
Implications of Incorporating Learning Probabilistic
Context-sensitive Grammar in Genetic Programming on
Evolvability of Adaptive Locomotion Gaits of Snakebot

Ivan Tanev

Department of Information Systems Design,
Faculty of Engineering, Doshisha University, 1-3 Miyakodani, Tatara,

Kyotanabe, Kyoto 610-0321, Japan

ATR Network Informatics Laboratories,
2-2-2 Hikaridai, “Keihanna Science City”, Kyoto 619-0288, Japan

i_tanev@atr.jp

Abstract. In this work we propose an approach of incorporating learning context-
sensitive grammar in strongly typed genetic programming (GP) employed for evolu-
tion and adaptation of locomotion gaits of simulated snake-like robot (Snakebot). In
our approach the probabilistic context-sensitive grammar is derived from the origi-
nally defined context-free grammar (which usually expresses the syntax of genetic
programs in strongly typed GP), using aggregated reward values obtained from the
evolved best-of-run healthy, undamaged Snakebots. The probabilities of applying each
of particular production rules with multiple right-hand side alternatives in derived
probabilistic context-sensitive grammar depend on the context, and these probabilities
are “learned” from the aggregated reward values. Empirically obtained results indicate
that employing probabilistic context-sensitive grammar contributes to the improving
the ability of Snakebot to adapt to partial damage by gradually improving its velocity
characteristics. Snakebot recovers completely from single damage and recovers a ma-
jor extent of its original velocity when more significant damage is inflicted. In all con-
sidered cases of inflicted partial damage of 1, 2, 4, and 8 out of 15 morphological
segments, the incorporation of learning context sensitive grammar in GP improves the
evolvability of adaptive locomotion gaits in that the recovery of partially damaged
Snakebot is (i) faster and to (ii) higher values of velocity of locomotion.
Keywords: adaptation, locomotion, snake-like robot, strongly typed genetic program-
ming, probabilistic context sensitive grammar

1 Introduction

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness char-
acteristics beyond the capabilities of most wheeled and legged vehicles – ability to
traverse terrain that would pose problems for traditional wheeled or legged robots,
and insignificant performance degradation when partial damage is inflicted. Some
useful features of Snakebots include smaller size of the cross-sectional areas, stabil-
ity, ability to operate in difficult terrain, good traction, high redundancy, and com-

plete sealing of the internal mechanisms [1,3,12]. Robots with these properties open
up several critical applications in exploration, reconnaissance, medicine and inspec-
tion. However, compared to the wheeled and legged vehicles, Snakebots feature (i)
smaller payload, (ii) more difficult thermal control, (iii) more difficult control of
locomotion gaits and (iv) inferior speed characteristics. Considering the first two
drawbacks as beyond the scope of our work, and focusing on the drawbacks of con-
trol and speed, we intend to address the following challenge: how to develop control
sequences of Snakebot’s actuators, which allow for achieving the fastest possible
speed of locomotion.

Although for many tasks, handcrafting the robot locomotion control code can be
seen as a natural approach, it might not be feasible for developing the control code of
Snakebot due to its morphological complexity. While the overall locomotion gait of
Snakebot might emerge from relatively simply defined motion patterns of morpho-
logical segments of Snakebot, neither the degree of optimality of the developed code
nor the way to incrementally improve the code is evident to the human designer [7].
Thus, an automated mechanism for solution evaluation and corresponding rules for
incremental optimization of the intermediate solution(s) are needed [6]. The pro-
posed approach of employing genetic programming (GP) implies that the code,
which governs the locomotion of Snakebot is automatically designed by a computer
system via simulated evolution through selection and survival of the fittest in a way
similar to the evolution of species in the nature. The use of an automated process to
design the control code opens the possibility of creating a solution that would be
better than one designed by a human. Additional motivation for applying such an
automated process to design the control code of Snakebot is that the anticipated ap-
plication areas of Snakebot (exploration, reconnaissance, medicine, inspection etc.)
feature challenging environments in which a partial damage to the Snakebot might
have been inflicted. In order to successfully accomplish its mission is such environ-
ments the Snakebot should be able quickly, automatically, and autonomously adapt
to these damages.

