
Application of a New Hybrid Evolutionary Strategy to
Spacecraft Thermal Design

Roberto Luiz Galski, Fabiano Luis de Sousa,
Fernando Manuel Ramos and Issamu Muraoka

Instituto Nacional de Pesquisas Espaciais (INPE)
Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-010, Brazil

galski@ccs.inpe.br,fabiano@dem.inpe.br,
fernando@lac.inpe.br, issamu@dem.inpe.br

Abstract. In this paper, a new hybrid evolutionary strategy is used to the in-
verse design of a spacecraft thermal control system. This hybrid strategy
comprises one step of global, stochastic search, using the Generalized Extre-
mal Optimization (GEO) algorithm, followed by a local, deterministic re-
finement minimization step with the EXTREM optimization routine.
The GEO algorithm is a novel global search meta-heuristic, based on a
model of natural evolution, while EXTREM uses Powell’s method of
conjugate directions. This approach is applied to the inverse design of a
spacecraft thermal control system, considering different critical, on-orbit
operational conditions. Numerical results show that the hybrid approach
improves the design solution in terms of the value of the objective
function, while GEO yields non-intuitive efficient solutions in the sense
they were unlikely to come out through the classical, “manual” design proce-
dure.

1   Introduction

Many numeric techniques have been developed to address optimization problems in
science and engineering [1-3]. The existence of many types of optimization methods
is the consequence of a practical and theoretic observation: the efficiency of a given
optimization algorithm is dependent on the kind of problem is being tackled. Tradi-
tionally, due to their computational efficiency, the most popular methods are based on
local search algorithms, frequently using the gradient of the objective function as a
“guide” in the design space.

Gradient-based methods are very efficient when applied to problems with rela-
tively simple and smooth design space. However, many relevant engineering prob-
lems have complex design spaces, that may be non-convex, disjoint, have severe non-
linearities in the objective function and its constraints or contain a mix of continuous,
discrete and integer design variables. These characteristics often decrease considera-
bly the efficiency of the gradient-based methods, making them converge to sub-



optimal designs. An alternative approach in this case is to use a global search algo-
rithm so as to reduce the probability of being trapped in a local minimum.

In the last twenty years, a considerable number of global methods have been de-
veloped. Most of them are based on natural phenomena analogies, trying to copy the
efficiency and simplicity of observed self-optimized processes in nature. Algorithms
based on the evolution of species [4,5], on the annealing of metals [6], on the func-
tioning of the brain [7], on the immune system [8] and even on the social behavior of
ants [9] have been developed and used to get optimized solutions for many science
and engineering problems. Among them, perhaps the most commonly used are the
Simulated Annealing (SA) [6], Genetic Algorithms (GAs) [4] and their derivatives.

Recently, a new global search metaheuristic was proposed. Called Generalized
Extremal Optimization (GEO) [10-12], it is a stochastic algorithm specially devised
to be used in complex optimization problems. It has been shown to be competitive to
other popular metaheuristics [10,11] and has proved to be a very useful design tool
[11-13].

Although the use of global search strategies increases significantly the probability
of finding the best solution in a multimodal design space, these methods usually re-
quire a great number of function evaluations to be effective. Hence, in problems
where the calculation of the objective function is very time consuming, they may
become impracticable. Computation costly objective function evaluation is common
in the aerospace field, where frequently numerical expensive routines or software
packages are used for the calculation of the design parameters. One approach that has
been used for tackling these problems with global search metaheuristics is to hybrid-
ize them with a local search algorithm [14-17].

Another interesting feature of coupling a local search deterministic algorithm to a
global stochastic one, is that while the global explores the entire design space
searching for candidate regions where to find the optimum, the local one can make a
more refined search on those regions.

In this paper, first results of the application of the GEO algorithm, hybridized with a
local search deterministic method (EXTREM, [18]), to a complex aerospace design
problem is presented. The GEO and hybrid GEO/EXTREM algorithms were applied to
the optimum design of a spacecraft thermal control subsystem - the Multi-Mission Plat-
form (in Portuguese, Plataforma Multi-Missão - PMM) -, considering different critical,
on-orbit operational conditions. The main objective of this first study on the hybridization
of GEO, was to verify if the introduction of the local search routine would improve sig-
nificantly the results obtained with GEO for this problem.

