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Abstract. We propose the concept of a chemical genetic algorithm (CGA),
in which several types of molecules (information units) react with each
other in a cell. Not only the information in DNA but also that of the
smaller molecules responsible for the transcription and translation of
DNA into amino acids is changed adaptively during evolution. This
mechanism optimizes the fundamental mapping from binary substrings
in DNA (genotypes) to real values for a parameter set (phenotypes).
Through the struggle between cells containing a DNA unit and small
molecular units, the codes (DNA) and the interpreter (the small molec-
ular units) co-evolve, and a speci�c output function, from which a cell's
�tness is evaluated, is optimized. To demonstrate the e�ectiveness of the
CGA, it is applied to some problems including a set of deceptive prob-
lems and benchmark problems such as Shekel's foxholes and a general-
ized Langermann's function. To ascertain the validity of the genotype-
phenotype mapping by the CGA, some analytical experiments were con-
ducted while observing the basin size of a global optimum solution in the
binary genotypic space. The results show that the CGA e�ectively broad-
ens the basin size, making it easier to �nd a path to a global optimum
solution, while enhancing the GA's evolvability during evolution.

1 Introduction

From the design standpoint of an evolutionary system, the translation from
genotype to phenotype plays a critical role. The translation speci�es the sys-
tem's genotype-to-phenotype mapping, the �tness landscape in the genotype
space, and ultimately, its evolvability, meaning its ability to evolve to reach
advantageous solutions. Evolvability is one of the most fundamental properties
of an evolutionary system, and its enhancement is essential to the design of a
'good' evolutionary system. In most studies of arti�cial evolutionary systems,
however, the translation relation specifying the �tness landscape is determined
by a human designer prior to an experimental evolutionary run. If we could evo-
lutionarily optimize the translation based on the initial setting that we prepare,
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we might be able to evolve a more e�ective genotype-to-phenotype mapping.
This paper's primary topic is a method for enabling such evolutionary opti-
mization of the translation. We can expect improvement in the performance or
possibility of arti�cial evolutionary systems from such co-evolution between the
genotype-phenotype translation and the genotypes.

When we consider biological systems, on the other hand, the translation of
the genetic information in DNA is not �xed in advance but changes through evo-
lution. The fundamental mapping from DNA codes (codons) to functional units
(amino acids) is speci�ed by a set of molecules called aminoacyl-tRNAs, which
are created by translating codes in DNA [1]. The �nal �tness of a chromosome
is calculated not only from the DNA information but also from the chemical
reactions conducted by the entire molecular set in a cell. Hence, in a biological
system, not only the DNA but also other smaller molecules are responsible for the
phenotypic molecules used by selection. Although a mutation is basically exerted
only on the DNA, modi�cations of chromosomes are re
ected to the other inter-
nal molecules through transcription or translation. As a result, during biological
evolution, DNA and the translation molecules (tRNAs and aminoacyl-tRNAs)
can be optimized simultaneously.

Borrowing this mechanism, this paper proposes a new method for a genetic
algorithm (which we refer to as a chemical genetic algorithm, CGA) that en-
ables the coevolution between DNA codes and their translation and enhances
evolvability [4][5]. We prepare a population of arti�cial cells that include four
di�erent types of molecular units: a DNA string, tRNA strings, amino acid units
(Aminos), and aminoacyl-tRNA units (aa-tRNAs). A population of cells having
this structure is evolved by using operations for selection, DNA mutation, DNA
crossover, molecular exchange, and chemical reaction, while the cell's �tness is
evaluated from the target function, which is calculated from the speci�c output
amino acid values. To assess the e�ectiveness of the CGA, we apply it to func-
tional optimization problems that are hard to solve by a simple GA (SGA), and
analyze the evolution of CGA focusing on the enhancement of evolvability.

2 The Model

The CGA uses a population of cells, each of which contains a set of arti�cial
molecules. The molecular set is made up of a DNA string, tRNA strings, amino
acid units (Aminos), and aminoacyl-tRNA units (aa-tRNAs)(Fig. 1). The DNA
unit and tRNAs are represented by binary strings, the Aminos are represented by
real values normalized between zero and one, and the aa-tRNAs are represented
by combinations of a binary string and a real value between zero and one. All of
the binary strings are codons or indices, where an index is prepared in imitation
of the identi�er sequence of a real tRNA which speci�es correspondence between
a codon and an amino acid.

