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Abstract. The selected harmonic elimination (SHE) pulse-width modulation (PWM)
aims to select the switching instances (angles) in such a way that a waveform with
a particular characteristic is obtained and a certain criterion is minimized. The al-
gorithms in the literature so far do not give consideration for separation of the
consecutive switching angles computed from the equations, which is however a
very important issue for practical applications.
In this paper, a new algorithm is proposed to solve this nonlinear problem un-
der the constraint that any two consecutive solutions are well separated from
each other. The algorithm first transforms the nonlinear equations to a polyno-
mial problem, then uses the Quantum-inspired Evolutionary Algorithm (QEA)
to find the roots with the necessary amount of separation. Other than the stan-
dard QEA, our QEA favors localized search which is more suitable in our case.
Since the obtained switching angles are reasonably distant from each other, they
can be directly applied for inverters to alter directions without need to manually
adjust the angles as with other methods. Essentially, our method computes the
best possible tradeoff between the maximum error for system performance and
the minimum distance between consecutive switching angles. The polynomial is
ill-conditioned and our algorithm is robust.
Keywords: Quantum-inspired evolutionary algorithm, Well-separated switching
angles, Harmonic elimination, Pulse-width modulation.

1 Introduction

The pulse-width modulation (PWM) technique can effectively reduce the harmonics
content of inverter output waveform and possesses evident merits in improving fre-
quency, efficiency, dynamic response speed [9]. Therefore, PWM has extensive appli-
cations and many related techniques such as [1, 2] have been proposed. The Selected
Harmonics Elimination PWM (SHE-PWM) [7] is one of the optimal PWM techniques.
It can generate the output waveform of higher quality through eliminating specific lower
order harmonics. The basic idea is to set up the notches at the specially designated sites
of PWM waveform and then the inverter alters directions many times per half-cycle to
control the inverter’s output waveform appropriately. Suppose we use two switching in-
stances (angles) to denote every notch. Then the switching instances can be determined



through solving a set of transcendental equations. There are a lot of solutions in the
literature so far, however, one of the main shortcomings in them is that the obtained
angles can be clustered since the equations are highly ill-conditioned. However in real
application it is not always possible for the switch to alter directions without enough
time delay due to constraints of the available hardware. Even when it is possible, doing
so will increase the switching loss and the switching damage probability of the inverter
bridges, so will impair the inverter and the whole equipment. Therefore, we have to
manually adjust the solution, however, once again due to ill-conditioned property of the
equations, even very small perturbation to the solution can lead to significant changes
for the evaluation of equations, and thus harm the reliability of the whole system!

In this paper, a new algorithm for solving the SHE-PWM problem under the con-
straints of well separation between switching angles is proposed. This new numerical
process can be divided to three steps: transform the original transcendental equations
to a polynomial equation, then transform it into a constraint optimization problem and
use a Quantum-inspired Evolutionary Algorithm (QEA), which favors localized search
by our implementation, to solve the optimization problem. Our algorithm generates the
best possible solution which satisfies the requirement for the minimum tolerable dis-
tance between consecutive switching angles and is scalable for a variety of application
environments.

2 Numerical Transformation of the SHE-PWM problem

A periodical PWM waveform with n notches per half-cycle can be represented using
Fourier series expansion as f(t) =

�∞
n=1[an sin(nωt) + bn cos(nωt)] where ω =

2π/T . Owing to the property of odd quarter-wave symmetry, the coefficients of Fourier
series are bn = 0 for all n and an = 4

nπ

�n
k=1(−1)k−1 cos(nαk) for odd n and 0 for

even n, where 0 < α1 < α2 < . . . αn < π/2. Note that an is the amplitude of an n-
th harmonic component of the waveform f . To set selected harmonics of a full-bridge
PWM inverter output voltage to desired values, we need to solve the following set of
nonlinear equations:

n�
i=1

(−1)i−1 cos(kαi) = hk (1)

where hk = kπαk/4E, k = 1, 3, 5, . . . and E is the inverter DC bus voltage.
Applying the result in [5], we can transform the above nonlinear equation system to a
monic real-coefficient algebraic monic polynomial problem p(x) of which all the roots
are real. Precisely, p(x) can be written as a Toeplitz system
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where pi is the i-th order coefficient in polynomial p(x). From it, we can obtain
pi using Toeplitz Matrix algorithm. We are ready to describe the algorithm for solv-
ing p(x). Recall that we need the obtained roots xi (actually the corresponding angles



arccosxi) well separated from each other, we can therefore cast the problem for com-
puting roots of a polynomial into an optimization problem as follows:

min(
n�

i=1

|
n�

j=0

pjx
j
i | + ρ exp

�
n−1

k=1
Φ(k)

σ ) (3)

Φ(k) =
	 | arccosxk − arccosxk+1 − θ| : | arccosxk − arccosxk+1| < θ

0 : otherwise

where xi is the i-th root of the monic p(x) and 0 < x1 < x2 < x3 < ... < xn < 1,
and ρ and σ are two parameters for the penalty function. θ is a pre-specified minimum
tolerable gap between consecutive angles according to the hardware. A reasonable value
for θ is π

4n since the average gap for consecutive angles is π
2n . Note that setting ρ to 0

will compute the exact solution to p(x). Due to the properties of p(x), usually the better
the approximation to the roots, the smaller the minimum distance between consecutive
roots. Therefore, our optimization problem is essentially to compute the best possible
tradeoff between the maximum error in the system and the minimum distance between
switching angles.

