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Abstract. In recent years, the study of the phase transition behavior
and typical-case complexity of search and optimization problems have be-
come an active research topic, drawing attention from researchers from
computer science, mathematics, and statistical physics. The probabilis-
tic method that has been developed since 1960s plays an important role
in this development. We give a brief introduction to the problems, tech-
niques, and results in the phase transition analysis of search and op-
timization problems, and present an overview on our recent work, il-
lustrating how probabilistic methods can be used in landscape analysis
and how the results give us insight into the behavior and complexity of
evolutionary algorithms.

1 INTRODUCTION

In physics, the notion of a phase transition refers to the abrupt change of states
(phases) of compounds at certain values of parameters such as the pressure and
the temperature. Popular examples of phase transitions in the physical world are
the liquid-to-gas transition of water, and the conductor-superconductor transi-
tion of electrical resistance of some materials.

Similar phenomena have also been observed in computational and AI sys-
tems. For example, a random graph generated by selecting each of the poten-
tial edges independently with an edge probability p = p(n) experiences several
abrupt changes in its combinatorial properties when the edge probability p(n)
increases from o(n) to Θ(n2) [1, 2]. For some NP-complete problems such as the
Boolean Satisfiability problem(SAT) and the graph coloring problem, it has been
observed that the probability of being satisfied also has a phase transition from
zero to one at a certain clause-variable ratio [3–5]. See also [6–9] for a series of
popular science articles for the history and recent development.

In their seminal work [3], Cheeseman at al. showed that for many NP-
complete search problems and some standard algorithms, the typical hardness of
the problems is closely related to the critical point, called the threshold, where
the phase transition occurs. Recent studies on the phase transitions in combi-
natorial and AI search problems have given us much insight into the typical



complexity of these problems and help in tackling questions such as “where are
the really hard problems?” and “why do these hardest problems seem to resist
any intelligent algorithms?” [10–13].

Answers to these questions have already stimulated work on designing effi-
cient algorithms and appropriate benchmark problems [9, 14, 15].

In the the study of the phase transitions, the probabilistic method [16, 2],
which uses tools from probability theory to analyze properties of combinatorial
nature, plays an important role. In fact, the probabilistic method was first devel-
oped in the work of P. Erdös and A. Renyi [1] on the phase transition in random
graphs.

Fitness landscapes have been widely used in the past to facilitate the analy-
sis of the behavior of algorithms in evolutionary computation. Specially-designed
landscapes also comprise of a large class of benchmark problems in the perfor-
mance evaluation of new algorithms.

In the past several years, we have worked on understanding the characteristics
of fitness landscapes from a phase transition perspective. The purpose of the
current paper is to give a brief introduction on the study of phase transitions
in combinatorial search and AI, and overview our work on the phase transition
analysis of fitness landscapes.

2 Probabilistic Method and Phase Transitions in
Combinatorial Search

The use of the probabilistic method to study the combinatorial structures started
from the work of P. Erdös and A. Renyi [1] on the evolution and threshold phe-
nomena in random graphs. Over the years, the probabilistic method has gained
more and more popularity in the analysis of algorithms in general, and in the
study of phase transitions in particular. The probabilistic method is an ap-
proach that studies properties of combinatorial structures by using techniques
and tools from the theory of probability. These techniques include the first mo-
ment method, the second moment method, martingales, etc [16]. In this section,
we illustrate the use of the probabilistic method by introducing some basic re-
sults related to the phase transitions of random SAT problems.

SAT [17] is perhaps one of the most popular and important NP-complete
problems in the theory of computational complexity and in artificial intelligence
(AI). It is the first problem that was shown to be NP-complete, and many of the
studies in the phase transition of search has been on random models of SAT.

Let {x1, x2, · · · , xn} be a set of boolean variables. A literal is either a variable
x or its negation x. A clause is a disjunction of literals and a conjunctive normal
form (CNF) formula is the conjunction of a set of clauses. An instance of SAT is
a CNF formula and the question is to decide whether there is a truth assignment
that satisfies the formula. The problem k-SAT, k ≥ 1, is a problem where each



clause of the formula has exactly k literals. It is known that k-SAT is NP-
complete for k ≥ 3 and can be solved in linear time for k = 2.