 The objectives of our work are (i) to explore the feasibility of applying GP for
automatic design of the fastest possible locomotion of realistically simulated Snake-
bot and (ii) to investigate the adaptation of such locomotion to degraded abilities
(due to partial damage) of Snakebot. We are particularly interested in the implica-
tions of incorporating a learning context-sensitive grammar in strongly typed GP
(employed for automatic design of the fastest possible locomotion of Snakebot) on
the evolvability of adaptive locomotion gaits of partially damaged Snakebot.

The discussed approach is related to employing learning Bayesian optimization
algorithms and reinforcement learning in evolutionary computations [2, 4, 8, 9, 10].
In neither of these methods however the incorporation of learning context-sensitive
grammar in strongly typed GP has been explored and the curiosity about the feasibil-
ity of such approach additionally motivated us in this work.

The remainder of this document is organized as follows. Section 2 emphasizes
the main features of the GP proposed for evolution of locomotion of simulated
Snakebot. The same section presents empirical results of evolving fast locomotion
gaits of Snakebots. Section 3 introduces the proposed approach of incorporating

learning context-sensitive grammar in the strongly typed GP and its implications on
the evolvability of adaptive locomotion gaits of partially damaged Snakebot. Finally,
Section 4 draws a conclusion.

2 GP for Automatic Design of Locomotion Gaits of Snakebot

2.1 Representation of Snakebot

Snakebot is simulated as a set of identical spherical morphological segments (“verte-
brae”), linked together via universal joints. All joints feature identical (finite) angle
limits and each joint has two attached actuators (“muscles”). In the initial, standstill
position of Snakebot the rotation axes of the actuators are oriented vertically (vertical
actuator) and horizontally (horizontal actuator) and perform rotation of the joint in
the horizontal and vertical planes respectively (Figure 1). Considering the represen-
tation of Snakebot, the task of designing the fastest locomotion can be rephrased as
developing temporal patterns of desired turning angles of horizontal and vertical
actuators of each segment, that result in fastest overall locomotion of Snakebot.

Fig.1. Morphological segments of Snakebot linked via universal joint. Horizontal and vertical
actuators attached to the joint perform rotation of the segment #i+1 in vertical and horizontal
planes respectively.

2.2 Algorithmic Paradigm

GP. GP [5] is a domain-independent problem-solving approach in which a popula-
tion of computer programs (individuals’ genotypes) is evolved to solve problems.
The simulated evolution in GP is based on the Darwinian principle of reproduction
and survival of the fittest. The fitness of each individual is based on the quality with
which the phenotype of the simulated individual is performing in a given environ-
ment. The major attributes of GP - function set, terminal set, fitness evaluation, ge-
netic representation, and genetic operations are elaborated in the remaining of this
Section.

Function Set and Terminal Set. In applying GP to evolution of Snakebot, the geno-
type is associated with two algebraic expressions, which represent the temporal pat-
terns of desired turning angles of both the horizontal and vertical actuators of each

 Horizontal plane

Vertical plane

Segment #i Segment #i+1

Universal joint
Vertical

axis

Horizontal
axis

morphological segment. Since locomotion gaits are periodical, we include the trigo-
nometric functions sin and cos in the GP function set in addition to the basic alge-
braic functions. The choice of these trigonometric functions reflects our intention to
verify the hypothesis (first expressed by Petr Miturich in 1920’s) that undulative
motion mechanisms could yield efficient gaits of snake-like artifacts operating in air,
land, or water. Terminal symbols include the variables time, index of morphologi-
cal segment of Snakebot, and two constants: Pi, and random constant within the
range [0, 2]. The main parameters of the GP are summarised in Table 1.

