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Abstract. This paper presents a line of research in genetic algorithms
(GAs), called building-block identification. The building blocks (BBs)
are common structures inferred from a set of solutions. In simple GA,
crossover operator plays an important role in mixing BBs. However, the
crossover probably disrupts the BBs because the cut point is chosen at
random. Therefore the BBs need to be identified explicitly so that the
solutions are efficiently mixed. We propose an approach for identifying
BBs. The approach is based on an observation of the compact GA. We
observe that the vector elements that correspond to the bits in the same
BB are simultaneously updated with a high probability. We formulate
the observation to the simultaneity matrix – an `×` matrix of numbers
constructed from a set of `-bit solutions. The matrix element in row i

and column j is denoted by mij . The larger the mij is, the higher the
dependency is between bit i and bit j. If mij is high, bit i and bit j

should be passed together to prevent BB disruption.

1 Introduction

This paper presents a line of research in genetic algorithms (GAs), called building-
block identification. The GAs is a probabilistic search and optimization algo-
rithm [7, 4]. The GAs begin with a random population – a set of solutions.
A solution (or an individual) is represented by a fixed-length binary string. A
solution is assigned a fitness value that indicates the quality of solution. The
high-quality solutions are more likely to be selected to perform solution recom-
bination. The crossover operator takes two solutions. Each solution splits in two
pieces. Then, the four pieces of solutions are exchanged to reproduce two so-
lutions. The population size is made constant by discarding some low-quality
solutions. An inductive bias of the GAs is that the solution quality can be im-
proved by composing common structures of the high-quality solutions. Simple
GAs implement the inductive bias by chopping solutions into pieces. Next, the
pieces of solutions are mixed. In GAs literature, the common structures of the
high-quality solutions are referred to as building blocks (BBs). The crossover
operator mixes and also disrupts the BBs because the cut point is chosen at ran-
dom (see Figure 1). It is clear that the solution recombination have to be done,
while maintaining the BBs. As a result, the BBs need to be identified explicitly.
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(A) Mixing and maintaining BBs.

(B) Mixing and losing BBs.

Fig. 1. The solutions are reproduced by the crossover operator. The BBs are shadowed.
The cut point, chosen at random, divides a solution into two pieces. Then, the pieces
of solutions are exchanged. In case (A), the solutions are mixed while maintaining the
BBs. In case (B), the BBs are disrupted.

The trap function [1] is an adversary function for studying BBs and linkage
problems in GAs [5]. The general k-bit trap functions are defined as:

Fk(b0 . . . bk−1) =

{

fhigh ; if u = k

flow − u flow

k−1
; otherwise,

(1)

where bi ∈ {0, 1}, u =
∑k−1

i=0 bi, and fhigh > flow. Usually, fhigh is set at k and
flow is set at k− 1. The additively decomposable functions (ADFs), denoted by
Fm×k, are defined as:

Fm×k(K0 . . . Km−1) =

m−1
∑

i=0

Fk(Ki), Ki ∈ {0, 1}k. (2)

The m and k are varied to produce a number of test functions. The ADFs fool
gradient-based optimizers to favor zeroes, but the optimal solution is composed
of all ones. The trap function is a fundamental unit for designing test functions
that resist hill-climbing algorithms. The test functions can be effectively solved
by composing BBs.

2 An Observation of the Compact GA

The pseudocode of the compact GA is presented in Figure 2 [6]. The compact
GA’s parameters are population size (n) and solution length (`). A population
is represented by an `-dimensional probability vector (p). The p[i], that is the
ith-element of the probability vector p, is the probability that the ith bit of
an individual, randomly chosen from the population, will be one. First, p is
initialized to (0.5, . . . , 0.5). Next, the individuals a and b are generated according
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to p. The fitness values, fa and fb, are then assigned to a and b respectively. If
fa ≥ fb then the probability vector will be updated towards the individual a. If
a[i] = 1 and b[i] = 0 then p[i] will be increased by 1/n. If a[i] = 0 and b[i] = 1
then p[i] will be decreased by 1/n. The loop is repeated until each p[i] becomes
zero or one. Finally, p presents the final solution.