One of the well-studied random models for k-SAT is the random k-SAT
formula Fk(n,m) which consists of m clauses, each selected independently and
uniformly from the set of all 2k

(
n
k

)
possible k-clauses. We call r = m

n the clause-
variable ratio.

Intuitively, formulas with a large clause-variable ratio are hard to be satisfied,
while formulas with a small clause-variable ratio could have many satisfying
solutions. Experimental studies in [10, 5] indicated that at r ≈ 4.2 there is an
abrupt change in the probability that F3(n,m) has a solution—the probability
is asymptotically one for r < 4.2 and zero for r > 4.2. This leads to the following
famous conjecture:

SAT Threshold Conjecture: There is a constant rk, called the satisfiability
threshold such that

lim
n

Pr{Fk is satisfiable } =

{
1, if r < rk;
0, if r > rk

After more than ten years of work, the above conjecture is far from settled.
However, much insight about the hardness and its algorithmic impact has been
gained in the effort to try to understand the behavior around the threshold and
to improve the upper and lower bounds on the threshold.

2.1 Upper and Lower Bounds

Upper bounds on the SAT threshold have been established by using Markov’s
inequality:

Pr{X > 0} ≤ E[X], (1)

where X is a random variable and E[X] is its expectation.
For example, let Ia, a ∈ {0, 1}n, denote the indicator function of the event

that a satisfies F3(n,m), and I =
∑

a
Ia. We have

Pr{I > 0} ≤ E[I] =
∑

a

E[Ia] = 2n(
7

8
)m.

Thus, if m/n > log8/7 2 = 5.191, F3(n,m) is asymptotically unsatisfiable with
probability one. This gives an upper bound for the SAT threshold.

By taking into consideration the intrinsic structure of the solution space,
better upper bounds have been obtained. See [18] for an account on a series of
hard work that improves the upper bound from 5.191 to 4.596.

Lower bounds on the threshold are usually obtained by analyzing polyno-
mial algorithms based on the Unit Clause heuristic: (1) If there are any clauses
containing only one literal, then picking one of them and satisfy it; If not, ran-
domly pick an unset variable and assign it to TRUE (or FALSE) randomly and
uniformly.



By analyzing conditions at which these algorithms succeed asymptotically
with probability one, lower bounds can be established. Interested readers can
consult [19] and the reference therein for further details.

Lower bounds can also be established by the second moment method based
on Chebyshev’s inequality:

Pr{X = 0} ≤
var[X]

(E[X])2
(2)

where var(X) is the variance of X. The difficulty in using the second moment
method lies in the fact that X is usually a sum of a set of random variables that
are only “close” to being independent. To bound the variance of such a variable,
combinatorial structures intrinsic to the problem under consideration should be
utilized in a smart way [16, 20].

2.2 The Sharpness of a Phase Transition

In addition to the location of the critical point of the phase transition, the
sharpness of the phase transition is also interesting. Roughly speaking, a phase
transition for a combinatorial property is said to be sharp if the transition inter-
val tends to zero faster than the critical parameter itself. A sufficient condition
for a property such as the satisfiability of SAT to have a sharp phase transition
has been established [21]. The condition basically indicates that in order to have
a sharp transition, there should not exist small signatures (properties that can
be determined locally) that can approximate the property.

2.3 Backbones and Complexity

In the statistical mechanics approach to the random SAT phase transition, a
boolean variable is identified with a binary variable, called a spin, that takes
its values on {−1, 1} (-1 for FALSE and 1 for TRUE). A CNF formula F is
associated with an energy function E[F, S], S ∈ {−1, 1}n defined on the possible
assignments to the binary variables, indicating the number of clauses not satisfied
by the assignment.

To investigate the behavior of the optimum of the energy function and the
structure of the space of the optimal solutions, statistical physics views the SAT
problem as a system of spins whose configuration is governed by the Boltzmann
distribution

p(S) =
1

Z
e−

1
T

E[F,S]

and its low temperature limit as T tends to zero. Note that this distribution is
just a vehicle to carry out statistical mechanics analysis and has nothing to do
with the randomness in the random SAT formula, which, in physics, is called
the quenched disorder.

