
Solving Knapsack Problems with Attribute
Grammars

Michael O’Neill, Robert Cleary, and Nikola Nikolov

Biocomputing & Developmental Systems Group
University of Limerick, Ireland

Michael.ONeill@ul.ie, Robert.Cleary@ul.ie, Nikola.Nikolov@ul.ie

Abstract. We present a work in progress describing attribute gram-
mar approaches to Grammatical Evolution, which allow us to encode
context-sensitive and semantic information. Performance of the differ-
ent grammars adopted are directly compared with a more traditional
GA representation on five instances of an NP-hard knapsack problem.
The results presented are encouraging, demonstrating that Grammatical
Evolution in conjunction with alternative grammar representations can
provide an improvement over the standard context-free grammar, and
allow Grammatical Evolution to drive a constraint based search.

1 Introduction

Combinatorial optimisation problems, such as knapsacks problems, represent an
important class of problems in computer science that have a number of real world
applications such as resource allocation and cargo loading. Given the difficulty
of these, in some case NP-hard problems, stochastic heuristic methods such as
evolutionary algorithms have been investigated as approaches to find approxima-
tions to optimum solutions. A characteristic of these problems is the requirement
of their solutions to meet a number of constraints, which for efficiency, should be
respected by the search algorithm in order to prevent the existence of infeasible
solutions that violate one or more constraints. In this study we demonstrate the
benefits of adopting an attribute grammar with Grammatical Evolution in tack-
ling five knapsack problem instances. The advantage of the attribute grammar
over a standard context-free grammar is in its ability to directly encode the con-
straints of the problem instance as part of the production rule specification, and
to encode semantic information on the state of a developing solution during the
genotype-phenotype mapping process, which can be used to test for constraint
violation during development.
The remainder of the paper is structured as follows. An introduction to the
class of combinatorial optimisation problems that encompass knapsacks are in-
troduced in Section 2, followed by a short description of Grammatical Evolution
in the context of knapsack problems in Section 3. Attribute grammars and their
application to knapsack problems are discussed in Section 4 followed by details
on the experimental setup in Section 5. Finally the results are presented in Sec-
tion 6 and conclusion and future work outlined in Section 7.

2 Knapsack Problems

This section provides a brief overview of the family of knapsack problems, ex-
plaining the principles common to each class of problem. We then go on to
provide the motivation for this choice of problem, followed by an explanation of
the particular class of knapsack problem that is being tackled in this paper.

2.1 Brief Overview of the Problem

Knapsack problems refer to a class of combinatorial optimisation problems with
analogy to filling a knapsack with items of varying worth. The principle behind
these problems, is to add items to a container, while respecting a weight con-
straint, such that we maximise the objective function (a measure of the combined
profit of the items).
As this paper concerns a category of knapsack problems entitled Zero-One (0/1),
we will concentrate on a description of these in particular. For a good review
of knapsack problems in general, and their categorisation; we refer the reader
to Pisinger’s Ph.D thesis [1, 2], which describes the family of Knapsack prob-
lems, and provides a mathematical definition of each class. Also recommended
is Martello and Toth’s book which is widely regarded as a canonical text for
knapsack problems [3].
Different types of Knapsack problem occur, depending on the number of knap-
sacks; the number of items, and the way in which items can be added to a
knapsack. Given that there is a set of possible items, and our goal is to choose
a subset of these, the term 0/1 refers to a problem whereby an item can only be
chosen for inclusion in the knapsack once (i.e., an item is either in or not in).
You cannot fill a knapsack with n > 1 of the same item to maximise the profit.
At this point we wish to introduce the term 0/1 Compliant to refer to a solution
which satisfies this 0/1 property.
Breaking the 0/1 property allows for Bounded Knapsack problems. That is, an
arbitrary percentage of each item can be chosen in order to attain the largest
objective value. Multiple-Choice Knapsack problems occur when items are cho-
sen from disjoint sets, and the most general form of problem, entitled Multi-
Constrained or Multi-Dimensional knapsack problem, occur when we have mul-
tiple knapsacks with independent constraints and weights on each; into which
the same set of items must be placed.