3 Solving the SHE-PWM by Localized Quantum-Inspired
Evolutionary Algorithm

The Quantum-inspiredEvolutionary Algorithm (QEA) [3] is a relatively new evolution-
ary computing algorithm, which is characterized by the principles of quantum comput-
ing including concepts of qubits and superposition of states. QEA can imitate parallel
computation in classical computers. The recent results on QEA include [4, 8, 6]. QEA
is chosen in our case since it can treat the balance between exploration and exploita-
tion more easily compared with the conventional GAs. In addition, QEA can efficiently
conduct search for the global optimum in the search space with only a small number of
individuals.

As the smallest unit of information, a qubit is a quantum system whose states lies
in a two dimensional Hilbert space. Note that a qubit can be in “1” state, “0” state or
simultaneously in the both (superposition). The state of a qubit can be represented as
|Ψ〉 = α|0〉 + β|1〉 where α and β specify the probability of the corresponding states,
and |α|2 + |β|2 = 1. A quantum gate is a unitary transformation that acts on a fixed
number of qubits to change their states. Inspired by the quantum computing, QEA uses
the Q-bit representation for the probabilistic representation. An m Q-bits representation
is defined as q = [κ1|κ2| . . . |κm] where κi = (αi, βi)T and |αi|2 + |βi|2 = 1.

Recall that we expect the resulting roots well-separated from each other, we there-
fore would also expect that each root should be more or less close to the value of
i/n, i = 1, 2, . . . , n, respectively. Suppose an initial solution consists of i/n, i =
1, 2, . . . , n, we then need an algorithm which favors localized search for each root in-
stead of the one that will perturb the root too much. Motivated by localized search, the
main structure and operations of our QEA are as follows.

Other than the standard QEA, we keep in the population at generation t both the
Q-bit individuals, Q(t) = {qt

1, q
t
2, . . . , q

t
n} and the corresponding solutions, S(t) =



{st
1, s

t
2, . . . , s

t
n}, where n is the size of the population, and q t

i is a Q-bit individual
of length m: qj = [κt

j1|κt
j2| . . . |κt

jm]. Each Q-bit individual qt
j , j = 1, 2, . . . , n cor-

responds to a solution st
j , j = 1, 2, . . . , n in the population, and is used for deciding

whether to add or subtract a small (random) amount to s t
j to form the new solution s′t

j .
By comparing st

j and s′tj as well as their fitness values, we then appropriately update
qt
j (see below). After all solutions generate descendants, the best n out of the 2n so-

lutions ({st
j}

{s′tj }) are selected to form the set of solutions S(t + 1) = {st+1

j } for
the new population. Note that we also need to select those q t

j , which corresponds to
st+1

j , to form Q(t + 1) = {qt+1
j }. If both st

j and s′tj are selected, then two qt
j will exist

in the new population. If none of s t
j and s′tj gets selected, nor does qt

j . The details are
elaborated below.

(1) In the initialization step, all α0
i and β0

i , i = 1, 2, . . . , m, of all q0
j , j = 1, 2, . . . , n,

are initialized to 1/
√

2, such that each q0
j , j = 1, 2, . . . , n can represent the linear su-

perposition of all 2m states, namely |Ψq0
j
〉 = 1√

2m
(|00 . . . 0〉 + |00 . . . 1〉 + |11 . . . 1〉).

By the above discussion, we initialize each solution as the set of values (in sorted order)
uniformly distributed between [0, 1].

(2) Generate new solutions s′t
j from st

j as described above. Note that we restrict α, β
to be positive, to avoid the ambiguity.

(3) Update qt
j . We apply a quantum gate, i.e., a unitary transformation U(∆θ) to

obtain new qt
j , namely κt

ji = U(∆θ)κt
ji for each κt

ji in qt
j . The U(∆θ) given in [3] is

U(∆θ) =
�
cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

�
(4)

where ∆θ is defined in our case as sign((f(s′tj ) − f(st
j))(s

′t
j − st

j))π/50 and f(·) is
the fitness function. The sign of ∆θ is not hard to decide, e.g., if s ′t

j is fitter than st
j and

s′tji < st
ji, we should try to increase the possibility for decreasing s t

ji. Recall that we
use |αt

ji|2 (precisely, the predicate: random[0, 1) > |αt
ji|2) to decide whether to add a

small amount to st
ji, therefore, we should increase αt

ji and ∆θ is negative.
(4) The best n out of 2n solutions and their corresponding Q-bit individuals are

selected to form the next generation.
(5) Repeat (2)-(4) until certain condition is met.
Since the solutions are only perturbed by very small values for obtaining the new so-

lutions each time, our QEA exhibits good localized search ability. Each Q-bit individual
starts from the the same value, and is successively updated to favor the specific direction
for improving the solution vectors. Eventually when QEA converges to the optimum,
Q-bit individuals will return to the same values, namely 1/

√
2. Since the polynomial

p(x) and thus Problem (3) are highly ill-conditioned (see below), the amount for addi-
tion and subtraction in step (2) is set to be progressively smaller once per 200 iterations,
which is especially important when QEA is converging to the optimum.