Analytical techniques from statistical mechanics can be used to analyze the
deep relations among the minimum of the energy function E[F, S], the Boltz-
mann distribution of the SAT system, and the probability distribution of the



random SAT. These analyses have revealed interesting structural properties of
the space of the optimal solutions and help explain why problem instances are
hard at phase transition. Among these is the notion of backbone variables [22,
15].

For each variable xi, use mi to denote the average value of the corresponding
spin over all the optimal assignments. Note that |mi| = 1 implies that the
variable xi is fully constrained, i.e., it has to be assigned to the same value in
every optimal solution. In this case, the variable is called a backbone variable or
frozen variable [13, 15].

For a random SAT, mi is a random variable in [−1, 1]. Statistical mechanics
analysis shows that the asymptotic behavior of the fraction of backbone variables
is quite different at 2-SAT phase transition and 3-SAT phase transition. For
random 2-SAT, it changes smoothly across the threshold, while for random 3-
SAT, the fraction of backbone variables jumps discontinuously from zero to
positive constant at the phase transition. That is to say, right above the clause-
variable threshold, a constant fraction of the variables suddenly become fully
constrained. There is also theoretical and empirical evidence showing that a
close relation exists between the behavior of the backbone and backtracking-style
search algorithms as well as random local search algorithms. See, for example, the
work on the behavior of backbones in the 2 + p-SAT problem where an instance
of the problem consists of a mixture of 2-CNF clauses and 3-CNF clauses [22].

Analysis also reveals interesting characteristics about the structure of the
space of the optimal solutions in the satisfiable-region as the clause-variables
r = m

n increases:

1. When r is well below the phase transition threshold, the optimal solutions
form a single cluster and these solutions are all characterized by a common
distribution;

2. When r is close to the phase transition threshold, the single cluster of opti-
mal solutions break up into exponentially many smaller clusters. While the
distances between solutions in different clusters remains constant, solutions
in a single cluster become more and more similar to each other as r increases.

3 Threshold Phenomenon in NK Landscapes [23, 24]

The NK landscape is a fitness landscape model devised by Kauffman [25]. An ap-
pealing property of the NK landscape is that the “ruggedness” of the landscape
can be tuned by changing some parameters. Over the years, the NK landscape
model itself has been studied from the perspectives of statistics and compu-
tational complexity [26, 27]. In the study of genetic algorithms, NK landscape
models have been widely used as a prototype and benchmark in the analysis of
the performance of different genetic operators and the effects of different encod-
ing methods on the performance of various genetic algorithms [28, 29].

In [24], we investigated the decision version of NK landscapes. One of the
reasons that this NK landscape model attracts us is because the decision version
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Fig. 1. Fractions of insoluble instances(Y-axis) as a function of z (X-axis).

defines a random SAT model that is quite different from those used in the study
of the SAT phase transition. It is also our intention to investigate the typical
complexity of the NK landscapes which have been widely used as benchmark
problems in the GA community.

Consider an NK landscape f(x) =
n∑

i=1

fi(xi, π(xi)) where

1. for each local fitness function fi(xi, π(xi)), π(xi) is a set of k − 1 variables
randomly selected from {x1, · · · , xn} \ {xi} and is called the neighborhood
of xi; and

2. each local fitness function takes its values in {0, 1}.

There are two ways to specify the distribution of the values of a local fitness
functions, resulting in two random models for binary-valued NK landscapes:

1. The Uniform Probability Model N(n, k, p): In this model, the fitness value
of the local fitness function fi(xi, π(xi)) is determined as follows: For each
assignment y ∈ Dom(fi) = {0, 1}k+1, let fi(y) = 0 with the probability p
and fi(y) = 1 with the probability 1 − p, and this is done for each possible
assignment and each local fitness function independently; and

2. The Fixed Ratio Model N(n, k, z): In this model, the parameter z takes on
values from [0, 2k+1]. If z is an integer, we specify the local fitness function
fi(xi, π(xi)) by randomly choosing without replacement z tuples of possible



assignments Y = (y1, · · · , yz) from Dom(fi) = {0, 1}k+1, and defining the
local fitness function as follows:

fi(y) =

{
0, if y ∈ Y ;
1, else.