2.2 Motivation behind Choice of Problem

We have chosen the 0/1 Multi-Dimensional Knapsack Problem (0/1 MKP) to
demonstrate the work of this paper. Motivations behind the choice of this par-
ticular class of knapsack problem include the fact that the 0/1 MKP is a well
known NP-hard problem. Also, there exists, a repository of instances of 0/1
MKP’s available form the OR Library [4]1 which acts as a suitable experimental

1 http://mscmga.ms.ic.ac.uk/info.html

benchmark. Previous researchers in the field of Evolutionary Computation have
applied their work to this problem which provides a point of reference to the
value of this work [5–8]. Of more relevance to this paper, the problem lends it-
self to demonstrate how the use of attribute grammars as opposed to context-free
grammars can give context to the current derivation step (See Sect.4).
Finally, we approach the problem as an abstract academic problem, with respect
to proof of concept, but acknowledge the possibilities it provides for application
to practical problems, such as; cutting stock, cargo loading, resource allocation
in distributed computing, and integer programming and budget control.

2.3 The 0/1 MultiDimensional Knapsack Problem

The 0/1 MultiDimensional Knapsack Problem (or Multi-Constrained Knapsack
problem) deals with a problem, whereby we have a number of knapsacks to be
filled with a set of items. Each knapsack has a maximum capacity or weight-
constraint. We must select a subset of the set of all items (the vector of items),
for inclusion in all knapsacks; such that the combined weight of this chosen
subset, doesn’t violate the weight-constraint of any of the knapsacks. As an
added condition of the problem; the weight of an item is variable, and it is
determined with respect to which knapsack it is included in. This will be termed
the relative-weight of an item. As a consequence, a possible solution or chosen
vector of items will have varying weight in each knapsack.
Although the weight of an item is variable, an item has a fixed value or profit.
Thus the goal or objective for this problem, is to select a vector of items, with
maximal profit or worth, whilst respecting the weight-constraints of all knap-
sacks. The problem can be formulated as

maximise
n∑

j=1

pjxj (1)

subject to
n∑

j=1

wijxj ≤ ci, i = 1 . . .m (2)

xj ∈ {0, 1}, j = 1 . . . n (3)

Where, pj refers to the profit, or worth of item j, xj refers to the item j, wij

refers to the relative-weight of item j, with respect to knapsack i, and ci refers
to the capacity, or weight-constraint of knapsack i. There are present j = 1 . . . n
items, and i = 1 . . .m knapsacks.
The objective function (equation 1) tells us to find a subset of the possible items
(ie. the vector of items); where the sum of the profits of these items is maximised,
according to constraints presented in equation 2. Equation 2 states, that the sum
of the relative-weights of the vector of items chosen, is not to be greater than
the capacity of any of the m knapsacks. Equation 3 refers to the notion that we
wish to generate a vector of items, of size n(j = 1..n items), whereby a 0 at the

ith index indicates that this item is not in the chosen subset and a 1 indicates
that it is.
As described in [6], it is also worth thinking of the problem as a matter of resource
allocation. That is, we have m resources (knapsacks) and n tasks. Each resource
has a budget or knapsack capacity Ci, and Wij represents the consumption of
resource i by task j. Thus, taskn may then have a different resource-consumption,
depending on which of the m resources it is applied to (ie. it’s relative weight).
The objective then, is to select a set of tasks to be applied to all resources
simultaneously, such that, the budgets of each resource are respected, and the
consumption of resources is optimised.
The following section proceeds to describe the limitations faced by Grammatical
Evolution, when generating solutions to adhere to the constraints of problems
such as the 0/1 Multi-Dimensional knapsack problem.

3 Grammatical Evolution and Context Free Grammars

Grammatical Evolution (GE)[9–11] can be thought of as a system that evolves
sentences in the language described by a context-free grammar (CFG). A sen-
tence is a string of terminal symbols resulting from a derivation-sequence, or the
application of n production rules to the start symbol S. Thus, it can be thought
that what GE really evolves; is the sequence of productions we apply to the start
symbol S in order to arrive at the sentence λ. That is, GE can be thought of as
a process of evolving derivation-sequences over a grammar.
However, a limitation to such derivation-sequences is the tool used to generate
the sentences (ie. the grammar). As standard GE adopts a CFG, there is no
way to provide context-sensitive or semantic information when carrying out a
derivation-step. As the name suggests CFG’s cannot express a language in which;
legal phrases, depend on the context in which they are applied.
That is, a phrase can be thought of as a portion of a derivation-tree descended
from a single non-terminal symbol. We will refer to a phrase which contains
a terminal symbol as a a terminal-producing production. Consider the following
example of a CFG to describe a language consisting of a set of items {i1, . . . , in}.
Adopting the notation of Knuth [12] we define our context free grammar for an
n item knapsack as follows:

S → K

K → I

K → IK

I → i1
...

