the order of the
species. (There is an example of a genetic algorithm being used to search for the
best starting order [18].)



The parsimony ratchet [19] is a conceptually different technique to escape a
local optimum. It can be regarded as having three steps:

1. Find a local optimum by some method.
2. Change the fitness function by modifying the weights assigned to different

characters and use local search to move to the local optimum of this new
fitness function.

3. Restore the fitness function to its original form and re-apply local optimisa-
tion.

At the end of this process we are either back at the same local optimum (which
may, in fact, be the global optimum) or we have jumped to a neighbouring local
optimum. By repeating this process many times, one ‘ratchets’ from one local
optimum to another, hopefully, on the way to the global optimum. Changing the
weights in the fitness function provides a conceptual link to Pareto-optimisation
techniques.

Goloboff [15] introduced the ideas from simulated annealing in his Tree-
Drifting algorithm, where sub-optimal solutions are accepted during branch-
swapping with some small probability.This provides a chance to escape from a
local optimum, without seriously impairing the local hill-climbing effort.

3 Evolutionary Algorithms in Phylogenetic Inference

A brief overview of the application of EA to phylogenetic inference is presented.
As mentioned above, the many mutation operators are based on the local search
algorithms discussed earlier. The recombination operators are varied and inno-
vative; they are listed and described at the end of this section.

The first application of EA to phylogenetic inference appears to be by Mat-
suda in 1996 [20]. The method used was maximum likelihood with fixed model
parameters. The optimisation of the edge lengths was absorbed into the fitness
calculation for each tree topology. The algorithm explored tree-space by using
random mutation based on NNI and an extremely ‘directed’ recombination op-
erator listed below.

Lewis [21] developed a computationally more efficient version of this algo-
rithm by extracting the edge length optimisation from the fitness calculation,
and using the edge lengths as additional ‘genes’ that were mutated. This placed
the edge lengths on the same footing as the topology. A single free parameter was
also included in the evolutionary model. A random proportion of branch lengths
and the model parameter are mutated using a random gamma-distributed mul-
tiplicative factor. The ‘mutation’ operator was an exhaustive local search with
SPR.

Moilanen [22] used an evolutionary optimisation combined with local search.
The method has a roulette selection with initially low but increasing selection
pressure to avoid premature convergence. No mutation is used. Unlike Matsuda’s
operator [20], this recombination operator is random.



Goloboff [15] has a tree fusing algorithm (see below) that contains a non-
random recombination operator that does an exhaustive search.

More recently, Congdon [23] has developed an algorithm ‘GAPhyl’, building
upon the well known phylogenetic program called Phylip[24]. Mutation was per-
formed by random swapping of species at the tips of the tree. The recombination
operator is random (see below). The idea of sub-populations and immigration is
used to avoid premature convergence.

3.1 Recombination or Crossover Operators

Matsuda’s Operator [20] Two random trees are selected to be parents. If
d
(1)
ij and d

(2)
ij are the distance between species i and j in the two parent

trees the crossover operation is performed by first identifying the pair of
species for which |d(1)

ij − d
(2)
ij |/(d(1)

ij + d
(2)
ij ) is largest. The smallest subtree

containing these two species is located in the parent with the higher fitness
and transferred in toto to the other parent in the hope of improving its
fitness. All the species that were in the subtree are removed first from the
second parent before attaching the transferred sub-tree.

Moilanen’s Operator [22] Select a random sub-tree from each parent and
exchange them followed by deleting duplicated species from the recipient
trees.

Goloboff’s Tree-Fusing Operator [15] Instead of just randomly exchanging
sub-trees use the extremely efficient ‘incremental down-pass optimisation’ of
Gladstein [17] mentioned earlier in the context of single-tree local searches
to find the best sub-tree to exchange and the best point to attach it.

Congdon’s Operator [23] From one parent choose an arbitrary sub-tree (A).
In the other parent, identify the smallest sub-tree (B) that contains all the
species occurring in (A). Replace (A) with (B) in the first parent and delete
duplicated species elsewhere in the tree. Repeat process with the original
parents swapped. This produces two new candidate trees.

Interesting questions are: what differences might arise between directed re-
combination and random recombination operators? How dangerous is it too build
too much prior knowledge into a recombination operator? The same can be asked
about some of the local mutation operators that are extremely Lamarckian.

4 The Total Evidence Debate

The debate about how to use different sorts of data has a long and controversial
history. As early as 1950, Hennig [25, 26] proposed that any data used for phylo-
genetic inference will give very similar results because organisms are the outcome
of many genetic, developmental and behavioural systems interacting dynamically
throughout history. There is no a priori reason to believe one type of data is
intrinsically superior to any other. Many studies of the published record over
the last few decades support this view (see p. 80 of [2]). There are two modern
schools of thought about how to integrate information from different data sets
into a unified phylogenetic history: taxonomic congruence and total evidence.



