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Abstract. In this work, we study different mechanisms to incorporate constraints
into an evolutionary algorithm used for global optimization. The aim of the work
is twofold. First, we propose a competitive constraint-handling approach which
does not require a penalty function (nor penalty factors), and which is able to pro-
duce very competitive results while performing less fitness function evaluations
than other algorithms representative of the state-of-the-art in the area. Second,
we measure the rate at which our approach reaches either the feasible region of
the search space or even the global optimum solution. Finally, we propose ad-
ditional test functions and perform an empirical study that aims to find some of
the features that make a constrained optimization problem difficult to solve by an
evolutionary algorithm.

1 Introduction

Evolutionary algorithms (EAs) have been successfully used to solve different types of
optimization problems. However, in their original form, they lack an explicit mecha-
nism to handle the constraints of a problem. This has motivated the development of
a considerable number of approaches to incorporate constraints into the fitness func-
tion of an EA [1]. Particularly, in this paper we are interested in the general nonlinear
programming problem in which we want to: Find x which optimizes f(x) subject to:
gi(x) ≤ 0, i = 1, . . . , n hj(x) = 0, j = 1, . . . , p where x is the vector of solutions
x = [x1, x2, . . . , xr]

T , n is the number of inequality constraints and p is the number of
equality constraints (in both cases, constraints could be linear or nonlinear). The most
common approach adopted to deal with constrained search spaces is the use of penalty
functions [1]. When using a penalty function, the amount of constraint violation is used
to punish or “penalize” an infeasible solution so that feasible solutions are favored by
the selection process. Nonetheless, the main drawback of penalty functions is that they
require a careful fine tuning of the penalty factors that accurately estimates the degree
of penalization to be applied so that we can approach efficiently the feasible region [1].

In this work we analyze the constraint handling (CH) problem in EAs. Besides the
typical parameters defined by the user of an EA, constraint handling techniques usually
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add more of them (e.g., penalty factors). Moreover, CH techniques are usually created
either to solve a specific problem (e.g., in engineering design, or combinatorial opti-
mization) or to be tested on the well-known benchmark of 13 test functions found in
[2]. The features that make difficult a constrained problem for an evolutionary algorithm
remains open and has attracted little interest in the specialized literature [3]. Also, there
is a noticeable lack of metrics that allow a more in-depth comparison among CH tech-
niques used with evolutionary algorithms. Our research work was precisely motivated
by the previous issues. The main objectives of this work were to propose a compet-
itive constraint-handling technique based on the separation of the objective function
and the constraints of the problem. Aspects such as efficiency and simplicity were ma-
jor concerns. Also, we aimed not to use a penalty function. As part of our work, we
also proposed to use a measure that may help to know in more detail the rate at which
our approach reaches the feasible region (or the global optimum) of the search space.
This metric may also be used to compare different approaches. Finally, we performed
a empirical study in order to known what characteristics make a constrained problem
difficult to solve by an EA. In this regard, we emphasize the fact that the EA studied
(our own) was found to be highly competitive in the benchmark described in [2], and
still had difficulties to solve some of the 11 new test problems that we proposed.

Best Result Mean Result Worst Result
Problem Optimal SMES SR SMES SR SMES SR

g01 −15.00 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000
g02 0.803619 0.803601 0.803515 0.785238 0.781975 0.751322 0.726288
g03 1.00 1.000 1.000 1.00 1.000 1.000 1.000
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539
g05 5126.498 5126.599 5126.497 5174.492 5128.881 5304.167 5142.472
g06 −6961.814 −6961.814 −6961.814 −6961.284 −6875.940 −6952.482 −6350.262
g07 24.306 24.327 24.307 24.475 24.374 24.843 24.642
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.632 680.630 680.643 680.656 680.719 680.763
g10 7049.25 7051.903 7054.316 7253.047 7559.192 7638.366 8835.655
g11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
g12 1.000 1.000 1.000 1.000 1.000 1.000 1.000
g13 0.053950 0.053986 0.053957 0.166385 0.057006 0.468294 0.216915

Table 1. Comparison of our SMES with respect to Stochastic Ranking (SR) [2]. A result
in boldface means a better solution of the SMES