2.1 Parameters in CGA

The parameters used in the model are summarized below.
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Fig. 1. A cellular structure used in the CGA. The dark hatched rectangles are codons
described with short binary strings, the bright hatched rectangles are indexes described
with binary strings, and the circles are amino acids described with real numbers. The
dashed translation from DNA to Aminos does not happen with the CGA(NF).

J1 : Codon length (number of bits in a codon),
J2 : Index length (number of bits in an index),
K : Number of output amino acids for the target protein, or the number

of dimensions for the target function F ,
L : Number of tRNA units in the DNA,
M : Number of codons for Aminos in the DNA,
I : Total length of (number of bits in) the DNA= KJ1+L(J1+J2)+MJ1,
L1 : size limit of the tRNA pool (maximum number of tRNAs in a cell),
M1 : size limit of the Amino pool (initial/maximum number of Aminos

in a cell),
R1 : size limit of the aa-tRNA pool (maximum number of aa-tRNAs in

a cell),
R2 : Reaction rate of tRNAs and Aminos, or the number of aa-tRNAs

created by the tRNA-Amino reaction per cell per generation,
pm : Mutation rate (probability of 
ipping of DNA bits) per bit per

generation,
pc : Crossover rate (occurrence probability of one-point crossover be-

tween a DNA pair) per cell pair per generation,
N : Population size (the number of cells in the population),
� : Exponent for the target function F ,
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a,b : Fitness coe�cient for linear scaling,
c : Fitness coe�cient for exponential scaling.

3 Chemical Genetic Algorithm

As the CGA procedure is described in detail elsewhere [4][5], here we simply
describe its generational operation cycle as follows (see Fig. 2).

1. [Initialization] Prepares a population of cells with a random DNA string
and amino acids, then operate the generation cycle until a termination cri-
terion is satis�ed.

2. [Chemical reaction] During the �rst several generations, create new tRNA
and aa-tRNA molecules, making their pool sizes grow.

3. [Selection] Calculate the cells' �tness values from the output amino acids
and conduct roulette-wheel selection by using the �tness values.

4. [DNA mutation] Execute the conventional mutation (bit 
ipping) opera-
tion on the DNA strings of the cells.

5. [DNA crossover & molecular exchange] Mate all cells to make N=2
pairs. For each pair, execute the conventional crossover (exchange of DNA
substrings) operation and a molecular exchange operation.

6. Examine the population, and terminate if the criterion is satis�ed. Other-
wise, go to Step 2.

Fig. 2. Generation cycle of the CGA.
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4 Experiments

To verify the e�ectiveness of the CGA, we applied it to di�erent functional
optimization problems that are di�cult to solve with the SGA, and we compared
the results to those obtained with the SGA and the PfGA [3].

4.1 Deceptive Problems

The �rst problem relates to a K-dimensional deceptive function. A deceptive
problem is a kind of problem in which the total size of the basins for local
optimum solutions is much larger than the basin size of the global optimum
solution and GAs are very often deceived into climbing local optimum solutions.
The deceptive function F (x) is de�ned as

F (x) =
� 1

K

K�1X
k=0

fk(x)
��
; (1)

with a non-linearity factor � and the �nal �tness calculated from fitness =
a+ bF (x) for linear scaling or fitness = exp(cF (x)) for exponential scaling by
using the constant numbers a, b, and c. We de�ned three types of deceptive
problems.

A complex deceptive problem (Type III), in which the global optimum is
located at x = �k, where �k is a unique random number between 0 and 1
depending on the dimension k (k = 0;1; � � � ;K � 1), can be formulated as

fk(x) =

8>>><
>>>:
� x
�k

+ 4
5 if 0 � x � 4

5�k
5x
�k

� 4 if 4
5�k < x � �k

5(x��k)
�k�1

+ 1 if �k < x � 1+4�k
5

x�1
1��k

+ 4
5 if 1+4�k

5 < x � 1:

(2)

The two other types of deceptive problems (Types I & II) are special cases of
the complex deceptive problem, with �k = 1 (Type I), or �k = 0 or 1 at random
(Type II) for each dimension k (k = 0; 1; � � � ;K � 1) [4][5].