Table 1. Main parameters of GP

Category Value

Function set {sin, cos, +, -, *, /}
Terminal set {time, segment_ID, Pi, random constant, ADF}
Population size 200 individuals
Selection Binary tournament, ratio 0.1
Elitism Best 4 individuals
Mutation Random subtree mutation, ratio 0.01
Fitness Velocity of simulated Snakebot during the trial
Trial interval 180 time steps, each time step account for 50ms of “real” time

Termination criterion
(Fitness >100) or (Generations>30)
 or (no improvement of fitness for 16 generations)

The rationale of employing automatically defined function (ADF) is based on

empirical observation that the evolvability of straightforward, independent encoding
of desired turning angles of both horizontal and vertical actuators is poor, although it
allows GP to adequately explore the search space and ultimately, to discover the
areas which correspond to fast locomotion gaits in solution space. We discovered
that (i) the motion patterns of horizontal and vertical actuators of each segment in
fast locomotion gaits are highly correlated (e.g. by frequency, direction, etc.) and that
(ii) discovering and preserving such correlation by GP is associated with enormous
computational effort. ADF, as a way of introducing modularity and reuse of code in
GP [5] is employed in our approach to allow GP to explicitly evolve the correlation
between motion patterns of horizontal and vertical actuators as shared fragments in
algebraic expressions of desired turning angles of actuators. Moreover, the best result
was obtained by (i) allowing the use of ADF as a terminal symbol in algebraic ex-
pression of desired turning angle of vertical actuator only, and (ii) by evaluating the
value of ADF by equalizing it to the value of currently evaluated algebraic expression
of desired turning angle of horizontal actuator.

Fitness Evaluation. The fitness function is based on the velocity of Snakebot, esti-
mated from the distance which the center of the mass of Snakebot travels during the
trial. The real values of the raw fitness, which are usually within the range (0, 2) are
multiplied by a normalizing coefficient in order to deal with integer fitness values
within the range (0, 200). A normalized fitness of 100 (one of the termination crite-

ria shown in Table 1) is equivalent to a velocity which displaced Snakebot a distance
equal to twice its length.

Genetic Operations. Binary tournament selection is employed – a robust, com-
monly used selection mechanism, which has proved to be efficient and simple to
code. Crossover operation is defined in a strongly typed way in that only the DOM-
nodes (and corresponding DOM-subtrees) of the same data type (i.e. labeled with the
same tag) from parents can be swapped. The sub-tree mutation is allowed in strongly
typed way in that a random node in genetic program is replaced by syntactically
correct sub-tree. The mutation routine refers to the data type of currently altered
node and applies randomly chosen rule from the set of applicable rewriting rules as
defined in the context-free grammar of strongly typed GP.

ODE. We have chosen Open Dynamics Engine (ODE) [11] to provide a realistic
simulation of physics in applying forces to phenotypic segments of Snakebot, for
simulation of Snakebot locomotion. ODE is a free, industrial quality software library
for simulating articulated rigid body dynamics. It is fast, flexible and robust, and it
has built-in collision detection.

2.3 Automatic Design of Fastest Locomotion Gaits of Healthy Snakebot:
Empirical Results

Figure 2 shows the fitness convergence characteristics of 10 independent runs of GP
(Figure 2a) and sample snapshots of evolved best-of-run locomotion gaits (Figure 2b
and Figure 2c) of healthy Snakebot when fitness is measured in any direction in an
unconstrained environment. Despite the fact that fitness is unconstrained and meas-
ured as velocity in any direction, sidewinding locomotion (defined as locomotion
predominantly perpendicular to the long axis of Snakebot) emerged in all 10 inde-
pendent runs of GP, suggesting that it provides superior speed characteristics for
Snakebot morphology.

 a) b) c)

Fig. 2. Fitness convergence characteristics of 10 independent runs of GP for cases where
fitness is measured as velocity in any direction (a) and snapshots of sample evolved best-of-
run sidewinding locomotion gaits of simulated Snakebot (b, c), viewed from above. The dark
trailing circles depict the trajectory of the center of the mass of Snakebot. Timestamp interval
between each of these circles is fixed and it is the same (10 time steps) for both snapshots.