1. for i = 0 to `− 1 do p[i] ← 0.5;
2. repeat

for i = 0 to `− 1 do

a[i]←

{

1; with probability p[i]
0; otherwise

b[i]←

{

1; with probability p[i]
0; otherwise

endfor

fa ← fitness(a);
fb ← fitness(b);
for i = 0 to `− 1 do

if fa ≥ fb then

if a[i] = 1 and b[i] = 0 then p[i]← min(1, p[i] + 1

n
);

if a[i] = 0 and b[i] = 1 then p[i]← max(0, p[i] − 1

n
);

else

if a[i] = 1 and b[i] = 0 then p[i]← max(0, p[i] − 1

n
);

if a[i] = 0 and b[i] = 1 then p[i]← min(1, p[i] + 1

n
);

endif

endfor

until each p[i] ∈ {0, 1}

Fig. 2. Pseudocode of the compact GA.

Let p = (p0, . . . , p`−1) be an `-dimensional probability vector where pi ∈
[0, 1]. Let a simultaneity matrix be an `×` matrix of numbers. Let mij be the
matrix element in row i and column j, 0 ≤ i, j ≤ `− 1. Then mij is the number
of times that pi and pj are simultaneously updated. The matrix elements in the
diagonal are filled with zeroes. In fact, only half of the matrix is required since it
is symmetric. The observation of the compact GA is performed by the following
steps.

for i = 1 to 1000 do

1. Randomize a probability vector p.
2. Execute Step 2 of the compact GA. After each iterations, record

which vector elements are simultaneously updated, in the matrix.
The change of the simultaneity matrix is shown in Figure 3. The fitness function
is the 5×3-trap function (F5×3). The population size is set at 100. A matrix ele-
ment is represented by a square. The square intensity is proportional to the value
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of matrix element. In the first iteration (A), the matrix elements are initialized
to zeroes. After that (B), the matrix element mij is increased by one every time
pi and pj (i 6= j) are simultaneously updated. (C), the matrix elements become
more distinct. Finally (D), the matrix is in steady state. An observation is that
the vector elements governed by the same 3-bit trap function are simultaneously
updated with a high probability.

(A) (C) (D)(B)

Fig. 3. The simultaneity matrix changes as the compact GA is repeated. The fitness
function is the 5×3-trap function (F5×3). Four snapshots are taken (A, B, C, D).

Every iteration of the compact GA, individual a competes with b. If a[i] 6= b[i]
and a[j] 6= b[j], the matrix element mij will be incremented by one. All possible
values of a[i], a[j], b[i], b[j] that cause the increment are listed as follows.

a[i]a[j] = 00 b[i]b[j] = 11, a[i]a[j] = 11 b[i]b[j] = 00,
a[i]a[j] = 01 b[i]b[j] = 10, a[i]a[j] = 10 b[i]b[j] = 01.

The fitness of individuals a and b are improved every iteration. In the later
iterations, the fitness of a and b is higher. Roughly speaking, the simultaneity
matrix records any pair of 2-bits that are complementary to each other between
two highly-fit individuals drawn at random. The highly-fit individuals of the
m×3-trap functions are composed of triple zeroes and its complement, triple
ones. Thus, we observe the simultaneous change between p[i] and p[j] if bit i
and bit j are governed by the same 3-bit trap function. All cases for mixing
2-bit BBs are enumerated. Mixing 00 with 11 results in 01 and 10. Mixing 01
with 10 results in 00 and 11. Only mixing in these cases must be done carefully
because the BBs will be lost. Mixing BBs in the other cases gives the same BBs.
As a result, it is reasonable to reward a pair of 2-bits that are complementary
to each other.

