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1 Introduction

In a typical agent based system, a number of mobile agents cooperate to achieve
a desired goal. The efficiency of the agent system in reaching the goal, and
the completeness of the result depends on the number of agents in the system.
Too few agents will not achieve the full potential of parallelism, and will lead
to decreased system efficiency. Too many agents can overburden the system
with unnecessary overhead, and also can result in significant delays. The task
of finding the optimal number of agents required to achieve the desired effect is
difficult and problem-specific. In this paper, we propose an ecosystem inspired
approach to this problem. Similar to a real ecosystem, our solution will exhibit
properties of emergent stability, decentralized control and resilience to possible
disturbances. In our work, we propose to solve the technical problem of agent
management using an ecological metaphor.

In Section 2 we describe the current state of research in the fields of simulated
ecosystems and multi-agent control and stability. In Section 3 introduces the
problem of managing the number of agents populating a physical network, as
well as explain a proposed solution. Lastly, Section 4 demonstrates the initial
experimental results and conclusions.

2 Related Work

2.1 Simulated Ecology

The majority of ecology-inspired systems are used to answer some question about
real world ecosystems and its properties. For example, the RAM system has been
used to study mosquito control [21]. There are two major approaches to simu-
lating an ecosystem [6]. One is a species-based view of the system, where large
classes of individuals interact in the simulation (i.e., modeling the dynamics of
interaction of species rather than the interaction of individuals). Evolutionary
game theory (e.g., [1] [17] [16]) and dynamical systems (e.g., [9] [14] [13]) are two
approaches that often take the species-based view. The second approach is to
simulate individuals and their interactions, a bottom up approach to construc-
tion of the ecological simulator.

We are most interested in individual-based simulations, since they are usu-
ally built with software agents. An example of an individual-based approach to
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ecosystems is a simulated habitat populated with synthetic organisms (agents) [18].
Often such system are used to study the evolution (and co-evolution) of differ-
ent species and testing their interactions and emergent behavior. Genetic Al-
gorithms [8] and Genetic Programming [10] engines can be used in conjunction
with synthetic ecosystems to allow species to evolve over time. Some of the most
well known examples of synthetic ecosystems of this type are Evolve 1, 2 and 3
[4] [5] [19], “Artorg world”[3] and LAGER [18].

With this approach, global trends in the behavior of the system may emerge
as a result of the low-level interactions of individual agents. The emergent behav-
ior observed in an ecosystem may not be obvious given the individual behaviors
of agents.

2.2 Agents System Stability

Service replication An increasing number of researchers are investigating the
problems of reliability, robustness, and stability of multi-agent systems (MAS).
Most approaches toward improving system robustness revolve around the repli-
cation of agents and/or services on the MAS network. This direction has been
taken by [7], [12], [15] and several others. Existing approaches focus on the
methodology of agent/service replication. For example, in [15], Marin acknowl-
edges that a system designer should decide up-front which agents to replicate
and how many copies to make.

Probabilistic models Another approach is the application of probabilistic
models to the prediction of agent system stability and robustness. This research
assumes some uncertainty in agent behavior or the agent’s environment, and pro-
poses mechanisms for estimating, evaluating and hopefully improving stability
of agent systems. One of the first researchers to analyze probabilistic survivabil-
ity in an MAS is Kraus in [11]. In that paper Kraus proposed a probabilistic
model of MAS survivability based on two assumptions: (1) Global state of the
network is known at all times. (2) The probabilities of host or connection failure
are known.

An alternative approach was proposed by Artz, et al. in [2], where agents
reason about state of the network and security (insecurity) of their actions.

3 Problem Formulation

3.1 Motivation

In a typical dynamic, ad hoc network, there is limited, variable bandwidth be-
tween hosts, and the memory and CPU on each host is constrained. Given this
dynamic and resource constrained environment, it is impractical to prescribe any
pre-computed solution.

The solution we propose for such networks is to create a system that can
control the number of agents dynamically, adapting to the ever-changing envi-
ronment. In order to work in the context of an agent based system, a control



system should be distributed and decentralized. By distributed, we imply that the
system should be able to use the underlying network to parallelize problem solv-
ing on multiple hosts. By decentralized, we imply that the system should avoid
reliance on a single node, and should allow each agent to act independently.
The emergent behavior resulting from the individual localized control decisions
ideally will yield an optimal, or sufficiently optimal, solution at the global level.

3.2 Approach

Large ecosystems usually have several attractive qualities (such as dynamic de-
centralized control, self regulation, no single point of failure, robustness, and
stability) that we require for our system. We propose a solution to the prob-
lem of determining the number of agents appropriate for a task at hand that is
inspired by large ecosystems:

1. Each task in our system will be associated with food.
2. Agents completing a task successfully will collect the food points associated

with the completed task.
3. Agents consume food points over time to sustain their existence.
4. Agents that exhaust their supply of food die.
5. Abundance of food can cause a new agent to spawn.

