
Evolving mathematical expressions using
Genetic Algorithms

Crina Groşan
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Abstract. A new evolutionary technique for evolving mathematical ex-
pressions called Mathematical Expressions Evolver (MEXE) is proposed
in this paper. Each MEXE chromosome is a string of operands and op-
erators. Each subexpressions encoded in a chromosome is considered a
potential solution of the problem. The best of these expressions is chosen
to represent the chromosome. In this way variable length expressions can
be stored in a fixed length chromosome. Several numerical experiments
for solving symbolic regression problems are performed. Results shows
that MEXE performs very well on the considered examples.

1 Introduction

Evolving mathematical expressions is a well-established field in Genetic Pro-
gramming. Many evolutionary techniques which can be applied for evolving
mathematical expressions (formulas) have been proposed in the recent past.
Genetic Programming (GP) [5, 6], Multi Expressions Programming (MEP) [9],
Linear Genetic Programming (LGP) [3, 8], Gramatical Evolution (GE) [10],
Gene Expression Programming [4], Formula Prediction using Genetic Algorithms
(FPEG) [1] are some of them.

A new evolutionary algorithm for detecting mathematical expressions is pro-
posed in this paper. This algorithm is called Mathematical Expressions Evolver
(MEXE). A MEXE solution is a string of operators and operands. Each subex-
pressions encoded in a chromosome is considered a potential solution of the
problem. The best of these expressions is chosen to represent the chromosome.
In this way more expressions are encoded in the same chromosome.

The paper is organized as follows: In Section 2 MEXE algorithm is described.
Some numerical experiments for detecting quartic and sextic functions are per-
formed in Section 3. A set of conclusions are presented in Section 4 of the paper.

2 MEXE algorithm

The proposed algorithm that can be applied for detecting mathematical ex-
pressions is presented in this section. Used genetic operators are crossover and
mutation. Solution representation and genetic operators are described in what
follows.



2.1 Solution representation

A set of operands and a set of operators are considered. Each individual (chromo-
some) is represented as a string of operands and operators. The odd positions of
the chromosome consist of operands and the even positions consist of operators.
The chromosome length is constant during the search process.

For instance, if the operands set is {x, y} and the operators set is {+, -, *,
/} then and example of chromosome with length 9 is:

C = x + y ∗ y − x/y

Remark
In the case that we use only binary operators the chromosome length has to

be an odd number because the last position of the chromosome cannot be an
operator.

2.2 Genetic operators

The genetic operators used by this algorithm are mutation and crossover. Both
of them are illustrated bellow.

The mutation operator can affect each gene of the chromosome with a given
mutation probability. For each gene a real number between 0 and 1 is generated.
If this value is lower than mutation probability than the value of this gene is
changed with another random generated value (if the value of the gene is an
operator than another operator from the given set of operators is generated; if
the value of a gene is an operand then another operand from the given set of
operands is generated).

Let us suppose we have the chromosome:

C = x + y ∗ y − x / y

and the use of mutation operator affect the genes 3 and 6. Then a new obtained
chromosome can be:

C = x + x * y + x / y

The value of the gene corresponding to 3rd position has been changed from
y to x and the value of the gene corresponding to 6th position (”-”) has been
changed to the value ”+”.

The crossover operators specific to binary encoding (one cut point, two cut
points, uniform, etc.) may be applied.

2.3 Fitness assignment

Each of the subexpressions encoded in a MEXE chromosome is considered as a
potential problem solution. For instance the chromosome

C = x + y * y – x / y



encodes the expressions:

E1 = x;
E2 = x + y;
E3 = x + y ∗ y;
E4 = x + y ∗ y − x;
E5 = x + y ∗ y − x / y;

The value of these expressions may be computed by reading the chromosome
from left to right. Partial results are by the means of dynamic programming [2].

The chromosome fitness is usually defined as the fitness of the best expression
detected in that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness of
each sub-expression Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained by the expression Ei for the fitness case k and
wk is the targeted result for the fitness case k. In this case the fitness needs to
be minimized.

The fitness of an individual is equal to the lowest fitness of the expressions
encoded in the chromosome:

f(C) = min
i

f(Ei).

There is neither practical nor theoretical evidence that one of these expres-
sions is better than the others. Moreover, Wolpert and McReady [12] proved
that we cannot use the search algorithm’s behavior so far for a particular test
function to predict its future behavior on that function.

2.4 Algorithm description

Standard MEXE algorithm uses steady-state evolutionary model [11] as its un-
derlying mechanism.

The MEXE algorithm starts by creating a random population of individuals.
The following steps are repeated until a given number of generations is reached:
Two parents are selected using a standard selection procedure. The parents are
recombined in order to obtain two offspring. The offspring are considered for
mutation. The best offspring O replaces the worst individual W in the current
population if O is better than W .

The variation operators ensure that the chromosome length is a constant
of the search process. The algorithm returns as its answer the best expression
evolved along a fixed number of generations.



3 Numerical experiments

Test problems used in our experiment are presented bellow. The relationship
between the success rate and the chromosomes length, population size and the
number of iterations is also performed in the next sections. For these experiments
the operators set is {+, -, *, /}.

In these experiments the problems for detection of quartic function f(x) =
x4 + x3 + x2 + x and the sextic polynomial functions f(x) = x6 − 2x4 + x2 are
considered.

The training set for quartic and sextic functions contains 20 instances ran-
domly generated between zero and one.

3.1 Experiment

In this experiment the relationship between the chromosomes length and the
success rate is analyzed. The results obtained in 100 runs are considered.

For the quartic function the chromosome length varies between 20 and 100.
The parameters used by MEXE algorithm for the quartic function are: mu-

tation probability: 0.3; crossover probability:0.9; population size: 50; number of
iterations: 50.

The parameters used by MEXE algorithm for the sextic polynomial function
are: Mutation probability: 0.3; crossover probability: 0.9; population size: 100;
number of iterations: 50.

Success rate for quartic function is depicted in Figure 1.

Fig. 1. The relationship between the chromosome length and the success rate for the
quartic function. Results are averaged over 100 runs.



Figure 1 shows that MEXE success rate is 100% when the chromosome length
is 95. We performed several experiments with Genetic Programming [5]. Using
similar parameter setting we obtained a success rate of 90% for GP.

For the sextic polynomial function the chromosome length varies between 33
and 150. Success rate for sextic polynomial function is depicted in Figure 2.

Fig. 2. The relationship between chromosome length and success rate for the sextic
polynomial function. Results are averaged over 100 runs.

We performed several experiments with Genetic Programming for solving
the sextic polynomial function. Using similar parameter setting we obtained a
success rate of 34 % for GP. By contrast, the success rate of MEXE algorithm
50 %.

4 Conclusions and further work

A new evolutionary technique for detecting mathematical expressions has been
proposed in this paper. The proposed algorithm encodes multiple expressions in
the same chromosome. In this way fixed-length chromosome are used to encode
variable-length expressions. Several numerical experiments for detecting quartic
and sextic polynomial functions have been performed in this paper. Results
show that MEXE performs better than Genetic Programming. Other numerical
experiment can be performed in order to analyze the relationship between success
rate and population size, number of iterations, etc.

MEXE algorithm will be extended to deal with a larger set of operators (in-
cluding unary operators). In this way more complicated data set can be analyzed.
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