2 Global Search: The GEO Algorithm

The Generalized Extremal Optimization (GEO) algorithm is a global search meta-
heuristic [10-12], based on a model of natural evolution [19], and specially devised to
be used in complex optimization problems. It has its fundaments on the Self-
Organized Criticality (SOC) theory, which has been used to explain the power law
signatures that emerge from many complex systems [20].



In the GEO algorithm the species are represented by bits that forms a string which
encodes the design variables of the optimization problem, and each bit corresponds to
one species. This string is similar to a chromosome in the canonical GA. But different
from the GA, in the GEO there is not a population of strings (or solutions), but a
population of bits represented by one string (see Fig. 1). Moreover, there is not mat-
ing between individuals, as in the GA, but each bit (species) is forced to “evolve” (or
“mutate”) with a probability that is proportional to its fitness. The fitness is a number
assigned to each bit of this string that indicates the level of adaptability of each bit on
the population, according to the gain or loss that one would have on the value of the
objective function, if the bit is mutated (flipped).

Fig. 1. Population of bits on the GEO algorithm. In this example the population encodes 2
design variables.

A flowchart for GEO and its variant GEOvar (see next paragraph) is presented in
Fig. 2. In the flowchart, F(X) is the objective function, k is the ranking value of the
bit and Lj is the number of bits of the design variable “j”.

The GEO algorithm, as the SA and the GA, is a stochastic method, does not make
use of derivatives and can be applied to non-convex or disjoint problems. It can also
deal with any kind of variables, either continuous, discrete or integer. The only one τ
free parameter allows the user to set up the determinism degree of the search, from a
random walk (τ = 0) to a deterministic search (τ → ∞). It has been observed that there
is a τ best value for each problem, denoted τ*, such that the global search efficiency
is maximal. For most problems, τ* remains in the rage of 1 < τ < 5.  A slightly differ-
ent implementation of the GEO algorithm can be obtained by changing the way the
bits are ranked and mutated (see Fig. 2). Instead of ranking all the bits together, we
rank them separately for each variable. In this way the bits of each variable will have
a rank ranging from 1 to Lj. Then, one bit of each variable is chosen and mutated in
the same way as described before. Hence, at each iteration, N bits are mutated. The
idea behind this implementation, called GEOvar, is to improve all variables simultane-
ously, at each algorithm iteration, as an attempt to speed up the process of searching
the global minimum. A detailed explanation of both implementations, including a real
world application can be found in [11]. In this work the GEOvar implementation
(called here, for simplicity, GEO) was used.
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Fig. 2.  Flowchart for GEO and GEOvar.

3 Local Search: The EXTREM Algorithm

The local search algorithm coupled to GEO was the EXTREM routine [18], which
uses  Powell’s method of conjugate directions approach [1]. Its working principles
are very simple: i) a set of perpendicular directions is given and the objective function
along one of them is approximated by a polynomial through three points; ii) along
this direction, the minimum of the approximate objective function is searched; iii)
from this minimum a new search is performed in a direction perpendicular to the
previous one until the perpendicular set of directions is covered; iv) then, a new di-
rection is created by the line that connects the starting point and the last found mini-
mum; v) a new set of perpendicular directions is created from this new direction and
steps ii to v repeated until a given convergence criteria is met.



4 The PMM Spacecraft

The Multi-Mission Platform is a multi-purpose space platform being developed at the
brazilian National Institute for Space Research (INPE) to be used in different types of
tasks such as Earth observation, scientific or meteorological missions. Its main physi-
cal characteristics are depicted in Fig. 3.
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Fig. 3. Simplified views of the Multi-Mission Platform.