For a non-integer z = (1− α)[z] + α[z + 1] where [z] is the integer part of z,
we choose randomly without replacement [(1 − α)n] local fitness functions
and determine their fitness values according to N(n, k, [z]). The rest of the
local fitness functions are determined according to N(n, k, [z] + 1).

Our analytical analysis shows that the uniform probability model N(n, k, p)
is asymptotically uninteresting:

Theorem 1. [24] For any p(n) such that lim
n

p(n)n
1

2k+1 exists, k fixed, there

is a polynomial time algorithm that successfully solves a random instance of
N(n, k, p) with probability asymptotic to 1 as n tends to infinity.

The key observations made in the analysis are that

1. if p(n) decreases slowly, then there is asymptotically at least one local fitness
function that always takes zero as its values;

2. if p(n) decreases fast, then the problem defined by the model is asymptot-
ically composed of a set of unrelated subproblems each of which involves a
constant number of variables.

For the fixed ratio model N(n, k, z), both theoretical and empirical analysis
were carried out. First, for z = 1, the problem can be solved linearly—for each
i, since fi is zero only at one of the 2k+1 domain tuples, we can thus make an
assignment to xi to satisfy fi without causing any conflicts. Second, it is shown
that for z ≥ 2.83, N(n, 2, z) asymptotically contains an unsatisfiable 2-SAT
sub-problems:

Theorem 2. If z = 2 + α > 2.837, then N(n, 2, z) is asymptotically insoluble
with probability 1.

For N(n, 2, z) with 1 < z < 2.837, experiments were carried out to investigate
its typical complexity. We converted an instance of N(n, 2, z) to a SAT instance
and then used R.J.Bayardo’s SAT solver, called relsat without any parameter
tuning. The solver is available at http://www.cs.ubc.ca/∼hoos/SATLIB/. On a
Linux machine of 450MHz, we were able to carry out experiments on problems
with the number of variables up to 65 thousand (See Figure 1), and runtime
statistics shows that time complexity is in the order of n2.

In summary, for N(n, 2, z), there is a phase transition in the solution proba-
bility, but the problem is always easy without the corresponding peak in hardness
as those observed in many other models of random SATs.



4 Treewidth of Fitness Landscapes and its Typical Size

In [26], it was shown that two types of NK landscape models, the adjacent
neighborhood model and the random neighborhood model, share almost identical
statistical characteristics such as the average number of local minimum and the
average height of the local minimum. This is in contrast to the fact that the
former model is a polynomial problem while the latter is NP-complete [26, 27].
The results presented in Section 3 of this paper indicate that NK landscapes
with random neighborhoods are typically easy.

The work on the treewidth of fitness landscapes starts by asking the question:
if NK landscapes are typically easy, what is the possible cause that makes them
hard for algorithms like genetic algorithms? From the analysis, we believe that
treewidth does provide a unique characteristic of fitness landscapes that cannot
be captured by other existing measures, and thus may server as an appropriate
GA-hardness measure.

A fitness function f : X = {0, 1}n → [0,∞] is additive if it can be represented
as a sum of lower dimensional functions

f(x) =
∑

c∈C

fc(x), x = {x1, · · · , xn} ∈ X,

where C is a collection of subsets of {x1, · · · , xn}. For each c ∈ C, fc(x) only
depends on the variables in c, and is thus called a local fitness function. The
order k of an additive fitness function f is the size of the largest variable set in
C. Since we can always make the variable sets the same size by merging and/or
adding dummy variables, we will assume throughout the rest of the paper that
C consists of variable sets of size k. This gives us the uniform additive fitness
function of order k.

Definition 1. [30] The interaction graph of an additive fitness function is a
graph G(V,E) where the vertex set V = {x1 · · · , xn} corresponds to the set of
variables in the additive fitness function and (xi, xj) ∈ E if and only if xi and
xj both appear in one of the local fitness functions.

Definition 2. Let f be an additive fitness function with an interaction graph
Gf . The treewidth w(f) of f is defined to be the treewidth of its interaction
graph Gf

The following results show that the treewidth indeed characterizes NK land-
scapes with adjacent neighborhoods and random neighborhoods.