3 The Simultaneity Matrix

In the previous section, it is shown that the simultaneity matrix can be con-
structed by repeating the compact GA. An alternative is to divide the GAs in
two phases. The first phase is to construct the matrix. The second phase performs
the optimization by using the BB information in the matrix. A preliminary study
shows that computing the matrix by repeating the compact GA consumes a great
number of function evaluations. We turn to another way. The BB identification
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should not be done separately in the first phase, but it should be co-operated
with the optimization phase. For example, the high-quality solutions are shown
in Table 1. The fitness is the 5×3-trap functions. The dependency between vari-
ables bi, bi+1, bi+2 (i = 0, 3, 6, 9, 12) can be detected by means of a statistical
method. An inference might be that the high-quality solutions are composed of
triple zeroes and triple ones. It is said that the triple zeroes and triple ones are
common structures or BBs. The BBs are mixed, hoping to improve the solution
quality. Identifying BBs and mixing are repeated until reaching the optimum,
and therefore the BBs are inferred from a population every iteration. As men-
tioned in the previous section, the simultaneity matrix records any pair of 2-bits
that are complementary to each other between two high-quality solutions drawn
at random. In fact, the matrix can be constructed from a set of solutions. Let
M = (mij) be an `×` symmetric matrix of numbers. Let S be a set of `-bit
binary strings. Let si be the ith string, 0 ≤ i ≤ n− 1. Let si[j] be the jth bit of
si, 0 ≤ j ≤ `− 1. The matrix is computed as follows.

1. for i = 0 to `− 1 do

for j = 0 to `− 1 do

mij ← 0;
2. for p = 0 to n− 1 do

for q = p + 1 to n− 1 do

for i = 0 to `− 1 do

for j = i + 1 to `− 1 do

if sp[i]sp[j] is complementary to sq [i]sq[j] then

mij ← mij + 1;
mji ← mji + 1;

The matrix can be computed in O(`2n2). A closed form of mij is defined as:

mij = Count00S (i, j)Count11S (i, j) + Count01S (i, j)Count10S (i, j) (3)

where Countab
S (i, j) = |{x ∈ {0, . . . , n−1} : sx[i] = a and sx[j] = b}| for all 0 ≤

i ≤ ` − 1, 0 ≤ j ≤ ` − 1, (a, b) ∈ {0, 1}2. By using the closed form, the time
complexity of the matrix computation can be reduced to O(`2n).

Table 1. A set of high-quality solutions is shown in the table. The fitness function is
the 5×3-trap function. “111” is the optimum for 3-bit trap function. “000” gives more
contribution to the fitness than that of “001,” “010,” “011,” “100,” “101,” and “110.”
As a result, the high-quality solutions are composed of “000” and “111.”

Sol. no. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14

1 111 111 000 111 000
2 000 000 111 000 111
3 111 000 000 111 000
4 000 000 000 000 111
5 000 000 000 000 000
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The trap functions bias the population to two aligned chunks of zeroes and
ones, that are complementary to each other. Certainly, the dependency between
every pair of bits in a chunk is stored in the matrix. The matrix is not limited
to the cases where the two aligned chunks are complementary to each other.
In the other cases, the matrix does not detect unnecessary dependency. For
instance, the bits at positions of {0, 1, 2, 3, 4} are mostly “b0b1000” and “b0b1111”
where bi ∈ {0, 1}. The dependency among five bits is obvious, but passing the
bits governed by {2, 3, 4} together is sufficient to guarantee that “b0b1000” and
“b0b1111” will exist in the next generation with a high probability. In summary,
the matrix records only dependency that is actually necessary for preserving
BBs.

4 A Validation of the Simultaneity Matrix

The BB hypothesis states that the solution quality can be improved by compos-
ing BBs. The artificial functions are designed so that the BB hypothesis is true,
for example, the additively decomposable functions (ADFs) mentioned in the
first section and the hierarchically decomposable functions (HDFs). The HDFs
are far more difficult than the ADFs. First, BBs in the lowest level need to be
identified. The solution quality is improved by exploiting the identified BBs in
solution recombination. Next, the improved population reveals larger BBs. Again
the BBs in higher levels need to be identified. Identifying and exploiting BBs
are repeated many times until reaching the optimal solution. Commonly used
HDFs are hierarchically if-and-only-if (HIFF), hierarchical trap 1 (HTrap1), and
hierarchical trap 2 (HTrap2) functions. The original definitions of the HDFs can
be found in [9, 8].