I → in

Beginning from the start symbol S a sentence in the language of knapsacks
is created by application of productions to S such that only terminal symbols
remain; yielding a string from the set of items {i1, . . . , in}.

Consider the problem of generating such a string for a 0/1 knapsack problem as
defined in the previous section. GE essentially carries out a left-most derivation,
according to the grammar specified. The following derivation-sequence illustrates
the point at which a CFG fails to be able to uphold context-specific information.

S → K → IK → i3K → i3IK → i3??
What this derivation-sequence provides is a context. That is, given the context
that i3 has been derived, the next derivation-step must ensure that i3 is not
produced again. Additionally, if we enforce a constraint that limits the total
weight of the knapsack, a derivation-sequence of a CFG does not allow us to
determine if this constraint has been violated until the derivation is complete.
A CFG has no method of encoding this context-sensitive information.
The following section describes how we can overcome the limitations of CFG’s
and give context to the current derivation step, by employing an attribute gram-
mar to encode this information.

4 Attribute Grammars for Knapsacks

Attribute grammars were first introduced by Knuth [12], as a method to extend
CFGs by assigning attributes (or pieces of information), to the symbols in a
grammar. Attributes can be assigned to any symbol of the CFG, whether ter-
minal or non-terminal, and are defined (given meaning) by functions associated
with productions in the grammar. These shall be termed the semantic functions.
Attributes can take the form of simple data (integers), or more complex data-
structures such as lists, which append to each symbol of the grammar. Attributes
are evaluated in two ways. In the first, the value of an attribute is determined
by the value of the attributes of child nodes. That is, it is synthesised or made
up of it’s children’s values. In the second, the value of an attribute is determined
by information passed down from parent nodes. That is, it is evaluated based
on what is inherited down from parent nodes. Information originates either from
the root or leaf nodes of the tree, which generally provide constant values from
which, the value of all other nodes in the tree are synthesised or inherited.

4.1 An Attribute Grammar for 0/1 Compliance

Consider the following attribute grammar specification to show how attributes
can be used to preserve 0/1 compliance when deriving strings in the language
of knapsacks (see Sect 2). This attribute grammar is identical to the earlier
CFG, with regard to the syntax of the knapsacks it generates. The difference
here being the inclusion of attributes associated with both terminal and non-
terminal symbols, and their related semantic functions. As each symbol in the
grammar maintains it’s own set of attributes, we use a subscript notation to
differentiate between occurrences of like non terminals.
Following the notation of Knuth [12], we have appended the following attributes
to the previous CFG grammar:

items(K): A synthesised attribute that records all the items currently in the
knapsack (ie. items which have been derived thus far).
item(I): A string representation, identifying which physical item the current
non-terminal will derive. For example item1 is represented as the string “i1”.
notInKnapsack?(in): A boolean flag, indicating whether the 0/1 property can
be maintained by adding this item (ie. given the current derivation, has this item
been previously derived?). This is represented as a string-comparison of item(I)
over items(K).
The following gives a description of such an attribute grammar, and provides an
example to illustrate how it can be used to drive a context-specific derivation

S → K

K → I items(K) = items(K) + item(I)

K1 → IK2 items(K1) = items(K1) + item(I)

items(K2) = items(K1)

I → i1 item(I) = “i1”

Condition : if(notinknapsack?(i1))
...

I → in item(I) = “in”

Condition : if(notinknapsack?(in))

Consider the above attribute grammar, when applied to the following derivation-
sequence:

S → K → IK → i1K → i1IK → i1(iλ ∈ {i2...in})K → ...
At the point of mapping I given the above context, it can be seen from the
above semantic functions that it’s items(I) attribute will be evaluated to “iλ”
if the notinknapsack?() condition holds. Following this the root node will have
it’s items(K1) updated to include “iλ” which can from then on be passed down
the tree by the inherited attribute of items(K2). This in turn allows for the next
notinknapsack() condition to prevent duplicate items being derived. The next
section follows to provide a deeper example, which shows how we can include
the evaluation of weight-constraints at the point in a derivation where we carry
out a terminal-producing production.