2 Description of Our Approach

In order to avoid the use of a penalty function, we explored the capabilities of evolu-
tionary multiobjective optimization concepts such as Pareto dominance, when used as
a selection criterion. We also studied the use of Pareto ranking and population-based
approaches to solve global optimization problems [4]. In this regard, we performed a
comparison among 4 representative approaches based on multiobjective optimization
concepts [4]. Our results indicated that the separation of the objective function and the
constraints is a viable mechanism but the use of multiobjective concepts was not par-
ticularly effective. Then, we also realized that the most competitive constraint-handling
approaches normally use an evolution strategy. This led us to hypothesize the follow-
ing: (1) The self-adaptation mechanism of an ES helps to sample the search space well
enough as to reach the feasible region reasonably fast and (2) the simple addition of
selection criteria based on feasibility to an ES should be enough to guide the search in



such a way that the global optimum can be approached efficiently. The main issue here
was how to maintain diversity and to avoid the total elimination of infeasible individ-
uals from the population. The first mechanism that we proposed in [5] was based on a
variant of a (µ + 1)-ES coupled with three simple selection criteria based on feasibil-
ity. This version provided good results but presented premature convergence in some
test problems and had difficulties to reach the feasible region in some others. The three
selection criteria adopted were the following: (1) Between 2 feasible solutions, the one
with the highest fitness value wins (assuming a maximization problem/task). (2) If one
solution is feasible and the other one is infeasible, the feasible solution wins. (3) If both
solutions are infeasible, the one with the lowest sum of constraint violation is preferred.
Based on the fact that the diversity maintenance mechanism was not too effective, in
[6] we proposed a second version of our algorithm, but now using a (1 + λ)-ES and
adding a diversity mechanism which consisted on allowing solutions with a good value
of the objective function to remain as a new starting point in the next generation of the
search, regardless of their feasibility. The results improved with respect to the first ver-
sion. However, the robustness was not as good as other state-of-the-art algorithms and,
for one test function, no feasible solutions were found. We realized that the main prob-
lem with the second version of our approach had to do with the exploratory limitations
of the (1 + λ)-ES adopted. Also, we realized that keeping infeasible solutions was not
necessarily useful. What we needed was to keep infeasible solutions that lied close to
the boundary between the feasible and the infeasible region. This motivated the devel-
opment of the third version of our approach (reported in this paper), in which we use a
(µ + λ)-ES (a Simple Multimembered Evolution Strategy SMES) combined with the
same three selection criteria adopted before [7] , a simple combination of discrete and
intermediate panmictic recombination and a reduction of the initial stepsize value of the
mutation operator. Furthermore, we now add an improved diversity mechanism which,
although simple, provides a significant improvement in terms of performance. The de-
tailed features of the improved diversity mechanism are the following: At each gener-
ation, we allow the infeasible individual with the best value of the objective function
and with the lowest amount of constraint violation to survive for the next generation.
We call this solution the best infeasible solution. In fact, there are two best infeasible
solution at each generation, one from the µ parents and one from the λ offspring. Either
of them can be chosen with a 50% of probability. This process of allowing the best in-
feasible solution to survive for the next generation happens 3 times every 100 during the
same generation. Therefore, the same best infeasible solution can be copied more than
once into the next population. However, this is a desired behavior because a few copies
of this solution will allow its recombination with several solutions in the population,
specially with feasible ones. Recombining feasible solutions with infeasible solutions
in promising areas (based on the good value of the objective function) and close to the
boundary of the feasible region will allow the ES to reach optimum solutions located
in the boundary of the feasible region of the search space (which are known to be the
most difficult to reach). When the selection process occurs, the best individuals among
the parents and offspring are selected based on the three selection criteria previously in-
dicated. The selection process will pick feasible solutions with a better value of the ob-
jective function first, followed by infeasible solutions with a lower constraint violation.



To evaluate the performance of the proposed approach we used the 13 test functions de-
scribed in [2]. The test functions chosen contain characteristics that are representative
of what can be considered “difficult” global optimization problems for an evolutionary
algorithm. We performed 30 independent runs per function. A summary of our results
and a comparison with respect to stochastic ranking [2] is shown in Table 1. Note that
we also compared results with respect to other approaches, but stochastic ranking was
found to be the most competitive and therefore it was chosen for inclusion in this paper.
In Table 1, we can see that our approach was able to find the global optimum in seven
test functions and it found solutions very close to the global optimum in all the others.
Our new approach, which uses a (100 + 300)-ES, performed 240, 000 fitness function
evaluations (FFE), and Stochastic Ranking performed 350, 000. Finally, an analysis of
variance (ANOVA) was performed to detect sensitivity of the three parameters of the
evolution strategy used (µ, λ and number of generations). The results indicated that the
approach was not sensitive to any of these three parameters.

3 Measuring Performance

After discussing the quality, robustness and competitiveness of the our algorithm we
wanted to verify the rate at which our algorithm reached the feasible region, because
in real-world problems it is important for an optimization algorithm to provide reason-
ably good results (where “good” may mean feasible solutions) with a relatively low
number of objective function evaluations. Therefore, we performed an analysis of the
rate at which our approach reached the feasible region. For this sake, we monitored the
percentage of feasible solutions in the population at every 200 generations (the total
number of generations of our approach was 800). The results are presented in Figure 1.