By this analogy, tasks can be thought of as plant life growing at some rate.
Agents are associated with herbivore animals that perform tasks, therefore eating
all the food provided by successfully completing a task. Upon completion of a
task, an agent is forced to migrate to look for more food (tasks to complete).
As time passes, agents consume food according to a predefined consumption
function, analogous to a metabolic rate of an animal. Agents unable to find
enough food (tasks) to sustain their existence over time will exhaust their food
resources and will be terminated. Large amounts of food collected by a single
agent or accumulated in a single location can force a new agent to spawn at this
location. Agents procreate by division similar to a cell mitosis. However, this
approach makes it impossible for the system to recover from a state with no
agents. We suggest that tasks also should have an ability to spawn a servicing
agent whenever a certain threshold of accumulated food supply is reached. This
control metaphor allows system to dynamically adjust to the variables in the
environment, while avoiding the centralized control.

3.3 Formal Model

The set H denotes the set of producers h where h ∈ H, with the production rate
defined by a function Fh(t) for each individual producer h. The set A defines the
set of consumers a (a ∈ A), and each consumer has a predefined consumption
function fa(t). The dynamic system of H producers and A consumers is consid-
ered to be in an equilibrium state over some period of time from t1 to t2, if and
only if the amount of food produced during that period of time is equal to the



amount of food consumed during that same period of time. This relationship
can be expressed as:

∑

h∈H

∫ t2

t1

Fh(t) dt =
∑

a∈A

∫ t2

t1

fa(t) dt

At the simplest level, these principles can be modeled by a dynamic system of
homogeneous producers and homogeneous consumers with constant production
and consumption rates, c and d respectively. The equations below define the
equilibrium state for this simple example:

∑

h∈H

∫ t2

t1

Fh(t) dt =
∑

a∈A

∫ t2

t1

fa(t) dt

∑

h∈H

∫ t2

t1

c dt =
∑

a∈A

∫ t2

t1

d dt

|H| × c× (t2 − t1) = |A| × d× (t2 − t1)

|A| = |H| c
d

This is essentially a species-based analysis of our individual-based ecological
control system.

4 Initial Results and Conclusions

4.1 Initial Results

We have performed a set of initial experiments utilysing a real agent system
over a wired network to prove the validity of our approach. The experiments
have been executed with homogeneous producers and homogeneous consumers.
The production rate is c = 1 and the consumption rate is d = 5. The resulting
equilibrium state requires |A| = |H|/5.

Agents wander randomly with uniform distribution across all active hosts
on the network, performing tasks and collecting food associated with the tasks.
Agents are terminated if the food in their internal food bank drops below 0.
An agent that acquires 100 units food will reproduce, spawning a new agent
and splitting its food resources in half. As the system can enter a state with no
agents, we have employed a recovery strategy where each host can spawn a new
agent if the food level exceeds a fuzzy threshold of 60± 30 units.

We have run 3 sets of experiments on 4, 8 and 10 hosts, performing 30 trials
of each. A single trile consists of starting a system with a singel agent and
alowing agents to to stabilyse their number for the duration of the trial (10
to 15 minutes). The number of agents in the system is recorded five times a
second, and the average over all trials is plotted in the corresponding section of
Figure 1. The actual number of agents is plotted by line 1 along with the avarege



number of agents across the duration of experiment (line 2) and the theoretically
predicted number of agents (line 3) for comparison. Although exhibiting some
oscillation, the system converges to the predicted theoretical value, and exhibits
performance over time that is remarkably close (within 6%, 10% and 1% for
experiments with 4, 8 and 10 hosts respectively) to the theoretical value. Since
the optimal number of agents is fractional in experiments with 4 and 8 hosts
the exact target could never be achieved. Instead system is oscillates around it
thous achieing the target on average.

0

0.5

1

1.5

2

0 100000 200000 300000 400000 500000 600000

Time (ms)

N
u

m
b

e
r 

o
f 

a
g

e
n

ts 1

2

3

0

0.5

1

1.5

2

2.5

0 200000 400000 600000 800000

Time (ms)
N

u
m

b
e
r 

o
f 

a
g

e
n

ts

1

2

3

0

0.5

1

1.5

2

2.5

0 200000 400000 600000 800000 1000000

Time (ms)

N
u

m
b

e
r 

o
f 

a
g

e
n

ts

1

2

3

Fig. 1. Illustration of individual test runs for 4, 8 and 10 hosts

4.2 Conclusions and Future Work

This paper developed an ecology-based model for managing a number of agents
on the adhoc wireless networks. We have discovered that ecosystem based model
can provide decentralised distributed robust control of agents in the dynamic
and uncertain network enviroments. Our approach involves a novel exploitation
of properties of ad hoc networks, enabling mobile agents to automatically adapt
to changes that affect their communication and migration. The capability to dy-
namically reason about the state of their network will provides new possibilities
for stable MAS.

In the future we are planning more extensive set of experiments utilizing a
simulation as well as live Secure Wireless Agent Testbed (SWAT) [20]. We also
would like to create more detailed mathematical model of such systems to be
able to predict and control the emergent behavior of agent system.
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