0

20

40

60

80

100

0 10 20 30 40

Generation #

Fi
tn

es
s

The dynamics of evolved turning angles of actuators in sidewinding locomotion
result in characteristic circular motion pattern of segments around the center of the
mass as shown in Figure 3a. The circular motion pattern of segments and the charac-
teristic track on the ground as a series of diagonal lines (Figure 3b) suggest that
during sidewinding the shape of Snakebot takes the form of a rolling helix. Figure 3
demonstrates that the simulated evolution of locomotion via GP is able to invent the
improvised “wheel” of the sidewinding Snakebot to achieve fast locomotion.

 a) b)

Fig. 3. Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for a
sample evolved best-of-run sidewinding locomotion (a) and traces of ground contacts (b).

3 Incorporating Learning Context-sensitive Grammar in GP

3.1 Context-free Grammar of Strongly-typed GP Employed for Automatic
Design of Fastest Locomotion Gaits of Healthy Snakebot

Context free grammar G is defined as (N, Σ, P, S) where N is a finite set of
nonterminal symbols, Σ is a finite set of terminal symbols that is disjoint from N, S
is a symbol in N that is indicated as the start symbol, and P is a set of production
rules, where a rule is of the form

V → w

where V is a non-terminal symbol and w is a string consisting of terminals and/or
non-terminals. The term "context-free" comes from the feature that the variable V
can always be replaced by w, in no matter what context it occurs. For the considered
case of context free grammar of strongly typed GP, employed for automatic design
of locomotion gaits of healthy Snakebot (as elaborated before in Section 2), the set
of non-terminal symbols is defined as follow:

N = {GP, STM, STM1, STM2, VAR, CONST_x10, CONST_PI, OP1, OP2}

where STM is a Statement, STM1 – Unary statement, STM2 – Binary (dyadic) state-
ment, VAR – variable, OP1 – unary operation, OP2 – binary (dyadic) operation,
CONST_x10 is a random constant within the range [0..20], and CONST_PI equals
either 3.1416 or 1.5708. The set of terminals is:

-0.1

0

0.1

0.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Lateral displacement, Xcs-Xcm

El
ev

at
io

n,
 Z

cs
-Z

cm

Σ = {sin, cos, nop, sqr, sqrt, +, -, *, /, time, segment_id}

The start (nonterminal) symbol is GP, and the set of production rules expressed in
Backus-Naur form (BNF) is as shown in Figure 4.

(1) GP ——► STM
(2.1-2.5) STM ——► STM1|STM2|VAR|CONST_x10|CONST_PI
(3) STM1 ——► OP1 STM
(4.1-4.6) OP1 ——► sin|cos|nop|–|sqr|sqrt
(5) STM2 ——► OP2 STM STM
(6.1-6.4) OP2 ——► +|-|*|/
(7.1-7.2) VAR ——► time|segment_id
(8) CONST_x10 ——► 0..20
(9.1-9.2) CONST_PI ——► 3.1416|1.5708

Fig. 4. BNF of production rules of the context free grammar G of strongly typed GP, em-
ployed for automatic design of locomotion gaits of healthy Snakebot. The following abbrevia-
tions are used: STM – statement, STM1 – unary statement, STM2 – binary (dyadic) statement,
VAR – variable, OP1 – unary operation, OP2 – binary (dyadic) operation