Theorem 3. [30] (1)Let A(n, k) be the NK landscape model with adjacent neigh-
borhoods. Then, the treewidth w(A(n, k)) is at most 2k;

(2) For an NK landscape with random neighborhoods N(n, k). We have, for
k ≥ 2, there is a fixed constant δ > 0 such that

lim
n

Pr{w(N(n, k)) ≤ δn} = 0.



The above analysis also applies to random additive fitness functions defined
as follows.

Definition 3. The pure random model F(n,m, k),

F(n,m, k) =
∑

c∈C

fc(x) (3)

is a random additive fitness function where C consists of m subsets of variables
selected randomly without replacement from

(
n
k

)
possible size-k subsets of vari-

ables.

Theorem 4. [31] Let f(x) be an instance of the pure random model F(n,m, k).
If m

n > ln 2
k ln 3−ln(1+2k)

, there is a fixed constant δ > 0 such that

lim
n

Pr{w(f) ≤ δn} = 0.

Though, it remains to be analyzed regarding how the treewidth of a random
additive fitness function changes when the ratio m/n increases, the following
observation on the special case of k = 2 indicates that random additive fitness
functions indeed have a phase transition in treewidth.

For k = 2, the interaction graph Gf (n,m) of an random additive fitness
function is just the standard random graph model. It follows that, for m/n < 1/2,
Gf consists of a set of separated tree components and unicycle components [2],
and thus has a treewidth 2. For m/n > 1/2, it is possible to show that the
treewidth of the random graph is in the order nε with ε > 0 a finite constant.

Several measures to characterize the complexity of fitness landscapes have
been proposed before. Despite their success in characterizing various aspects of
a fitness landscape, it is not clear if they are capable of distinguishing between
landscape models that have similar statistical characterizations, but have totally
different complexities.

The treewidth of a fitness landscape provides a new complexity measure
that is capable of resolving these problems. For many NP-complete problems,
polynomial-time algorithms exist if their underlying graphs have a bounded
treewidth. This is also the case for the optimization problems on additive fitness
functions, as we will illustrate in the following example:

Example 1. Consider an additive fitness function

f(x1, x2, x3, x4, x5) = fa(x1, x2) + fb(x1, x3)

+ fc(x1, x5) + fd(x2, x4)

+ fe(x2, x5) + ff (x3, x4)

and the maximization problem

max
x1x2x3x4x5

f(x1, x2, x3, x4, x5).



Given an variable ordering (x1, x4, x5, x2, x3), an algorithm based on the idea of
dynamic programming to solve this problem proceeds as follows:

max
x1x2x3x4x5

f(x1, x2, x3, x4, x5)

= max
x1x2x4x5

{fa(x1, x2) + fc(x1, x5) + fd(x2, x4) + fe(x2, x5) +

max
x3

[fb(x1, x3) + ff (x3, x4)]
︸ ︷︷ ︸

λ3(x1,x4)

}

= max
x1x4x5

{fc(x1, x5) + λ3(x1, x4) + max
x2

[fa + fd + fe]
︸ ︷︷ ︸

λ2(x1,x4,x5)

}

= max
x1x4

{λ3(x1, x4) + max
x5

[fc(x1, x5) + λ2(x1, x4, x5)]
︸ ︷︷ ︸

λ25(x1,x4)

}

= max
x1

{max
x4

[λ3(x1, x4) + λ25(x1, x4)]} (4)

At each step, a variable is eliminated and a new function λ· is created. The
minimum, over all the possible variable orders, of the maximum number of ar-
guments of these intermediate functions turns out to be the treewidth of the
interaction graph of the additive fitness function f . And consequently, the cost
of maintaining and computing these intermediate functions is exponential in the
treewidth.

It is not obvious, however, that the measure of treewidth also applies to
genetic algorithms, which of course is not a dynamic programming algorithm. In
the next section, we will show that the treewidth complexity measure is indeed
the right measure for a class of algorithms built on the basis of evolutionary
computation.

5 Space Complexity of Estimation of Distribution
Algorithms [31]

The Estimation of Distribution Algorithms (EDAs) are a class of sampling-based
genetic algorithms that generate candidate solutions (individuals) by sampling
some probability distributions on the solution space. The sampling probabil-
ity distributions may be modelled as the product of independent marginal dis-
tributions, decomposable distributions obtained from the knowledge about the
problem’s interaction structures, or Bayesian networks constructed from existing
samples of solutions [32–36].