To compute the HIFF functions, a solution is interpreted as a binary tree.
An example is shown in Figure 4. The solution is an 8-bit string, “00001101.” It
is placed at the leaf nodes of the binary tree. The leaf nodes are interpreted as
the higher levels of the tree. A pair of zeroes and a pair of ones are interpreted as
zero and one respectively. Otherwise the interpretation result is “-.” The HIFF
functions return the sum of values contributed from each node. The contribution
of node i, ci, shown at the upper right of the node, is defined as:

ci =

{

2h ; if node i is “0” or “1”
0 ; if node i is “-,”

(4)

where h is the height of node i. In the example, the fitness of “00001101” is
∑

ci = 18. The HIFF functions do not bias an optimizer to favor zeroes rather
than ones and vice versa. There are two optimal solutions, the string composed
of all zeroes and the string composed of all ones.

The HTrap1 functions interpret a solution as a tree in which the number of
branches is greater than two. An example is shown in Figure 5. The solution is
a 9-bit string placed at the leaf nodes. The leaf nodes do not contribute to the
function. The interpretation rule is similar to that of the HIFF functions. Triple
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h = 1

h = 2

h = 3
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0

Fig. 4. The HIFF function interprets the solution as a binary tree. The 8-bit solution,
“00001101,” is placed at the lowest level (h = 0). The interpretation results are “0,”
“1,” and “-” according to a deterministic rule. Each node excepting the nodes that are
“-”contributes to the fitness by 2h. The fitness is a total of 18.

zeroes are interpreted as zero and triple ones are interpreted as one. Otherwise
the interpretation result is “-.” The contribution of node i, ci, is defined as:

ci =

{

3h · F3(b0b1b2) ; if bj 6= “-” for all 0 ≤ j ≤ 2
0 ; otherwise,

(5)

where h is the height of node i. b0, b1, b2 are the interpretations in the left, middle,
right children of node i. At the root node, the trap function’s parameters are
f ′

high = 1 and f ′

low = 0.9. The other nodes use fhigh = 1 and flow = 1. In

Figure 5, the HTrap1 function returns
∑

ci = 13.05. The optimal solution is
composed of all ones.

1 x 31 1 x 31 1 x 31 

h = 0

h = 2

h = 1

0 0 0 0 0 0 1 1 1

0 0 1

−
0.45 x 3 2

Fig. 5. The HTrap1 function interprets the solution as a 3-branch tree. The 9-bit
solution, “000000111,” is placed at the lowest level (h = 0). The interpretation results
are “0,” “1,” and “-” according to a deterministic rule. Each node excepting the leaf
nodes contributes to the fitness by 3h · F3(b0b1b2) where bi is the interpretation of the
child nodes. The fitness of “000000111” is 13.05.

The HTrap2 functions are similar to the HTrap1 functions. The only dif-
ference is the trap function’s parameters. In the root node, f ′

high = 1 and
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f ′

low = 0.9. The other nodes use fhigh = 1 and flow = 1 + 0.1
h

where h is

tree height. The optimal solution is composed of all ones if the following condi-
tion is true.

f ′

high − f ′

low > (h− 1)(flow − fhigh) (6)

The parameter setting (f ′

high = 1, f ′

low = 0.9, fhigh = 1, flow = 1+ 0.1
h

) satisfies

the condition. The HTrap2 functions are more deceptive than the HTrap1 func-
tions. Only root node guides an optimizer to favor ones while the other nodes
fool the optimizer to favor zeroes by setting flow > fhigh.

To validate the simultaneity matrix, an experiment is set as follows. We ran-
domize a population of which the fitness of any individual is greater than a
threshold T . Next, the matrix is computed according to the population. Every
time step, the threshold T is increased and the matrix is recomputed. A se-
quence of the simultaneity matrix is shown in Figure 6-7. The population size is
set at 50 for all test functions. The onemax function counts the number of ones.
The mixed-trap function is composed of 5-bit onemax, 3-bit, 4-bit, 5-bit, 6-bit,
and 7-bit trap functions. In the early stage (A), the population is almost ran-
dom because the threshold T is small. Therefore there are no irregularities in the
matrix. The solution quality could be slightly improved without the BB informa-
tion. That is sufficient to reveal some irregularities or BBs in the next population
(B). Improving the solution quality further requires information about BBs (C).
Otherwise, randomly mixing disrupts the BBs with a high probability. Finally,
the population contains only high-quality solutions. The BBs are clear (D). It is
seen that the simultaneity matrix is able to identify BBs. The correctness of the
BBs depends on the quality of solutions observed. An optimization algorithm
that exploits the matrix have to extract the BB information from the matrix
in order to perform the solution recombination. Hence, moving the population
from (A) to (B), (B) to (C), and (C) to (D).

