Live Trading with Grammatical Evolution

Ian Dempsey', Michael O’Neill', and Anthony Brabazon?

! Biocomputing and Developmental Systems Group
University of Limerick, Ireland.
Ian.Dempsey@fmr.com, Michael.ONeillQul.ie
2 Department of Accountancy
University College Dublin, Ireland.
Anthony.BrabazonQucd.ie

Abstract. This study reports work in progress on the development of
an on-line evolutionary automatic programming methodology for uncov-
ering technical trading rules for the S&P 500 index. The system adopts
a variable sized investment strategy based on the strength of the signals
produced by the trading rules. Rogue rules, which generate excessive
signals, led to poor market activity. Here we examine the viability of
a signal decay constant to reduce the effect of rogue rules. The results
show that an aggressive decay rate yielded more profitable results for the
trading period January 1st 1991 to December 1st 1997.

1 Introduction

Following on from previous studies, which use Grammatical Evolution (GE) to
evolve financial trading systems [1-6] the objective of this study is to perform
an initial examination of live evolution and trading using GE. Previous work in
this area approached the problem by first evolving trading rules over a training
set and then applying the best rules to the out-of-sample or ‘test’ data. While
these studies demonstrated the utility of GE for financial prediction, their results
deteriorated over time as the trading rules remained static over the out-of-sample
period. In this study the evolved trading system is adaptive, in that it continues
to retrain as new data becomes available using a variant on the moving window
approach, while still maintaining a memory of past good rules. This permits
the system to adapt to dynamic market conditions, while not completely losing
the memory of good solutions that worked well in past market environments. It
also has the benefit of being able to take variable sized positions in the market
depending on the strength of the signal produced by the technical rules. The
population of trading rules is initially created using a set of training data in
the usual manner, and after a certain number of generations the system goes
‘live’ and begins actively trading. The trading rules undergo more generations
of evolution as new, additional, data becomes available during the out-of-sample
period.

An examination of the problem domain and experimental setup, including
the trading methodology used are presented in Section 2, and results is presented
in Section 3. Finally the paper concludes in Section 4.

2 Problem Domain & Experimental Approach

The aim of these experiments was to examine the affect on the returns generated
by the trading system caused by varying sizes of a decay constant, the significance
of which will be described in the next section. The system was applied to the
period January 1st 1991 to December 1st 1997 of the S&P 500 with the first 440
days comprising of the initial training period including a 75 day buffer at the
beginning to allow for technical indicator calculations, and 364 days being the
size of the training window for subsequent increments through the time series.
The number of days the training window was incremented upon each trading
period was 5 days. The population size used was 500 with 100 generations of
training for the initial period and 10 for each increment in the training window.
A generational rank replacement strategy was used with 25% replacement on
each generation with 30 runs conducted for each setting as in [6].

2.1 The Trading Methodology

<expressions> ::= <expressions> <op> <exp> | <exp>
<exp> ::= MA(<numExp>) | <numExp>

<op> i:= - | + | x|/

<numExp> ::= <numbers> <op> <numbers> | <numbers>
<numbers> ::= <numbers><number> | <number>
<npumber> ::=0 | 1 | 2| 3| 4151161718129

In the trading model developed, the rules evolved by GE using the above gram-
mar [6], generate a signal that can result in one of three actions to be taken by
the model: Buy, Sell or Do Nothing. The <expressions> non-terminal produces
the signal through expressions using the MA terminal which is a moving average
function.

2.2 Variable Position Trading

The live GE methodology adopted firstly behaves as in earlier studies. An initial
training period is set aside on which the population of proto-trading rules is
trained, with the aim that a competent population is evolved after a certain
number of generations, G. The system then goes ‘live’, and a number of actions
are taken by the system. The trading system takes the best performing rule from
the initial training period, and uses this rule to trade for each of the following x
days. After = days have elapsed, the training window moves forward in the time
series by = days, and the population is retrained over the new data window for
a number of generations g, where g < G. This embeds both a memory and an
adaptive potential in the trading system, as knowledge of good past trading rules
is not completely lost, rather it serves as a starting point for their subsequent
adaptation.

