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Modularity is a major feature of biological central nervous systems. For ex-
ample, the human/primate cerebral cortex is composed of dozens of structurally
and functionally identifiable regions that are interconnected in a hierarchical
network [1]. Motivated by this, our research group is studying the evolution
and self-organization of modular neural networks. We are interested both in ex-
plaining the origin of modularity in biological systems, and in understanding the
fundamental principles that govern the emergence of modular neural networks in
general. There has been a substantial amount of past research in this area dur-
ing the last decade, examining how modularity in neural networks evolves (e.g.,
[2–4]). Our own group initially focused on using genetic algorithms and multi-
objective evolutionary optimization methods to evolve module parameters that
influence acquisition of functionality in predefined modules during learning [5,
6]. This past work was directed at explaining left-right asymmetries and hemi-
spheric specialization in the brain.

In order to go beyond such issues and address the origin of neural modular-
ity in a much more general fashion, we have recently introduced an encoding
method that can represent neural networks as a hierarchy of layers (modules)
[7]. In this framework, evolution (genetic programming) works at a very high
level of abstraction on a tree structure that represents the top level architecture
of modules and inter-modular connections forming a neural network. Modules
consist of fairly uniform neurons with a set of shared properties (e.g., radius of
projection into an adjacent layer) that are also evolved. Specialization of neu-
rons, such as the specific weights on their connections, are not evolved but are
acquired through a learning process that works synergistically with evolution
(i.e., learning occurs prior to measuring phenotype fitness). Although we believe
that this approach could serve as a general framework for evolving modular
architectures when a large-scale target network is expected, practical consider-
ations often require imposing network constraints to limit the size of otherwise
enormous and complex search spaces, depending on the problem domain. For
this reason, we have also created a human-readable, descriptive language that
specifies the initial configuration of a problem and the desired search space. We
will describe our top-down approach to evolving modular neural networks and
summarize some of our initial experiments with it.
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