The algebraic expression of horizontal (and vertical) desired angle of actuators of
Snakebot evolved through GP can be obtained from described context-free grammar
G and starting symbol GP applying a corresponding production rule for the currently
leftmost non-terminal symbol in the derivative expression. The production rules with
multiple alternative right-hand sides (such as rules 2, 4, 6, 7 and 9) are chosen ran-
domly. GP uses the defined production rules of the grammar during the creation of
initial population and during mutation of genetic programs. Because crossover is
implemented in strongly typed way, the syntax of resulting offspring complies with
the allowed syntax of genetic programs as defined by the context-free grammar G.
For example, applying the sample sequence of production rules, shown in Figure 5a
on the stage of creation of initial population of GP yields a genetic program (e.g. for
defining the desired horizontal angle of actuators of Snakebot) as shown in Figure 5b.

3.2 Learning Probabilistic Context-sensitive Grammar of Strongly-typed GP

In our approach, the probabilistic context-sensitive grammar G* is introduced as a

set of the same attributes (N*, Σ*, P*, S*) as for the context-free grammar G defined
in 3.1 before. While the attributes N*, Σ*, and S* are identical to N, Σ, and S of G,
the set of production rules P* of G* are derived from P of G as follows: (i) The pro-
duction rules of P which does not have right-hand side alternatives are defined in the
same way in P* as in P, and (ii) production rules in P, which do have multiple right-
hand side alternatives V → w1|w2|...|wN are re-defined for each instance of the
context (i.e. contexti) as follows:

contexti V → contexti w1 (p
i
1)

contexti V → contexti w2 (p
i
2)

...
contexti V → contexti wN (p

i
N)

where pi1, pi2, …piN are probabilities (frequencies) of applying each alternative
rule in the given contexti. For each set of production rules featuring multiple
right-hand side alternatives, and for given contexti, ∑ pin = 1, n=1,2..N.

1
2.2
5
6.2
2.1
3
4.6
2.2
5
6.1
2.5
9.1

2.4

8
2.2
5
6.4
2.5
9.2
2.3
7.1

 a) b)

Fig. 5. Sample sequence of applied production rules (a) and resulting genetic program (b)

The proposed approach is based on the idea of introducing bias in applying the
most preferable rule from the set of rules with multiple, alternative right-hand sides.
We assume that (i) such preferences of applying certain rule can be defined as prob-
abilities (preferred frequencies) of applying the rule and (ii) the preferences of apply-
ing certain production rules would depend on the context, i.e. on which rules have
been applied before. In the proposed approach, the initial distribution of probabilities
p1…pN is even. The distribution of probabilities is learned (adjusted) from the best
performing evolved healthy Snakebots and then used in adaptation of Snakebot via

GP to partial damage.
Sample sequence of applying the production rules (as shown in Figure 5a) imme-

diately after applying the production rule 9.1, and the corresponding genetic pro-
gram in prefix notation and as a parsing tree are shown in Figure 6a, 6b and 6c re-
spectively. The current leftmost non-terminal, as shown in Figure 6b and 6c is STM,
which requires applying one of production rules 2.1-2.5 (Figure 4). Assuming that
for the considered context, the “learned” preferences of applying rules 2.1-2.5 indi-
cates highest probability, and consequently, preferential bias towards the rule 2.4:
STM ——► CONST_x10, then this production rule will be most likely applied yielding
the genetic program shown Figure 5b.

1
2.2
5
6.2
2.1
3
4.6
2.2
5
6.1
2.5
9.1

 (a)

(-(sqrt(+ 1.5708 STM))(STM))

 b) c)

Fig. 6. Sample sequence of applied production rules (a) and resulting genetic program in
prefix notation (b) and parsing tree (c)

Obtaining the probabilities of applying certain production rule with multiple

right-hand side alternatives implies maintaining a probability distribution table.
Each entry in the table stores the probability of applying certain production rule for
given context. The probability is proportionally calculated from the reward values,
aggregated over 10 best of run genetic programs obtained from experiments with
evolving healthy Snakebot as elaborated in Section 2. The string of symbols of the

1

2.2

5

6.2

2.1

3

4.6

2.2

5

6.1

2.5

9.1

Context

Leftmost non-terminal

Leftmost non-terminal

right-hand side RHS of concrete production rule that should currently replace the
leftmost nonterminal (i.e. the corresponding left-hand symbol in production rule,
LHS) for given context C is obtained by function GetProduction([in] C, [in]
LHS, [out] RHS) which operates on probability distribution table as illustrated
in Figure 7.