For all three types of fk(x), the region with local optima is 5K � 1 times
larger than the region with a global optimum in the K-dimensional space. The
number of local optima is 2K �1 for Type I and Type II deceptive problems and
3K � 1 for Type III.

We performed experiments with the three types of deceptive problems in the
�ve- and ten- dimensional cases. According to the results of some preliminary
experiments, we set the following experimental conditions: linear scaling (a = 0,
b = 1) for the SGA, and exponential scaling (c = 20) for the CGA.

Table 1 summarizes the set of parameter values used for the CGA (see Sec. 2.1
for the de�nitions). Table 2 compares the results of the SGA and two di�erent
CGAs for �ve and ten dimensions. The computational cost of the CGA was
about ten times larger than that of the SGA. The CGA outperformed the SGA
by far for deceptive problems of Types I and II, whereas the CGA and the SGA*
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Table 1. Parameter set for the CGA

J1 J2 K L M L1 M1 R1 R2 I Pm Pc N �

6 8 2/5/10 64 128 320 1280 320 64 1676/1694/1724 0.005 0.7 256 5

(the SGA with 10,000 generations) showed comparable performance in solving
the Type III deceptive problem. We consider these results to derive from the
fact that the CGA adaptively optimizes the coding relation for a given target
function.

Table 2. Success ratios for the SGA, CGAs, and PfGA [3] in solving deceptive problems

GA SGA SGA* CGA(WF) CGA(NF) PfGA [3]

J1 6 6 6 6 20
scaling linear linear exp. exp. none
Tmax 1,000 10,000 1,000 1,000 1,000**

Fth 0.8 0.8 0.8 0.8 0.8

Type(K=5) 2% 9% 100% 100% 100%
I (K=10) 0% 3% 100% 100% 100%

Type(K=5) 12% 20% 100% 100% 100%
II(K=10) 0% 5% 100% 100% 100%

Type(K=5) 47% 85% 95% 100% 100%
III(K=10) 14% 79% 43% 94% 100%

For the results shown in Table 2, we calculated a success ratio from 100 runs with
di�erent random number sequences. For example, 2% means that two runs out of 100
succeeded in �nding the global optimum solution before reaching the maximum number
of generations, Tmax. The CGA(WF) is an original model with translation feedback
by aa-tRNA, while the CGA(NF) is a modi�ed model with no feedback. **The PfGA
performed 300 runs and evaluated the same number of individuals, N �Tmax = 256,000,
as the SGA and CGAs for each run.

4.2 Benchmark Problems

The next problems that we considered were two benchmark problems, Shekel's
foxholes and a generalized Langermann's function [2]. These problems have cor-
relations between multiple input variables (variable-inseparable) and global so-
lutions that cannot be found by considering each input variable independently.
We normalized each function so that the maximum functional value would be
approximately equal to one. The original forms of the functions are given by

F (x) = �

mX
j=1

1PK

k=1(xk � ajk)2 + cj
;m = 30 (3)
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for Shekel's foxholes, and

F (x) = �

mX
j=1

cj exp

"
�
1

�

KX
k=1

(xk � ajk)
2

#
cos

"
�

KX
k=1

(xk � ajk)
2

#
;m = 5 (4)

for the generalized Langermann's function, where ajk and cj are constant num-
bers �xed in advance. We speci�ed linear scaling with a = 0 and b = �1=10 for
the SGA and exponential scaling with c = 20 for the CGA in the case of Shekel's
foxholes. For the generalized Langermann's function, we speci�ed linear scaling
with a = 0:6 and b = �1=1:75 for the SGA and exponential scaling with c = 20
for the CGA. These were the best conditions that we obtained through prelimi-
nary experiments. Using di�erent random number sequences, we conducted 100
di�erent runs with the SGAs and CGAs for the two-, �ve-, and ten-dimensional
(K = 2, 5, 10) benchmark problems.

