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Abstract. Scalability of open-ended evolutionary processes depends on their 
ability to exploit functional modularity, structural regularity and hierarchy. 
This paper offers a number of observations about properties, dependencies and 
tradeoffs among these principles and proposes a formal model where such ele-
ments can be examined. 

1   Introduction 

Scalability of open-ended evolutionary processes depends on their ability to exploit 
functional modularity, structural regularity and hierarchy. Functional modularity 
creates a separation of function into structural units, thereby reducing the amount of 
coupling between internal and external behavior on those units and allowing evolu-
tion to reuse them as higher-level building blocks. Structural regularity is the correla-
tion of patterns within an individual. Example of regularity are repetition of units, 
symmetries, self-similarities, smoothness, and any other form of reduced information 
content. Regularity allows evolution to specify increasingly extensive structures while 
maintaining short description lengths. Hierarchy is the recursive composition of func-
tion and structure into increasingly larger and adapted units, allowing evolution to 
search efficiently increasingly complex spaces. 

The existence of modular, regular and hierarchical architectures in naturally 
evolved systems is well established [7,4]. Though evolutionary processes have been 
studied predominantly in biological contexts, they exist in many other domains, such 
as language, culture, social organization and technology [1], among many others. But 
principles of modularity, regularity and hierarchy are nowhere as dominant as they 
are in engineering design. Tracing the evolution of technology over generations of 
products, one can observe numerous instances of designs being encapsulated into 
modules, and those modules being used as standard higher-level building blocks. 
Similarly, there is a pressure to reduce the information content in designs, by repeat-
ing or reusing the same modules where possible, using symmetrical and regular struc-
tures, and standardizing on components and dimensions. These and other forms of 
regularity translate in reduced design, fabrication and operation costs. The organiza-
tion of engineering designs, especially as complexity increases, is typically hierarchi-



cal. The hierarchy is often organized such that the amount of information is distrib-
uted uniformly across levels, maintaining a ‘manageable’ extent of information at 
each stage. These principles of modularity, regularity and hierarchy are cornerstones 
of engineering design theory and practice [e.g. 6]. Though these principles are well 
established, there is – like biological evolution – still a lack of a formal understanding 
of how and why modular, regular and hierarchical structures emerge and persists, and 
how can we computationally emulate these successful principles in design automation 
processes. 

In this short paper I would like to highlight a number of observations about proper-
ties, dependencies and tradeoffs among these principles and propose a formal model 
where such elements can be examined. 

2 Definitions and metrics 

Functional modularity is the structural localization of function.  
 
In order to measure functional modularity, one must have a quantitative definition of 
function and structure. It is then possible to take an arbitrary chunk of a system and 
measure the dependency of the system function on elements of that chunk. The more 
that the dependency itself depends on elements outside the chunk, the less the func-
tion of that chunk is localized, and hence the less modular it is. If we represent de-
pendencies as second derivatives of function with respect to pairs of parameters (i.e. 
the Hessian matrix of the fitness), then modules will be collections of parameters that 
can be arranged with lighter off-diagonal elements [9]. 
 
Structural regularity is the compressibility of the description of the structure.  
 
The more the structure contains repetitions, near-repetitions, symmetries, smoothness, 
self similarities, etc, the shorter its description length will be. The amount of regular-
ity can thus be quantified as the inverse of the description length or of its Kolmo-
gorov complexity. 
 
Hierarchy of a system is the recursive composition of structure and/or function. 
 
The amount of hierarchy can be quantified given the connectivity of functional or 
structural elements (e.g. as a connectivity graph). The more the distribution of con-
nectivities path lengths among pairs of elements approximates a power law distribu-
tion, the more hierarchical the system is. 

3 Observed Properties 

The following sections describe some observations on the interplay between modular-
ity, regularity and hierarchy. 