Context

(C)

Left-hand side

(LHS)

Right-hand side

(RHS)

Aggregated Reward

Value (ARV)

Probability

Distribution (PD)
...

contexti ‘STM’ ‘STM1’ 19 0.34

contexti ‘STM’ ‘STM2’ 0 0.00

contexti ‘STM’ ‘VAR’ 4 0.07

contexti ‘STM’ ‘CONST_x10’ 24 0.43
contexti ‘STM’ ‘CONST_PI’ 9 0.16

...

Fig. 7. Obtaining the string of symbols of the right-hand side RHS of production rule that
should currently replace the left-most non-terminal (i.e. left-hand symbol in production rule,
LHS), and the context C: 1) Selecting the set of entries associated with rules featuring the
considered left-hand side LHS and context C, 2) Selecting a certain production rule (from
the set of entries featuring considered LHS and C) with probability of selection, proportional
to the learned probability distribution, and 3) returning the RHS of selected production rule

3.3 Empirical Results

The adaptation of Snakebot to partial damage is implemented via GP, where the latter is
initialized with a population comprising the 10 best-of-run genetic programs, obtained from
the experiments as described in Section 2.3, plus 190 individuals created applying the prob-
abilistic context sensitive grammar. The genetic operations and the value of parameters of GP
employed for adaptation of the damaged Snakebot are virtually the same as used for evolution
of healthy Snakebot (as elaborated in Section 3.1), with the only difference that (i) the muta-
tion ratio is increased from 0.01 to 0.1 and (ii) the altering the genetic programs during muta-
tion operation is performed using the preferential application of certain grammar rules of the
probabilistic context-sensitive grammar. The ability of sidewinding Snakebot to adapt to
partial damage to 1, 2, 4 and 8 (out of 15) segments by gradually improving its velocity by
simulated evolution via GP is shown in Figure 8. Demonstrated results are averaged over 20
independent runs for each case of partial damage to 1, 2, 4 and 8 segments. The damaged
segments are evenly distributed along the body of Snakebot. Damage inflicted to a particular
segment implies a complete loss of functionality of both horizontal and vertical actuators of
the corresponding joint. As Figure 8 illustrates, Snakebot completely recovers from damage to
single segment attaining its previous velocity in 25 generations with “canonical” strongly
typed GP employing context-free grammar G, and only in 11 generations with GP employing

2

3

GetProduction([in] C, [in] LHS, [out] RHS)

contexti,‘STM’ ‘CONST_x10’

1

probabilistic learning context sensitive grammar G*. Snakebots recovers to average of 94%
(with G) and 96% (G*) of its previous velocity in the case where 2 (13% of total amount of
15) segments are damaged. With 4 (27%) and 8 (53%) damaged segments the degree of re-
covery is 77% (G) and 80% (G*), and 64% (G) and 75% (G*) respectively. In all considered
cases of partial damage incorporating learning context sensitive grammar contributes to faster
adaptation of Snakebot, and in all cases the Snakebot recovers to higher values of velocity of
locomotion.

 a) b) c) d)

Fig. 8. Adaptation of sidewinding Snakebot to damage of 1 (a), 2 (b), 4 (c) and 8 (d) segments
using context-free grammar and learning probabilistic context-sensitive grammar. Fd is the
best fitness in evolved population of damaged snakebots, and Fh is the best fitness of 10 best-
of-run healthy sidewinding Snakebots.