A small value of g means that memory is emphasised over adaptation, as the
new data has relatively less chance to influence the trading rules. This could be

considered a tuning parameter that could be used to alter the adaptive charac-
teristics of the system, and could itself be open to adaptation. For example, in
periods of rapid market change a trading system with a ‘long memory’ could be
disadvantageous, whereas in stable periods, a longer memory could well be ad-
vantageous. Similar comments can be made for the trading/re-training window
parameter x. If its value is large, the trading rules are altered less frequently,
but each adaptive ‘step’ will tend to be larger.

In prior studies which applied GE to evolve financial trading systems, the
entry strategy for each trade was to invest a constant $ amount on the production
of a Buy or Sell signal. The relative strength of the buy or sell signal was not
considered. In contrast in this study, the trading system adopts a more complex
entry strategy, and a variable size investment is made, depending on the strength
of the trading signal. The stronger the signal the greater the amount invested,
subject to a maximum investment amount of $1,000 (arbitrary). Therefore the
amount invested for each signal is:

Size of trading signal

Amount invested = Mazimum trading signal (1)
Signals received from individuals will oscillate around a pivot point of zero.
Signals greater than zero constitute a buy signal. To allow the system to decide
how much to invest on a given trade, the maximum size of a trading signal must
be determined. Initially we set the size of the maximum signal as being the
size of the first buy signal generated by the system. If a signal is subsequently
generated that is stronger than this, the maximum trading signal is reset to the
new amount, weaker signals invest a smaller amount in the same ratio as their
signal to the maximum. However, this approach can suffer when a rogue trading
rule emerges, and needs further refinement. A rogue rule is one which returns a
large number, eg a buy signal as in Eq. 2:

S = 82645 % 1204 % M A (2) (2)

If a rule such as this is evolved at the right time (when there is an upward trend
in the market) it could make it to the top rank of the population, and result in
the production of a high maximum signal. Following from this, after a number of
increments in the trading window more complex rules like Eq. 3, could emerge,
which produce signals that more accurately reflect the index trends

S = MA (10) — MA (50) (3)

Unfortunately, because the signal the new rule produces is so weak in relation to
the one produced in Eq. 2, the amount invested would be a relatively insignificant

monetary amount. To cater for the production of rogue rules and the affect
they can have on results of the trading system, we create two types of trading
simulators, a training simulator, which is created each time an individual is
trained, and a persistant simulator, which is created upon start-up and used
during live trading to run the best performing rule at each increment and keep
track of returns and positions taken as the time series progresses.

The difference between the two simulators, is that the persistent live simu-
lator includes a decay constant, which is applied to the maximum signal at each
increment of the training window, in order to reduce the affect of ‘rogue’ rules
like Eq.2, and still maintain an element of continuity from one training incre-
ment to the next. The maximum signal is reduced by being multiplied by the
decay constant. In this study the decay constants used were: 1.0, 0.75, 0.25 and
0.0, where 1.0 will maintain the last strongest signal through out the life of the
time series and 0.0 will cause the maximum amount to be invested after each
training window increment, i.e. the maximum signal does not roll over when the
trading window is incremented. Aside from this both simulators are the same in
all respects.

If the sum to be invested is greater than the cash available, the model will
invest the cash available less the costs of the transaction. Upon receipt of a sell
signal (one less than zero) all positions are closed.

2.3 Return Calculation

The total return in this model is a combination of its generated return from
market activity and the interest gained from the risk free cash position. In this
case the interest rates used were the actual US Deposit Interest rates for the
same period as the S&P 500 data set, affording an accurate reflection in the cash
position. Transaction costs in this model are based on the cost structure used by
online trading houses, where flat fees are incurred for the opening and closing
of positions, $10 fees were charged upon entry and exit. When the transaction
costs represent a certain percentage of the sum to be invested, the investment
becomes unfeasible. Therefore the model is made aware of the transaction costs,
when the entry and exit costs arise to 20% of the sum to be invested the model
will not take the position, effectively ruling out very small investments arising
from weak trading signals. This represents the Do Nothing stance, the model
will hold all current positions. Thus the pure return over the training period was
chosen as the fitness measure.