Table 3 compares the results that we obtained for each problem with the
di�erent algorithms. As the number of dimensions, K, increases, the di�culty
of the benchmark problems increases geometrically. Accordingly, with K = 2,
all of the algorithms could almost always �nd the global solution, as judged by
the criterion, F (x) > 0:9, but with K = 10, most of the algorithms failed to �nd
a global optimum solution. With K = 5 for Shekel's foxholes, the CGAs, and
especially CGA(NF) (i.e., the CGA with no translation feedback by aa-tRNA),
signi�cantly outperformed the SGA. Furthermore, the CGA showed performance
comparable to that of the PfGA [3], which is one of the most powerful genetic
algorithms developed thus far.

Table 3. Success ratios of the SGA, CGAs, and PfGA [3] for the benchmark problems

GA SGA SGA* CGA(WF) CGA(NF) PfGA [3]

J1 6 6 6 6 20

scaling linear linear exp. exp. none
Tmax 1,000 10,000 1,000 1,000 1,000**

F 0

th 0.9 0.9 0.9 0.9 0.9
Shekel (K=2) 99% 99% 95% 100% 100%

(K=5) 5% 5% 5% 50% 37%

(K=10) 0% 0% 0% 0% 1.3%

F 0

th 1.4 1.4 1.4 1.4 1.4

Langermann (K=5) 41% 47% 13% 35% 83%
(K=10) 0% 0% 0% 3% 1.7%

For each run out of 100, success was judged by whether F 0 exceeded F 0

th before reach-
ing the maximum number of generations, Tmax. The CGA(WF) is an original model
with translation feedback by aa-tRNA, while the CGA(NF) is a modi�ed model with
no feedback. **The PfGA performed 300 runs and evaluated the same number of in-
dividuals, N � Tmax = 256,000, as the SGA and CGAs for each run.
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5 Evolvability Analysis

The reason why CGAs show good performance is thought to be the fact that
during evolution, they adaptively change the binary-to-real value translation
and optimize the genotype-to-phenotype mapping. This optimization makes the
�tness landscape smoother and make it easy for evolution to �nd a path to an
optimum solution. To clarify the mechanisms underlying the CGA and con�rm
the above characteristics, we introduced a measure for evaluating the smoothness
of the �tness landscape, the basin size of the global optimum solution (B) in
the binary genotype space, and we conducted experiments to measure B. The
deceptive problems and Shekel's foxholes were analyzed in terms of this metric
for evolvability.

Fig. 3. Schematic of the �tness landscape and basin for a global optimum solution.
(a) Evolvability is low, due to the small basin for the global optimum solution. (b)
Evolvability is high due to the large basin.

If the �tness landscape is rugged (multipeaked) and the global optimum
solution has a small basin in the genotype space (Fig. 3(a)), a mutation can
hardly �nd this solution. If the �tness landscape is smooth and the optimal
solution has a large basin (Fig. 3(b)), however, there is a strong possibility of
evolution by a mutation �nding a path to the global optimum solution and
climbing the mountain. As shown by this argument, we can take the global
optimum solution's basin size (B) in the binary genotypic space as a measure for
a GA's evolvability. Although GAs utilize such genetic operations as crossover,
which simultaneously changes multiple bits in a chromosome, we only focus
here on the mutation's searching ability as a �rst-order approximation, and we
evaluate B on a Hamming space in which two genotypes are regarded as adjacent
if their Hamming distance is one.

5.1 Analysis with a Deceptive Problem

We �rst analyze the �ve-dimensional complex deceptive problem by using sepa-
ration of variables. The calculation of basin size is based on the codon-to-amino
translation table for each cell, which is built by the majority codon selection
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method, de�ned as follows. For a given codon, all aa-tRNAs within the current
cell that contain the codon are listed. From this set, the most frequent amino
value is selected as the translation value. If multiple amino acids share the high-
est frequency, one of them is randomly selected to determine the translation.
Building the translation table in this manner provides a more accurate map-
ping between codon values and amino values, which increases the accuracy in
calculating the basin size.