4.2 An Attribute Grammar for Constraints Checking

The previous attribute grammar provided a description of attributes for deter-
mining if a terminal-producing production would derive a duplicate item. We
now present an attribute grammar which builds upon that; adding the following
attributes:
lim(S): A global attribute containing each of the m knapsacks’ weight-constraints.
This can be inherited or passed down to all nodes.
lim(K): As lim(S) just used to inherit to each K2 child node.
usage(K): A usage attribute, records the total weight of the the knapsack to

date. That is, the weight of all items which have been derived at this point.
weight(K): A weight attribute, used as a variable to hold the weight of the
item derived by the descendant I to this K.
weight(I): A synthesised attribute, made-up of the descendant item’s physical
weight.
weight(in): The physical weight of item in(the weight of item in as defined by
the problem instance).

The corresponding attribute grammar is given below with an example show-
ing how it’s attributes are evaluated.

S → K lim(K) = lim(S)

K → I weight(K) = weight(K) + weight(I)

Condition : if(usage(K) + weight(I) <= lim(K))

items(K) = items(K) + item(I)

K1 → IK2 weight(K1) = weight(K1) + weight(I)

items(K1) = items(K1) + item(I)

usage(K1) = usage(K1) + weight(I)

Condition : if(usage(K1) < lim(K1))

lim(K2) = lim(K1)

usage(K2) = usage(K1)

items(K2) = items(K1)

I → i1 item(I) = “i1”

Condition : if(notinknapsack?(i1))

weight(I) = weight(i1)
...

I → in item(I) = “in”

Condition : if(notinknapsack?(in))

weight(I) = weight(in)

In terms of the problem being solved, lim(K) is actually a list of constraint-
bounds for each of the m knapsacks. Similarly, items(K), is a list of the items
which have currently been derived by the GE mapping process. For clarity of ex-
planation, the following example will assume a single knapsack weight-constraint,
but the more complicated problem can be extracted by altering the below con-
ditions to have lim(K) as an array of constraint-bounds as opposed to a single
integer value.
Figure 1 shows the synthesised and inherited message passing involved in eval-
uating derivation trees for the above attribute grammar. The figure shows a
fully decorated tree, but also includes a illustrative explanation of the use of
conditions for the grammar. We can see, that initially the global limit is passed
down to K by the first semantic function. From the grammar, we can see that
following this, the first three semantic functions of K are evaluated before a

condition checks to see that we haven’t violated a weight-constraint2. Passing
this allows for inheriting values down the tree by the second three semantics
functions (otherwise we would have remapped K via another production and
repeated the process).

weight 3

item "i4"I

i4=3

K

lim 10

usage (7+3)= 10

weight (0+3)= 3

items "i3"+"i4"

K

lim 10

usage (10+0)= 10

weight (0+0)= 0

items "i3"+"i4"+i6

I weight 0

item "i6"

i6=0

i3=7

I weight 7

item "i3"

K
usage (0+7)= 7

weight (0+7)= 7

items ("")+"i3"

lim 10

S lim 10

if(usage(K) < lim(K))

3

5
if(...)

4

2

1

Fig. 1. Diagram showing synthesised and inherited message-passing for evaluating at-
tributes in the derivation tree of an attribute grammar.

Having understood the method by which the attribute grammar gives context to
the current derivation-step, with respect to knapsack capacities; the next section
follows to give an explanation of the experimental approach taken.

5 Experiments

We adopt standard experimental parameters for GE, however as an individuals
processed based comparison is taking place, the number of generations varies
with each problem. The benchmark GA system uses a population size of µ =
50 running for up to 2000 generations. We match the number of individuals
processed by altering our generations accordingly. We use a population size of
µ =500. For the results presented, dividing the individuals processed by 500
gives the generation at which we report results. We adopt a variable length one-
point crossover probability of 0.9, bit mutation probability of 0.01, and roulette

2 For clarity, we assume that the notInKnapsack(i3) condition has passed and the its
values have synthesised up the tree.

selection. A steady-state evolutionary process is employed, whereby a generation
constitutes the evolution and attempted replacement of µ/2 children into the
current population. Replacement occurs if the child is better than the worst
individual in the population.
The initial population of variable-length individuals were initialised randomly,
with an average length of 20 codons, and standard-deviation of 5 codons from
average. Standard 8-bit codons are employed, and GE’s wrapping operator is
turned off. For each experiment 30 runs were performed.