3 Results

This section is broken up into two parts. The first, 3.1, reports the returns of
each setup over its trading range for the final generation of each trading window
increment versus the returns made by the index over the same period in training.
The second section 3.2 reports the returns made during live trading versus the
index.

% Change

SP 500 % Change Decay 1.0

Time

——Sp500 —AvgMean Avg BestPerformers

Fig. 1. Performance on the S&P 500 with a decay constant of 1.0.

3.1 Live Training Returns

Upon each increment in the training window, the system’s population is retrained
to incorporate the new data for 10 generations. On the final generation of each
live training period the return of the best performer, i.e. its fitness over the
training window, was taken for each increment in the window, this led to the
sampling of 273 points. These points represent the average return of the best rule
on the final generation for each window increment. The values of the S&P 500
at these points were also taken along with its value at the start of the window
range to calculate its return over the same period, proxying the return to a buy-
and-hold investment strategy. The result is a series of graphs, which show how
closely the system follows the S&P 500 for returns over the same periods (see
Figures 1, 2, and 3).

3.2 Live Trading Returns

Six sets of experiments were performed to measure the influence the decay con-
stant had for varying values from 0.0 to 1.0. For each value 30 runs were con-
ducted. Table 1 presents the percentage profits of the best performers from each
experiment as well as the average return seen across each run in each setup.

Table 1 identify a decay rate of 0.0 as producing the best performer across all
settings with the performance of the best performers improving the stronger the

SP 500 Annual % Increase Decay 0.75

% Change

N fQ e ——

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Time

——SP 500 —— Avg Mean Avg BestPerformers

Fig. 2. Performance on the S&P 500 with a decay constant of 0.75.

Table 1. % profit for each decay setup.

Decay Constant S&P

0.0 0.25 0.75 1.0 500
Best Individual Return (%) 70 59 40 24 43
Average Individual Return (%) 34 22 29 16 -

decay rate. However this trend is not as strong with the average performers, here
a setting of 0.75 proved to produce more profitable individuals than 0.25 though
still not as strong as the return of 34% from the 0.0 setup.

4 Conclusions & Future Work

This paper made initial inroads into the area of live evolution for the technical
analysis of financial markets focusing in this case on a decay constant, which is
used to determine the size of the investment for each trade. The results presented
here show the viability of a strong decay constant as a solution. The potential
of a Live GE system is also highlighted by the high yields of the experiments,

Sp500 Annual % Increase Decay 0.25

b i
U\ “
0.25 /V[\MAL\/\ \—
0 A M A
v UNT TV
M A
Tal
g 015 Fr Vv
§ o1 M .\IAAA:A\
A\
%
A

mlu e WW
o 1

mmmmmmm <<1V£V1«‘v\“j\ﬁnmmmmmmwm\ammhhhhbb

$ 232838 8¢%8 % T 2 aM 52 8 588838888555 535 5

4 4 & B = o = 4 sl = & a4y 3 &8 6 K & 4 4 ® B K & A 49 ® b K & 0o

= 288 € s & g &2 ¢&'g 66 g (g g et g &8 e 68 8 e g g s g d
PO 2511 - - - - - - - S - - AL 10 - - - - - - - - - 10 - - - - - -1
0.1

Time

—— Sp 500 —— Avg Mean Decay .25 Avg BestPerformers

Fig. 3. Performance on the S&P 500 with a decay constant of 0.25.

which incorporated the strong decay constant, with an exceptional performance,
yielding returns 27% greater than the buy and hold benchmark strategy on the
S&P 500 for the 0.0 setting along with a strong average performance across the
runs. It should also be born in mind however that the more aggressive decay
settings may have benefited from a strongly upward trending S&P 500. Further
experiments on indices with a differing behaviour will shed further light on this
issue. Though these experiments have shown that continuity between trading
window increments does not hold for the size of the investment made.