In general, an EDA consists of four parts: (1) a search space X; (2) a fitness
function f : X → [0,∞]; (3) a sampling probability distribution P : X →
[0, 1]; and (4) an algorithm to generate and update the sampling distribution P .
Throughout this paper, we assume X = {0, 1}n.

According to the internal representation of the probability distribution, EDAs
can be categorized into three classes.



1. Independent distribution algorithm (IDA): a multivariate distribution of an
independent product of one-dimensional distributions; IDA is also called the
univariate marginal distribution algorithm (UMDA) [37].

2. Factorized distribution algorithm (FDA) [32]: a multivariate distribution
represented as a factorized product of low-dimensional distributions; and

3. Bayesian Optimization Algorithm (BOA) [33]: a multivariate distribution
represented as a Bayesian network. In fact, BOA is only one of the several
classes of EDAs, such as the Estimation of Bayesian Network Algorithm
(EBNA) [36], that learn and use Bayesian networks to represent the proba-
bility distributions.

Among the three types, IDA is the simplest in terms of both the space and
computational complexity. Furthermore, the formula used to update the sam-
pling distributions can be derived explicitly based on the original selection and
mutation operators [38]. However, IDA is inefficient in, if not incapable of at
all, capturing and utilizing the interactions among the variables of the fitness
functions. This is the primary reason why recent research has focused on FDA
and BOA that can represent distributions with richer interaction structures.

The use of distributions with richer correlation structures, however, comes
with a cost. First, both FDA and BOA require more space to represent the
distribution; and second, we need to determine the correct distribution that
faithfully represents the interaction among the variables in the fitness functions.
An incorrect representation might be much worse than the simple distribution of
independent products of one-dimensional distributions. In this regard, we are in
a situation quite similar to those discussed in the famous “no free lunch theorem”
[39, 40].

The study of probabilistic reasoning in artificial intelligences is concerned
with reasoning (inference) in probability models that are built around the idea
of representing a probability distribution by graphical objects. The concepts of a
dependency map and an independency map play important roles in the theory of
graphical models. We present these concepts below in the context of interaction
graphs of additive functions.

Definition 4. Let f be an additive fitness function with the interaction graph
Gf (V,E) and let P be a probability distribution.

– Gf is said to be a dependency map (or D-map) of P if for all disjoint subsets
of variables X,Y, Z, we have that X and Y are conditionally independent
given Z only if Z separates X and Y in Gf .

– Gf is said to be an independency map (or I-map) of P if for all disjoint
subsets of variables X,Y, Z, we have that Z separates X and Y in Gf only
if X and Y are conditionally independent given Z;

– Gf is a perfect map of P if it is both a D-map and an I-map.

It has been proved that for any graph G, there exists a probability distribution
P such that G is a perfect map (see Section 3.2.3 of [41]).



A Bayesian network [41] is a directed acyclic graph B = B(V,E) where V
corresponds to the set of variables and a directed edge from xi to xj indicates
that the variable xj depends on the variable xi.

In order to understand the Bayesian networks, the following concept of d-
separation is essential.

Definition 5. (Section 3.3.1, [41]) Let X,Y , and Z be three disjoint subsets of
vertices in a directed acyclic graph D. Z is said to d-separate X from Y if along
every undirected path between a vertex in X and a vertex in Y , there is a vertex
w satisfying one of the following two conditions: (1) w has converging edges, i.e.,
edges on the path that meet head-to-head at w, and none of w or its descendants
are in Z, or (2) w does not have converging edges and w is in Z.

A directed acyclic graph B = B(V,E) is called an I-map of a probability
distribution P if for any disjoint subsets of variables X,Y, Z, the d-separation of
X and Y by Z in B implies the conditional independence of X and Y given Z.
A directed acyclic graph is a minimal I-map if no edge can be deleted without
destroying the I-mapness.