(a) Feasible Solutions from Generation 0 to 800 (b) Detail from Generation 0 to 800
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Fig. 1. Percentage of feasible solutions (a) every 200 generations (from 0 to 800), (b) a detailed
oscillation of feasible and infeasible solutions (from 0 to 800)

It should be clear from Figure 1 that the feasible region is reached before generation
200 for all the 13 test functions. Our results also indicated that for problems where the
global optimum was found, the algorithm required 200 generations on average to reach
it. This suggests that our approach was able to find the global optimum relatively fast
for different types of problems.



Problem n Type of function ρ Linear inequalities Nonlinear inequalities Linear equalities Nonlinear equalities

g14 10 nonlinear 0.00% 0 0 3 0
g15 3 quadratic 0.00% 0 0 1 1
g16 5 nonlinear 0.0204% 4 34 0 0
g17 6 nonlinear 0.00% 0 0 0 4
g18 9 quadratic 0.00% 0 12 0 0
g19 15 nonlinear 33.4761% 0 5 0 0
g20 24 linear 0.00% 0 6 2 12
g21 7 linear 0.00% 0 1 0 5
g22 22 linear 0.00% 0 1 8 11
g23 9 linear 0.00% 0 2 3 1
g24 2 linear 79.6556% 0 2 0 0

Table 2. Dimensionality, type of objective function, values of ρ and type and number
of constraints for 11 test problems proposed by the authors.

4 Identifying Sources of Difficulty

Most of the previous work on constraint-handling techniques relates to the benchmark
proposed in [2]. However, we know (from the No Free Lunch Theorems for search [8])
that using such a limited set of functions does not guarantee, in any way, that an algo-
rithm that performs well on them will necessarily be competitive in a different set of
problems. This motivated us to identify new test functions to validate our algorithm.
What we expected to find was functions in which our approach (which was found to
be highly competitive in the traditional benchmark from [2]) did not exhibit a good
performance. We expected to identify in such functions certain features that could be
associated with sources of difficulty for a constraint-handling mechanism. Thus, we
added 11 new problems taken from different sources, and which have features that we
hypothesized that would decrease the performance of the algorithm (nonlinear equality
constraints and dimensionality). The new functions are detailed in [9] and the summary
of their features is presented in Table 2, where ρ is an estimate of the size of the feasible
region with respect to the whole search space. We performed 30 independent runs us-
ing exactly the same parameters adopted with first set of test functions [7]. The overall
results suggest that the two main factors that affect the performance of our EA are the
dimensionality (this coincides with the conclusions from Schmidt & Michalewicz for
the static penalty function approach [3]) and the increasing number of nonlinear equal-
ity constraints. The factors that do not seem to decrease the performance of our EA
were a high number of inequality constraints (even nonlinear) and (somewhat surpris-
ingly) the type of objective function. This small study is far from being conclusive, but
it provides some insights regarding the factors that make difficult for an EA to reach the
global optimum in constrained search spaces.

5 Conclusions and Future Work

We have proposed a novel approach to handle constraints, based on a multimembered
evolution strategy and a separation of constraints from the objective function. The al-
gorithm does not use a penalty function and also does not require the fine-tuning of
any extra parameters. Despite its simplicity, the approach provided a highly compet-
itive performance against an state-of-the-art technique at a lower computational cost
(measured in terms of fitness function evaluations performed). In addition, we found



Statistical Results of the SMES for the new 11 Problems
Problem Optimal Best Mean Median Worst St. Dev.

g14 −47.656 −47.535 −47.368 −47.386 −47.053 1.33E-1
g15 961.715 ∗961.698 963.922 964.058 967.787 1.79E+0
g16 1.905 1.905 1.905 1.905 1.905 0
g17 8927.589 ∗8890.183 ∗8954.136 ∗8948.686 ∗9163.677 40.83E+0
g18 0.866 0.866 0.716 0.674 0.648 8.19E-2
g19 −32.386 −34.223 −37.208 −36.430 −41.251 2.10E+0
g20 0.0967 ∗0.2114 ∗0.2511 ∗0.2524 ∗0.3044 2.33E-2
g21 193.778349 ∗347.980927 ∗678.392445 ∗711.847260 ∗985.782166 158.49E+0
g22 12812.500 ∗2340.617 ∗9438.255 ∗9968.156 ∗17671.535 4360.88E+0
g23 NA ∗ − 1470.152588 ∗ − 363.508270 ∗ − 333.251541 ∗177.252640 316.16E+0
g24 −5.508 −5.508 −5.508 −5.508 −5.507 1.0E-5

Table 3. Statistical results for the SMES with the 11 new test functions. “*” means
infeasible.

that our algorithm tends to approach the feasible region at a high rate. Finally, in an
additional study, we determined that the main sources of difficulty for our approach are
related to high dimensionality and a high number of nonlinear equality constraints. Our
future work consists on defining in a more formal way a metric for the rate at which the
feasible region is reached. We also plan to analyze more carefully the new test functions
in order to detect other features that may also affect the performance of our approach.
We hope to use this information to design more effective mechanisms to incorporate
constraints into the fitness function of an evolutionary algorithm.
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