4 Conclusion

In this work we propose an approach of incorporating learning context-sensitive
grammar in strongly typed genetic programming (GP) employed for evolution and
adaptation of locomotion gaits of simulated snake-like robot (Snakebot). In our ap-
proach the probabilistic context-sensitive grammar is derived from the originally
defined context-free grammar (which usually expresses the syntax of genetic pro-
grams in strongly typed genetic programming), using aggregated reward values
obtained from the evolved best-of-run healthy, undamaged Snakebots. The probabili-
ties of applying each of particular production rules with multiple right-hand side
alternatives in derived probabilistic context-sensitive grammar depend on the con-
text, and these probabilities are “learned” from the aggregated reward values. Em-
pirically obtained results indicate that employing probabilistic context-sensitive
grammar contributes to the improving the ability of Snakebot to adapt to partial
damage by gradually improving its velocity characteristics. Snakebot recovers com-
pletely from single damage and recovers a major extent of its original velocity when

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40
30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Fd
/F

o,
 %

Generation#

Context-free grammar G
Probabilistic learning context-sensitive grammar G*

more significant damage is inflicted. In all considered cases of inflicted partial dam-
age of 1, 2, 4, and 8 out of 15 morphological segments, the incorporation of learning
context sensitive grammar in GP improves the evolvability of adaptive locomotion
gaits in that the recovery of partially damaged Snakebot is (i) faster and to (ii) higher
values of velocity of locomotion.

Acknowledments. The author thanks Katsunori Shimohara, Thomas Ray, Hideaki
Suzuki and Hidefumi Sawai for the stimulating discussions, suggestions and support.
This research was supported in part by the National Institute of Information and
Communications Technology of Japan.

References

1. Dowling, K.: Limbless Locomotion: Learning to Crawl with a Snake Robot, doc-
toral dissertation, tech. report CMU-RI-TR-97-48, Robotics Institute, Carnegie
Mellon University (1997)

2. Downing, K., L.: Adaptive Genetic Programs via Reinforcement Learning, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), (2001), 19-26.

3. Hirose, S.: Biologically Inspired Robots: Snake-like Locomotors and Manipula-
tors, Oxford University Press (1993)

4. Kamio, S., Mitsuhashi, H. and Iba, H., Integration of Genetic Programming and
Reinforcement Learning for Real Robots, Proceedings of the Genetic and Evolu-
tionary Computation (GECCO-2003), (2003) 470-482.

5. Koza, J.R.: Genetic Programming 2: Automatic Discovery of Reusable Programs,
The MIT Press, Cambridge, MA (1994)

6. Mahdavi, S., Bentley, P.J.: Evolving Motion of Robots with Muscles. In Proc. of
EvoROB2003, the 2nd European Workshop on Evolutionary Robotics, EuroGP
2003 (2003) 655-664

7. Morowitz, H.J.: The Emergence of Everything: How the World Became Com-
plex, Oxford University Press, New York (2002)

8. Pelikan M., Goldberg D. E., and Cantú-Paz, E.: BOA: The Bayesian optimiza-
tion algorithm. Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-99), I, (1999) 525-532

9. Salustowicz, R. and Schmidhuber, J.: Probabilistic incremental program evolu-
tion. Evolutionary Computation, Vol.5 No.2, (1997) 123-141

10. Sawai, H. and Adachi, S.: Adaptive Strategy for GAs Inspired by Gene-
Duplication, Proceedings of the 4th Asia-Pacific Conference on Simulated Evolu-
tion And Learning (SEAL-2002), Singapore, Vol.2, (2002) 592-599

11. Smith, R.: Open Dynamics Engine (2001-2003) http://q12.org/ode/
12. Zhang, Y., Yim, M. H., Eldershaw, C., Duff, D. G., Roufas, K. D.: Phase auto-

mata: a programming model of locomotion gaits for scalable chain-type modular
robots. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003); October 27 - 31; Las Vegas, NV (2003)