Figure 4 shows the average f value for each dimension until saturation, the
average F value until saturation, the average basin size for each dimension over
250 generations, and the average basin size for all dimensions over 250 genera-
tions. From Fig. 4(d), we observe that the CGA is attempting to increase the
total basin size by working on individual dimensions, but since the translation
table is shared by all dimensions, optimizing a single dimension may have adverse
e�ects on the other dimensions. For comparison, in Figs. 4(a-0) to (a-4), we also
plot the average f values that are actually output from the cells. These results
verify the signi�cance of the basin size, whose increase for a given dimension
greatly contributes to �nding a global solution for that dimension.

Figure 5 shows the codon translation tables obtained after the saturation
of CGA evolution, calculated by the majority codon selection method. Fig-
ure 5(b) shows the population average of the codon-to-amino value translation
table, while Figs. 5(a-0) to (a-4) are the population averages of the codon-to-
f value mappings calculated by using the codon-amino translation table for
each cell. This �gure indicates that although the fundamental codon-to-amino
mapping (Fig. 5(b)) does not have a smooth landscape, the codon-to-fk value
mappings (Figs. 5(a-0) to (a-4)) do have relatively smooth landscapes, enabling
most (about ten) codons to �nd a path to a global solution. With this land-
scape, the deceptive problem is transformed into an easier problem that does
not deceive GAs.

5.2 Analysis with Shekel's Foxholes

Because the Shekel's foxholes problem is not variable-separable, we cannot ana-
lyze the �tness landscape for this function by using the same method as for the
deceptive function. Instead, here we limit the Shekel's foxholes problem to two
dimensions and directly analyze the F (x) landscape as a function of codon pairs
(we take J1 = 4, so that we consider an eight-bit genotype space). In this set-
ting, the basin size is de�ned as the number of codon pairs in each cell that can
reach a global solution by traversing successively through the neighboring codons
with the largest F (x) values. The translation from a codon value to an amino
value is determined by the same majority selection method as that used above
for the deceptive problem, with a global solution determined by the criterion,
F (x) > 0:9.

Figures 6(a) and (b) show the average F (x) value and basin size �B, respec-
tively, for the CGA solution to this problem. The basin size for generations 0 to
100 is similar to what would be achieved with a random genotype-to-phenotype
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translation table. From the 100th generation, however, the CGA suddenly be-
gins to increase the basin size, and after the 130th generation, it is maintained
at more than 60 codon pairs. This means that according to the �tness landscape
optimized by the CGA, the basin for the global solution covers about one quarter
of the whole genotype space.

6 Conclusion

We have developed a new biomolecular algorithm, a chemical genetic algorithm

(CGA), in which several types of molecules react with each other in a cell. To
demonstrate the e�ectiveness of the CGA, we applied the algorithm to a set of
deceptive problems and benchmark problems. The results show that co-evolution
between codes and code translations increases the basin size (i.e., it enhances
the evolvability) and makes the population converge to the global optimum with
a higher probability.

The present version of the CGA is only a simple actualization of molecular
reactions in a cell. The molecular types are a minimal set for the translation
of DNA information, and some other important molecules, such as enzymes
(proteins catalyzing reactions or synthesizing amino acids), are omitted. We
consider introducing these molecules to the CGA to be an important issue for
the future. Speci�cally, in the present model, the amino values are never newly
synthesized; they are initially created in the set of amino acids and are just
reused. Accordingly, the number of di�erent Aminos monotonously decreases
during evolution of the CGA. Making amino values newly synthesized during
evolution is a future problem to be tackled.
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Fig. 4. Evolution of basin sizes and f -values for a typical run of the CGA. (a-0) to
(a-4) represent the population-average f -value, f , for dimensions 0, 1, 2, 3, and 4, re-
spectively, as functions of time from the start of evolution until saturation. (b) shows
function F vs. time up to saturation. Functions F and f are as de�ned in Section 4.1.
(c-0) to (c-4) illustrate the average basin size for dimensions 0, 1, 2, 3, and 4, respec-
tively, until and after saturation. (d) shows the average of the �ve previous plots. The
maximum basin size is 16.
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(a-0) (a-1) (a-2)

(a-3) (a-4) (b)

Fig. 5. Codon translation tables at the 200th generation of CGA evolution.

Fig. 6. Evolution of two-dimensional Shekel's foxholes for a typical run of the CGA. (a)
Population-average F(x) value. (b) Population-average basin size, �B. The maximum
possible basin size is 256.