To exploit the matrix, we partition the bit positions {0, . . . , `−1} by putting i
and j in the same partition subset if the matrix element mij is high. For instance,
the matrix in Figure 3 (D) gives {0, 1, 2},{3, 4, 5},{6, 7, 8},{9, 10, 11},{12, 13, 14}.
The matrix is computed every generation. Next, the partition is made in O(`4)
where ` is the solution length. The solution recombination is performed by a re-
stricted uniform crossover – bits governed by same partition subset being passed
together. Empirical results show that the matrix is able to solve the ADFs and
HDFs in a scalable manner. The number of function evaluations required to
reach the optimum grows in a polynomial relationship with the problem size
(for more details, see [3]).

5 Conclusions

We have presented how we discover the simultaneity matrix. The discovery is
based on the observation of the compact GA. The matrix element mij is the
degree of dependency between bit i and bit j. The time complexity of computing
the matrix is O(n`2) where n is the number of solutions and ` is the solution
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(B) 10x3−trap (T=15) (C) 10x3−trap (T=20) (D) 10x3−trap (T=25)

(B) 30−bit onemax (T=15) (C) 30−bit onemax (T=20) (D) 30−bit onemax (T=25)

(A) 6x5−trap (T=10) (B) 6x5−trap (T=15) (D) 6x5−trap (T=25)

(A) 30−bit mixed trap (T=10) (B) 30−bit mixed trap (T=15) (C) 30−bit mixed trap (T=20)

(A) 10x3−trap (T=10)

(C) 6x5−trap (T=20)

(D) 30−bit mixed trap (T=25)

(A) 30−bit onemax (T=10)

Fig. 6. The simultaneity matrix constructed from a set of 50 random solutions. The
fitness of any individual in the population is greater than the threshold T . The ADFs
have only single-level BBs.

length. We put i and j of which mij is high in the same partition subset. The
time complexity of partitioning is O(`4) where ` is the solution length. The bits
governed by the same partition subsets are passed together when performing
solution recombination. The simultaneity matrix is able to solve the ADFs and
HDFs in a scalable manner. In addition, the matrix computation is efficient in
terms of computational time and memory usage (see [3]).
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simultaneity matrix. In CantúPaz, E. et al., editors, Proceedings of the Genetic and
Evolutionary Computation, page 1566–1567, Springer-Verlag, Heidelberg, Berlin.

3. Aporntewan, C., and Chongstitvatana, P. (2004). Simultaneity matrix for solving
hierarchically decomposable functions. In Deb, K. et al., editors, Proceedings of
the Genetic and Evolutionary Computation, Springer-Verlag, Heidelberg, Berlin
(to appear).

4. Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and Machine
Learning. Addison Wesley, Reading, MA.

5. Harik, G. R. (1997). Learning linkage. In Belew, R. K., and Vose, M. D., edi-
tors, Foundation of Genetic Algorithms 4, page 247–262, Morgan Kaufmann, San
Francisco, CA.

6. Harik G. R., Lobo F. G., and Goldberg, D. E. (1999). The compact genetic algo-
rithm. In Fogel, D. B., editor, IEEE Transaction on Evolutionary Computation,
Vol. 3, No. 4, page 287–297, IEEE Press, Piscataway, NJ.

7. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

8. Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy.
Doctoral dissertation, University of Illinois at Urbana-Champaign, Champaign, IL.

9. Watson, R. A., and Pollack, J. B. (1999). Hierarchically consistent test problems
for genetic algorithms. In Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X.,
and Zalzala, A., editors, Proceedings of Congress on Evolutionary Computation,
page 1406–1413, IEEE Press, Piscataway, NJ.