4 Experiments

We consider the case where the number of switching angles is n = 20, and lower order
harmonics are set to h1 = 0.6 and all other h are set to 0. We first compute and sort



the switching angles corresponding to the obtained roots of the monic (i.e., arccosx i

for each root xi). The switching angles for four criteria: the exact angles (X.A.), well-
separated angles (W.A.) by QEA , randomly perturbed angles (R.P.) from the exact
angles, and manually perturbed angles (M.P.) from the exact angles, are shown in Table
1. We then compute the maximum error and average error for evaluation of the above
angles to the equation (1). As the key motivation for this paper, the minimum distances
between consecutive switching angles are also computed. These results are summarized
in Table 2. The spectra of the resulting waveforms for X.A., W.A., R.P. and M.P. are
shown in Figure 1.

It is necessary to make a few notes for these results. The values for R.P. are gener-
ated by perturbing the corresponding values for X.A. with very small random values in
[−0.01, 0.01], however, these lead to the significant error to the system: the maximum
error is 142% as indicated by Table 2. The equation is clearly ill-conditioned. We ob-
serve from the values for X.A. that the minimum gap between consecutive switching
angles occurs between the first two angles, therefore, we adjust them (generating val-
ues for M.P.) by simply deducting roughly 0.005 from the first one, and add the same
amount to the second one, which extends the gap to 0.025 (other adjustments act simi-
larly). We found that the evaluation of the (n-1)th equation in (1) gives 0.45 rather than
the desired 0, which greatly harms the system’s reliability! Indeed, it is almost impos-
sible to adjust the switching angles from our experience to obtain good results since
equations are highly ill-conditioned.

We next apply our QEA (generating values for W.A.) to find the best possible results
also with the minimum distance 0.025, and the resulting maximum error is 6% com-
pared with 45% by M.P, and the average error is 6% compared with 14% by M.P.. The
resulting spectrum of W.A. is much better than the spectrum of M.P. (refer to Figure 1).
In addition, we clearly see from the items for X.A. and W.A. in Table 2 that our method
computes a good tradeoff between the maximum error and the minimum distance. By
adjusting θ in (3), our method is scalable for a variety of application requirements.
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Fig. 1. The output spectrum from left to right is for X.A., R.P., M.P. and W.A.

5 Conclusions

A new robust algorithm is proposed to solve the optimal PWM problem under the con-
straint that any two consecutive solutions are well separated from each other. The al-
gorithm first transforms the nonlinear equation to a polynomial equation, then uses the
quantum-inspired evolutionary algorithm, which favors localized search by our imple-
mentation, to find the roots with certain criterion for separation. The most salient fea-
ture of the new method is that the obtained switching angles are reasonably distant from
each other, and thus the solution can be directly applied to set amplitudes of several tens



of harmonics without need to manually adjust the solution as with other methods. The
experiments indicate the soundness of the method.

Table 1. Resulting angles (truncated at 10−4) for the criteria of Exact Angle (X.A.), Well-
separated Angle (W.A.), Randomly Perturbed angle (R.P.) and Manually Perturbed angle (M.P.)

A. No. 1 2 3 4 5 6 7 8 9 10
X.A. 0.1381 0.1544 0.2766 0.3088 0.4157 0.4634 0.5558 0.6182 0.6971 0.7732
W.A. 0.1287 0.1534 0.2681 0.3057 0.4083 0.4618 0.5507 0.6165 0.6928 0.7723
R.P. 0.1422 0.1510 0.2697 0.3010 0.4095 0.4639 0.5639 0.6243 0.6876 0.7705
M.P. 0.1335 0.1590 0.2766 0.3088 0.4157 0.4634 0.5558 0.6182 0.6971 0.7732

A. No. 11 12 13 14 15 16 17 18 19 20
X.A. 0.8401 0.9285 0.9852 1.0802 1.1321 1.2404 1.2809 1.3960 1.4340 1.5521
W.A. 0.8378 0.9277 0.9832 1.0838 1.1320 1.2399 1.2819 1.3962 1.4351 1.5522
R.P. 0.8310 0.9287 0.9758 1.0779 1.1338 1.2353 1.2729 1.3891 1.4407 1.5485
M.P. 0.8401 0.9285 0.9852 1.0802 1.1321 1.2404 1.2809 1.3960 1.4340 1.5521

Table 2. The Maximum Error, Average Error and Minimum Distance between consecutive angles
for the values in Table 1. The error ratio is calculated with the requirement 0 < h < 1.

Criterion Exact Angle Randomly Perturbed Well-separated Angle Manually Perturbed
Maximum Error 2% 142% 6% 45%
Average Error 0.5% 40% 6% 14%
Minimum Dist. 0.016 0.009 0.025 0.025
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