5.1 Experimental Setup

For experimental purposes, standard GE is tested against two variants of GE
which use differing grammar representations. These systems will now be dis-
cussed in terms of their grammar characteristics and the solutions they generate.
That is, due to the nature of the problem, a solution may be either feasible or
infeasible. The latter refers to a solution which breaks one or more constraints of
the problem (ie. is either non 0/1 compliant or violates a weight-constraint. In all
systems allowing the generation of infeasible solutions, yields a fitness penalty.
This fitness penalty is discussed in the next section.

System 1: GE This system is a standard GE setup, using the above param-
eters and algorithmic configuration. No attributes or semantic functions exist
to give context to the current derivation-step. Infeasible solutions and non-0/1
compliant solutions can be generated. Possible solutions are examined for 0/1
compliance prior to their evaluation, failure of this test results in penalty to the
worst possible fitness. The system uses a standard CFG as defined in Section 3.
System 2: GE+0/1 This approach is an extension of system 1. The standard
GE mapping process is adapted using the attribute grammar of Section 4.1, so
as to maintain 0/1 compliant solutions. With regards this attribute grammar,
the attribute items(K) is employed to do this by passing around the previously
mapped items to each derivation step. A condition on the notInKnapsack?()
attribute, allows the identification of a previously mapped item in which case
we read the next codon and re-map the offending Non-Terminal. This approach
allows infeasible solutions, but maintains the 0/1 property.
System 3:- GE+AG This approach is an extension of system 2. This system
uses the full attribute grammar as defined in the Section 4.2. As well as guaran-
teeing the 0/1 property, it carries out a constraints check on all m knapsacks, for
a terminal-producing production. At the point of mapping, 0/1 compliance is en-
sured, and another test is carried out to ensure that adding the terminals in this
production doesn’t violate any of the m weight-constraints. If a weight-constraint
is violated, we read the next codon and re-map the offending Non-Terminal. This
system only allows feasible solutions.

We perform a direct comparison based on the results obtained by Khuri et al. for
five knapsack problem instances [6]. This benchmark provides a comparison with
a more traditional Genetic Algorithm representation. As we compare our work

against a different evolutionary algorithm, we maintain our system in terms of
standard GE parameters, and perform the comparison in terms of the number
of individuals processed. It is also worth noting the difference in representations.
The benchmark system uses a fixed-length bit vector representation consistent
with equation 3 of Section 2.3, whereas our representation is that of a variable-
length genome mapping to a derivation-sequence of a length which is equal to
or less than the genome length depending on constraint satisfaction.
As the benchmark system presents a GA approach which uses a graded penalty
term to penalise infeasible solutions, according to the amount by which they
break constraints; we also provide a comparison to see the effect of this with
respect to our systems. That is, two independent runs are performed for each
problem whereby penalisation of infeasible solutions in the graded-penalty sys-
tems is relative to how badly weight-constraints are violated; and in the other,
penalty to the worst possible fitness is performed. Note that, due to the steady-
state system this results in the removal of such infeasible solutions from the
search space over time.
Two experimental measures of mean-best fitness and percentage of runs yielding
and optimum solution are employed.

6 Results

Results for five problem instances3 are presented in Tables 1 and 2. A comparison
of the performance of the attribute grammar approach on all problem instances
clearly demonstrates its superior performance to the context free grammar.
Table 1 shows both attribute grammar systems outperforming the standard GE
for all problems, with GE+AG achieving the best results in all cases. The graded-
section of this table show improvement for easier problems but this declines to
disimprovement for harder problems.
Table 2 again shows the attribute grammar systems outperforming the standard
GE in terms of the number of optimum solutions found for the earlier problems,
but the effects for later problems are indecipherable as no optimum is found in
the given number of individuals processed. The graded-section shows a disim-
provement in the easier problem but an improvement is seen for GE+0/1 over
the knap20 problem.