The Factorized Distribution Algorithm (FDA)
FDA directly uses the interaction graph or an estimated interaction graph

of the additive fitness function to model the sampling distribution [37]. For
arbitrary fitness functions of which the exact interaction structure is usually un-
known, an estimated interaction graph can also be used. Given an additive fitness
function f and its interaction graph Gf = Gf (V,E) with V = (x1, · · · , xn), FDA
constructs a probability distribution p(x) satisfying

1. Gf is an I-map of p(x); and
2. p(x) can be represented as a factorized product of the form

p(x) =

∏

S∈S

pS(x)

∏

S,T∈S

pS∩T (x)
(5)

where S is the collection of subsets of variables in a tree decomposition of
the interaction graph Gf and pS(x) is the marginal distribution over the
variables in S ∈ S.

In the original definition of the FDA [32], the factorized product representa-
tion of p(x) can be either approximated or exact. In an approximated factorized
product, the set of subsets S is not necessarily a tree decomposition of the inter-
action graph. For the purpose of investigating the space complexity, we require
that the factorization is always exact.

Let f(x) =
∑

c∈C

fc(x) be an additive fitness function with max
c∈C

|c| < k, i.e.,

each local fitness function depends on at most k variables. If the collection of
subsets of variables, C, satisfies the running intersection property, or equivalently
it forms a tree decomposition of the interaction graph, then an exact factorized



representation can be built on C [32], and only O(2k) space is required to rep-
resent it. However, as has also been mentioned in [32], such a class of additive
fitness functions is very limited. Otherwise, to get an exact factorized repre-
sentation, one has to find a tree decomposition of the interaction graph. And
the resulting exact factorization will have a space complexity exponential in the
width of the tree decomposition.

Bayesian Optimization Algorithm(BOA)
BOA models the sampling distribution by a Bayesian network [35, 33].

Definition 6. Let f be an additive fitness function with the interaction graph
Gf (V,E) and let Pf be the probability distribution such that Gf is a perfect-map
of Pf . A directed acyclic graph B is called a Bayesian network for f if it is a
minimal I-map of Pf .

The following theorem shows how to construct a Bayesian network under a
given variable ordering π = (x1, · · · , xn). Let Ui(π) = (x1, · · · , xi−1). A Markov
boundary [41] Bi(π) of xi with respect to Ui(π) is a minimal subset such that
(1) Bi(π) ⊂ Ui(π); and (2) Bi(π) separates xi and Ui(π) \ Bi(π) in Gf .

Theorem 5. (Section 3.3.1, [41]) Let Gf = Gf (V,E) be an interaction graph
of an additive fitness function f(x). For each i ≥ 1, let Bi(π) be a Markov
boundary of xi with respect to Ui(π). Then the directed acyclic graph specified by
the parent sets

Pa(xi) = Bi(π), i ≥ 1, (6)

is a Bayesian network of f . Furthermore, if the probability distribution Pf is
strictly positive, then the Bayesian network given above is unique under the given
order.

From Theorem 5, we can see that for a given ordering of variables, there is
a unique Bayesian network that captures the conditional independence depicted
in the interaction graph of the fitness function. To represent this Bayesian net-
work, we need a table for each variable xi to store the conditional probabilities
P (xi|Pa(xi)). It follows that the space complexity to represent this Bayesian
network is Ω(max

i
|Bi(π)|).

Similar to the case of the treewidth in FDA, there are many different order-
ings of the variables, each of which gives us a different value of max

i
(|Bi(π)|).

Since a Bayesian network is a minimal I-map, we may define the space complexity
of BOAs using max

i
|Bi(π)|.

It can be proved that min
π

max
1≤i≤n

|Bi(π)| is also equal to the treewidth of the

interaction graph of a give additive fitness function [31].
The above analysis indicates that the treewidth of an additive fitness func-

tion indeed characterizes the space complexity of both FDA and BOA. From
the results on the typical-case size of the treewidth of random additive fitness
functions in Section 4, we see that both FDA and BOA have a space complexity
exponential in the number of variables even for random additive functions that
are still sparse.



6 Concluding Remarks

The analysis of phase transitions in combinatorial search and optimization prob-
lems has been proven to be quite fruitful in helping us understand when and how
an algorithm works in the problem spaces. In this paper, we have reviewed some
of existing work on the analysis of fitness landscapes, including the phase tran-
sition of NK landscapes, the treewidth measure of fitness landscapes, and the
space complexity of EDAs.
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