The PMM architecture concept consists of assembling in one platform, all the nec-
essary equipment essential to the satellite in a way that different types of payloads can
be mounted on the same basic bus. In this concept, there is a physical separation be-
tween platform and payload modules, which can be developed, constructed and tested
separately, before the integration and final test. Its main advantage is the possibility
of reusing the same platform project, what reduces the development cost of new sat-
ellites.

The main goal of the thermal design of a spacecraft is to keep the temperature of
the elements of the vehicle within their required ranges [21]. One of the most impor-
tant issues the satellite thermal engineer has to address is the definition of the size and
position of the radiators. Radiators are areas of the satellite covered with high emis-
sivity coating. Their goal is to reject heat into space so as to keep the equipment tem-
perature at the appropriate design ranges, during periods of high internal heat dissi-
pation and/or of high external thermal loads. On the other hand, these areas must not
be excessively large so that, during periods of low heat loads, the temperatures do not
go below the allowed minima. In the case of the PMM, radiators can be positioned in
5 of the 6 sides of the platform body, since the top side does not “see” the space due
to the payload mounted on it (see Fig. 3).

In satellite thermal design two critical situations are usually identified, where minimum
and maximum temperatures are expected to occur: i) The Cold Case (CC), when the
external heat loads (solar radiation, earth radiation and albedo) are minimal, the satellite is
operating with the lowest heat dissipation  in the electronic equipment, and the thermal
optical properties of its coatings are non-degraded and; ii) The Hot Case (HC), when the
external heat irradiation is maximal, the satellite is in operational mode with the highest
heat dissipation and the optical properties of the coatings are degraded. The thermal de-



sign shall manage the heat flow in a way that, in both situations, the temperatures of all
elements remain within the required range of temperature. There are many variables, such
as the size of radiators, that affect the temperature distribution, and the thermal engineer
has to find a combination of these variables to reach a satisfactory design. This task needs
a lot of simulations and analysis, considering the large numbers of variables involved.

In equipment where a strict control of the temperature is required, such as in the bat-
teries of the PMM (panel 2), heaters are frequently used to warm the equipment during
the CC.  On the other hand, as the electrical power supply is very limited in a satellite, the
power spent on the heaters must be the least possible.

In this study a specific mission of the PMM was analyzed, defined by equatorial
orbit with altitude of 600 km and having the battery panel always pointing to Earth
along the orbit.

5  Formulation of the Inverse Design Problem

The overall  goal  of using  the optimization tool in the thermal design process is to
obtain an automatic procedure  to test different design options and find  (hopefully)
the one(s) that best fit the design requirements. This process is usually  done “manu-
ally” by the thermal engineer, heavily  relying in his/her design experience and fre-
quently stops as soon as a feasible design is found.

The optimization problem consists of finding the areas of five thermal radiators
and the power dissipated by the battery heater, in order to minimize the difference
between operational temperatures, at given locations, during the CC and HC, and a
set of corresponding target temperatures. As usual, minimization of  the power dissi-
pated by the heater during operation is also required.

As the satellite is still in the early stages of development, a simplified numerical model was
made only considering the six PMM sides, with the equipment simulated as heat sources over
their respective panels. Panels 1 to 5 exchange heat with each other, by conduction and/or
radiation, and with the space environment, by radiation, through the radiators placed on them.
The top panel (not shown in Figure 3) makes the interface with the payload and is thermally
isolated from it, but exchange heat with the other panels of the PMM.

      Using the lumped parameter representation [21] (that is, the spacecraft numeri-
cal thermal model is made of discrete isothermal nodes) and assuming steady state
conditions with orbit average heat loads, the heat balance at each one of the six panels
leads to a set of nonlinear algebraic equations, with the design variables (5 areas and
1 heat dissipation power) as parameters. For a given vector of parameters X, the solution
results in two set of temperatures: TCC(X)[1:6], if CC conditions are applied (minimum values
of Qint , qext and α); and THC(X)[1:6], if HC conditions are considered (maximum values of  Qint

, qext and α). Qint , qext and α are, respectively, the heat dissipated by equipment on panels 1
to 5, the incident external radiation flux on panels 1 to 5, and the absortivity of the
radiators coating. The  pertinent coupling coefficients and the solution of the system of equa-
tions are obtained using INPE´s PCTER thermal software package [22], which was coupled to
the optimization algorithm.