4.1 Taxonomic Congruence

Taxonomic congruence involves a search for a consensus between results obtained
by independently analysing different data sets. The data should not be combined
because they may have evolved under different conditions. The philosophical ob-
jections to this school of thought are that the hypothesis that different data sets
have evolved differently should not be assumed a priori but should be empirically
tested by comparison to results of a simultaneous analysis [27]. The empirical
objections are by focussing only on the commonality or consensus between dif-
ferent data sets, a lot of potentially useful information is being discarded [28].
In addition, most taxonomic congruence treats the trees emerging from different
data sets as equally well supported, despite substantial differences in the size of
data sets, and in the results of internal consistency tests on the data sets. In
MOO, one obtains a Pareto set first and only then looks for both commonality
and systematic variations across the set. This information is then correlated with
variations in the optimisation criteria. The MOO approach thus helps to answer
some of the criticisms above.

4.2 Total Evidence

Kluge [27] has advocated the concept of total evidence: use all available data in
one single phylogenetic analysis. In other words, the hypothesis supported by the
largest amount of data is preferable to the consensus hypothesis that is common
to many smaller sets of data. Brooks and McLennan [2] quote many studies that
find that total evidence trees tend to be more robust than analysis based on
subsets of the same data. Philosophically, the desire to use all available data is
admirable but the problems that arise are: how should the data be combined
and how should less reliable data be weighted or compared to more reliable
data. This problem becomes particularly relevant to cases where molecular and
morphological data are combined. The approach is fraught with danger: once
we begin to manipulate the data, we can get almost any result. Farris [29] has
shown that it is possible, in principle, to invent character weighting schemes that
yield any desired tree. Practitioners of MOO will recognise this as analogous to
applying different weights to conflicting criteria to turn the problem into a single
objective optimisation, thus making a priori judgements about their relative
importance.

4.3 The Need for Both Consensus and Conflict

In their early review [30] of this debate, de Queiroz et al. presented a conceptual
framework based on the reasons that different data sets may give conflicting
results. The precise nature of the conflict (or areas of consensus) gives the expert
practitioner useful knowledge of the appropriate algorithms to use, where to look
for more data and which model assumptions need more attention. To use a cliche,
conflict should be seen as an opportunity to improve the analysis rather than as



a threat. The methods discussed in [30] attempt to avoid information loss whilst
simultaneously coping with heterogeneity in data sets.

We have found no evidence in the literature that practitioners from either
school of thought have contemplated the techniques and philosophy of MOO.

5 When the Best is not Good Enough

A common trend in many phylogenetic analyses is the desire to encapsulate the
phylogenetic result in a single best tree, or in a consensus tree that is based on a
small set of equally best trees. In so doing, a high level of confidence is placed on
the data, the phylogenetic algorithms, and the phylogenetic results. Such over-
confidence is often not justified because there are many cases of near optimal
trees. All of these trees may contain elements of the ’true’ tree that is commonly
sought, and therefore they should not be ignored. Topological model uncertainty
[31, 32] occurs whenever there are trees that do not differ significantly from the
best tree. Topological model averaging [31, 32] builds on the idea that a tree-
specific weight (based on its fitness) can be assigned to every tree in tree-space,
and that a weighted consensus tree can be generated across the optimal and
near optimal trees. An interesting, but not unexpected, outcome is that the
weighted consensus tree sometimes differs from the ’best’ tree; this is consistent
with research by Nei et al. [33], who showed that the most likely tree sometimes
is more likely than the ’true’ tree. The method to account for topological model
uncertainty has been used repeatedly since its inception and is currently being
developed within the Bayesian framework.

6 Pareto Sets and Fitness Landscapes to the Rescue

Two important problems have been identified so far: how to deal with different
data sets, and how to uncover more than just the best tree. MOO provides a
compelling response to the first problem, and population-based search methods
tell us how near-optimal solutions compare with the optimal ones. MOO analysis
using EA achieves both goals in the same framework.

Each combination of phylogenetic method and data set used produces a fit-
ness function that is used to evaluate and compare the competing hypotheses
(tree topologies, branch lengths, model parameters etc.). Rather than attempt
to merge the fitness functions, all are retained and the Pareto or non-dominated
set of optima are produced. The dimensionality, shape and extent of the Pareto
set reveals which data sets are in conflict and which are compatible. The position
and density of second rank non-dominated sets reveals how close the sub-optimal
solutions are to the optimal solutions. Naturally, such an approach is computa-
tionally more burdensome than single-objective optimisation problems, and it
would only be used if the benefits were worth the effort or the problems with
existing analyses remained unresolved.



7 Final Words

Of course, this sleight-of-hand has not removed the serious intellectual challenge
of dealing with and interpreting multiple, possibly conflicting, evidence. What
it has done is to move this activity from the beginning of the analysis, where
the data has yet to be fully exploited, to the end of the analysis. This change
of perspective opens many new opportunities and activities in both the fields of
Phylogenetics and MOO:

– How do we visualise complex Pareto-sets, where the individual elements are
tree topologies?

– How do we identify common properties and systematic trends within the
Pareto-set and the neighbouring parts of the fitness landscape?

– If we desire a ‘consensus’ tree, how is it best extracted?
– How do we determine the relative weights of optimal and near-optimal trees

when constructing consensus trees?
– How do we identify minimal subsets of common confounding factors (if they

exist) that are responsible for conflicting fitness functions and remove them
from the analysis?

No doubt there are many other exciting questions that will also arise out of
this recombination of EA and MOO and the field of phylogenetic inference.

The authors acknowledge the support of the Australian Research Council
and useful discussion with their colleagues Maryanne Large and Steven Manos.
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