Further development, allowing the system to take short positions as well as
the long positions will be considered as well as exploration in varying trading
window sizes and whether this has a relationship to the number of generations
evolved during live training. Also, the use of the N-Version paradigm [7] to
incorporate different ranges as well as different grammars using a particular
technical indicator each may have a positive influence on the returns made in
the system.

Given the dynamic nature of the live trading environment the importance of
population diversity can play an important role in the systems performance. Fur-
ther experiments will be conducted to measure and analyse population diversity
and its affect on performance.

References

1.

10.

11.

12.

13.

14.

O’Neill, M., Brabazon, A., Ryan, C., and Collins, J. (2001a). Developing a
market timing system using grammatical evolution. In Spector, L., Goodman,
E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M.,
Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 1375-1381,
San Francisco, California, USA. Morgan Kaufmann.

O’Neill, M., Brabazon, A., Ryan, C., and Collins, J. J. (2001b). Evolving market
index trading rules using grammatical evolution. In Boers, E. J. W., Cagnoni,
S., Gottlieb, J., Hart, E., Lanzi, P. L., Raidl, G. R., Smith, R. E., and Tijink, H.,
editors, Applications of Evolutionary Computing, volume 2037 of LNCS, pages
343-352, Lake Como, Italy. Springer-Verlag.

O’Neill, M., Brabazon, A., and Ryan, C. (2002). Forecasting market indices
using evolutionary automatic programming: A case study. In Chen, S.-H., edi-
tor, Genetic Algorithms and Genetic Programming in Economics and Finance.
Kluwer Academic Publishers.

. Brabazon, A. and O’Neill, M. (2002). Trading foreign exchange markets us-

ing evolutionary automatic programming. In Barry, A. M., editor, GECCO
2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolution-
ary Computation Conference, pages 133—-136, New York. AAAL

. Brabazon, A. and O’Neill, M. (2004). Evolving Technical Trading Rules for

Spot Foreign-Exchange Markets Using Grammatical Evolution. Computational
Management Science. Springer, 2004.

Dempsey, 1., O’Neill, M. and Brabazon, T. (2002). Investigations into Market
Index Trading Models Using Evolutionary Automatic Programming, In LNAT
2464, Proceedings of the 13th Irish Conference in Artificial Intelligence and
Cognitive Science, pp. 165-170, edited by M. O’Neill, R. Sutcliffe, C. Ryan, M.
Eaton and N. Griffith, Berlin: Springer-Verlag.

Imamura, K., Heckendorn, R.B., Soule, T., Foster, J.A. (2002). N-Version Ge-
netic Programming via Fault Masking. In LNCS 2278, Proceedings of EuroGP
2002, Kinsale, Ireland, pp. 172-181. Springer 2002.

Burke, E., Gustafson, S., Kendall, G. A Survey and Analysis of Diversity Mea-
sures in Genetic Programming. In Proceedings of GECCO 2002, the Genetic and
Evolutionary Computation Conference, New York, USA, pp. 716-723, Morgan
Kaufmann.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press.

O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers.

O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.
O’Neill, M., Ryan, C. (2001) Grammatical Evolution, IEEE Trans. Evolutionary
Computation, 5(4):349-358, 2001.

Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Lecture Notes in Computer Science 1391,
Proceedings of the First European Workshop on Genetic Programming, 83-95,
Springer-Verlag.

O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Gram-
matical Evolution. Genetic Programming and FEvolvable Machines, Vol. 4 No.
1. Kluwer Academic Publishers, 2003.

15.

16.

17.

18.

19.

Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press.

Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Program-
ming — An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann.

Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Program-
ming 3: Darwinian Invention and Problem Solving. Morgan Kaufmann.

Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers.

S-Lang. http://www.slang.org