7 Conclusions & Future Work

Although the results presented do not appear competitive with the benchmark
system which uses a more traditional GA representation, we can draw the conclu-
sion that attribute grammars show promising results with respect to enhancing
GE’s capabilities to tackle problems with constraints. These are early investi-
gations, however, and future work will look at a number of different knapsack
3 These problem instances are available from

http://mscmga.ms.ic.ac.uk/jeb/pub/mknap1.txt

Problem knap15 knap20 knap28 knap39 knap50
15-10-4015 20-10-6120 28-10-12400 39-5-10618 50-5-16537

IndProcessed 5000 10,000 50,000 100,000 100,000

MeanBst-Khuri 4012.7 6102 12374.7 10536.9 16378.0

MeanBst-GE
GE 3672.66 5778.0 11482.83 9320.96 14520.36
GE+01 3946.33 5967.66 12030.16 9662.86 14949.9
GE+AG 3982.66 6061.66 12129.5 9861.0 15228.7

MeanBst-GE Graded
GE 3675.0 5787.83 11661.33 9268.73 14368.36
GE+01 3947.33 5976.66 12030.16 9597.4 14949.76

Table 1. Comparing Mean-Best Fitness achieved after n Individuals processed. Show-
ing the effects of Attributed Grammars over GE, and the effect of further adding a
Graded Penalty function.

Problem knap15 knap20 knap28 knap39 knap50
(15-10-4015) (20-10-6120) (28-10-12400) (39-5-10618) (50-5-16537)

IndProcessed 5000 10,000 50,000 100,000 100,000

Runs Opt-Khuri 83% 33% 33% 4% 1%

Runs Opt-GE
GE 3% 0% 0% 0% 0%
GE+01 16% 0% 0% 0% 0%
GE+AG 26% 33% 0% 0% 0%

Runs Opt-GE Graded
GE 0% 0% 0% 0% 0%
GE+01 13% 3% 0% 0% 0%

Table 2. Showing the effect Attributed Grammars have over percentage of runs achiev-
ing an optimum solution, and also the effect of further adding a graded penalty function
gives.

instances and a deeper analysis of this representation. For example, due to the
nature of the different population sizes, some of our results presented are too
early in the evolution process to be deemed a fair comparison. We also note
the difference in representation as an area for research. If we alter the attribute
grammar to impose a fixed-length phenotypical structure to reflect a bit-vector
similar to the GA representation adopted in the benchmark study, would this
have a positive impact on performance? In addition, we will investigate the pos-
sible extension of this approach to different classes of combinatorial optimisation
problems.

References

1. Pisinger, D. (1995) Algorithms for Knapsack Problems. Ph.D. thesis, DIKU,
University of Copenhagen, Report 95/1.

2. Pisinger, D., Toth, P. (1998). Knapsack Problems, in D.Z. Du, P. Pardalos (eds.)
Handbook of Combinatorial Optimization, Kluwer, pp. 1 -89.

3. Martello, S., Toth, P. (1990). Knapsack Problems. J. Wiley & Sons, Chicester,
1990.

4. Beasley, J.E. (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society Vol. 41 No. 11, pp. 1069-1072.

5. Chu, P.C. and Beasley, J.E (1998).A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics 4:63-86.

6. Khuri, S., Back, T., and Heitkotter, J. (1994).The zero/one multiple knapsack
problem and genetic algorithms. In Deaton, E. et al., editors, Proceedings of the
1994 ACM symposium of Applied Computation, pages 188-193, ACM Press,
New York.

7. Bruhn, P., Geyer-Schulz, A. (2002). Genetic Programming over Context-Free
Languages with Linear Constraints for the Knapsack Problem: First Results.
Evolutionary Computation, Vol. 10, No. 1, Spring 2002.

8. Ratle, A. and Sebag, M. (2000). Genetic Programming and Domain Knowledge:
Beyond the limitations of grammar-guided Machine Discovery. In M. Schoe-
nauer et al., ed, Parallel Problem Soving from Nature, PPSN-VI, p. 211-220.
Springer Verlag, LNCS 1917.

9. O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers.

10. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

11. O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolution-
ary Computation. 2001.

12. Knuth, D.E. (1968). Semantics of Context-Free Languages. Mathematical Sys-
tems Theory, Vol. 2, No. 2. Springer-Verlag.