Constraints are posed to the panels’ temperatures, which must lie inside required design in-
tervals. The target temperature and allowed range for each panel are defined from reliability



requirements of the instruments and  other equipment mounted on each panel. Table 1 sum-
marizes the limits on the design variables, the operational temperature limits, as well
as the internal heat dissipation from the electronic devices applied to the panels.

Table 1.  Design variable limits, operational limits and panel heat dissipation.

Parameter Panel

1 2 3 4 5 6

Xmin 0.0 0.0 0.0 0.0 0.0 -Radiator area limits
(m2) Xmax 0.902 0.952 0.952 0.952 0.952 -

Tmin -5.0 -10.0 -20.0 -20.0 -10.0 -20.0Temperature limits
(oC) Tmax +50.0 +20.0 +50.0 +45.0 +45.0 +50.0

Target temperature TT    (
oC) +22.5 +15.0 +15.0 +12.5 +17.5 +15.0

CC 15.0 13. 0 8.6 40.0 20.0 0.0Internal heat dissi-
pation (W) HC 40.0 47.5 27.2 55.0 90.5 0.0

Mathematically, the multi-objective inverse design problem described above is
formulated as a mono-objective optimization problem, assuming unitary weighting
factors [23] before each term of the objective function:

   Minimize  F(X)= ||TCC(X)-TT||
2
  + ||THC(X)-TT||

2
 + ||X[6]||

2
                   (1)

Subj. to: XMIN    ≤        X         ≤    XMAX

TMIN    ≤    TCC(X)    ≤    TMAX

TMIN    ≤    THC(X)    ≤    TMAX

TT denotes the vector of target temperatures and X[6], the power dissipated by the
battery heater. Hereafter, the complete optimization problem will be referred to as the Cold
and Hot Case (CHC). Additionally, the CC and the HC are formulated and solved as optimi-
zation problems separately. The idea is to get some insight by comparing these separated CC
and HC solutions with the combined CHC one.  It is important to note that there is no
battery heater being used in the CC and HC stand-alone cases.

6 Results

The optimization strategy comprised a step of global search with GEO followed by a
local refinement with EXTREM. In running GEO, each design variable was encoded
in 7 bits, what means a resolution better than 0.01 m2 and 1.0 W for the radiator areas



and the heater dissipation, respectively. The search for optimal τ was made for differ-
ent values of τ within the range [0.0, 5.0], using a 0.5 step size. After that, 25 runs
were performed for each design case; simulations were stopped after 105 function
evaluations. The best results are summarized in Table 2, with and without a local
refinement step with EXTREM algorithm. Figure 4 presents the radiator areas obtained for
CC, HC and CHC (with the EXTREM step). The lower and upper area limits, for each panel,
are also indicated. Figures 5, 6 and 7 display the corresponding temperatures, in panels 1
through 6, for CC, HC and CHC.

Table 2. Best designs for CC, HC and CHC.

Case Algorithm F[X] X[1] X[2] X[3] X[4] X[5] X[6]

GEO 4.360 0.008 0.062 0.035 0.271 0.022 -
CC

GEO /EXTR 4.101 0.001 0.059 0.037 0.269 0.029 -

GEO 1.789 0.028 0.433 0.129 0.372 0.457 -
HC

GEO /EXTR 1.448 0.028 0.435 0.145 0.364 0.450 -

GEO 142.5 0.676 0.460 0.089 0.008 0.072 49.7
CHC

GEO /EXTR 141.7 0.679 0.455 0.085 0.016 0.077 49.7
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terministic search step, had a positive impact in the design process. In the present
case, our gains (in terms of objective function value; see Table 2) ranged from less
than 1%, for the CHC, to almost 20%, for the CC.
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In a further development of this study, different strategies of combining GEO with
the local search algorithm and with gradient based methods are envisioned.
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