3.1 Modularity and regularity are independent principles 

Principles of modularity and regularity are often confused in the literature through 
the notion of reuse. Indeed, modularity has several advantages, one of which is that 
modules can be used as building blocks at higher levels, and therefore can be re-
peated. Nonetheless, it is easy to imagine a system that is composed of modules, 
where each module appears only once. For example, opening the hood of a car re-
veals a system composed of a single engine, a single carburetor, and a single trans-
mission. Each of these units appears only once (i.e., is not reused anywhere else in the 
system), but can be considered a module as its function is localized. Its evolutionary 
advantage is that it can be adapted more independently, with less impact of the adap-
tation on the context. A carburetor may be swapped to a newer technology, without 
affecting the rest of the engine system. 

Similarly, there are instances of regularity without modularity: The smoothness of 
the hood of the car, for example, reduces the information content of the structure but 
does not involve the reuse of a particular module. 

Though these principles are independent, they often appear in tandem and hence 
the confusion: we tend to speak of useful modules being reused as building blocks, 
and indeed recurrence of a pattern may be an indication of its functional modularity, 
though not a proof of it. 

3.2 Tradeoffs between modularity and regularity 

An inherent tradeoff exists between modularity and regularity through the notion 
of coupling. Modularity by definition reduces coupling, as it involves the localization 
of function. But regularity increases coupling as it reduces information content. For 
example, if a module is reused in two different contexts, then the information content 
of the system has reduced (the module needs to be described only once and then re-
peated), but any change to the module will have an effect on both places. Software 
engineers are well aware of this tradeoff: As a function is encapsulated and called 
from an increasing number of different contexts in a program, so does modifying it 
become increasingly difficult because it is entangled in so many different functions.  

The tradeoff between modularity and reuse is also observed in engineering as the 
tradeoff between modularity and optimality. Modularity often comes at the expense 
of optimal performance. Systems that are less modular, i.e. more integrated, can be 
more efficient in their performance as information, energy and materials can be 
passed directly within the system, at the expense of increased coupling. Software 
engineers are familiar with ‘long jumps’ and ‘global variables’ that have this effect; 
similarly, mechanical products will often achieve optimality of performance or cost 
through integration of parts into monolithic components wherever possible. The in-
creased performance gained by reduction of modularity is often justified in the short 
term, whereas increased modularity is often justified in longer time scales where 
adaptation becomes a dominant consideration. 



3.3 Properties of the problem or the solution? 

It is not clear whether modularity, regularity and hierarchy are properties of the sys-
tem being evolved (i.e. the ‘solution’), or of the target fitness specification (i.e. the 
‘problem’). It may well be that there is a duality between these viewpoints. The evo-
lutionary computation literature contains several instances of test functions that are 
themselves modular (separable, e.g. Royal Roads [5]), hierarchical (e.g. Hierarchical-
IFF [8]), and regular (e.g. one-max). It is not surprising then to see corresponding 
algorithms that are able to exploit these properties and find the solutions to these 
problems. 

Engineers often go to great lengths to describe design goals in a way that is solu-
tion-neutral, i.e., that describes target functionality while placing the least constraints 
on the solution. Indeed engineering design is notorious for having multiple – even 
many – solutions to any given problem, without any solution being clearly superior. 
The fact that modular, regular and hierarchical solutions are more attractive is be-
cause – we conjecture – the design process itself tends to prefer those for reasons of 
scalability. It is therefore plausible that in search of scalable algorithms for synthesiz-
ing solutions bottom up, we should avoid test functions that have an inherent modular 
or hierarchical reward, and have these solution properties emerge from the search 
process itself. 

4 An Abstract Model 

As a matter of research methodology it is convenient to have an abstract and simple 
domain where the principles in question can be examined quickly, accurately and 
transparently. We would like a problem domain in which 

 Problems and solutions can be open ended: be of unbounded complexity 
 There is a clear interpretation for both structure and function 
 Problems and solutions can be synthesized from basic building blocks 
 Problems can be specified in a solution-neutral way 
 Modularity, regularity, and hierarchy can exist and can be quantified 
 Problems have multiple, valid solutions that exhibit varying degrees of modu-

larity, regularity and hierarchy 
 

One such suitable domain is the geometrical tiling problem [3]. Tiling problems are 
an area of extensive mathematical interest and have been studied extensively over 
centuries. They are subject to elaborate mathematical analysis and proofs, and yet are 
simple and intuitive to understand as puzzles. The tessellating-tile problem has been 
used as a test function for evolution once before [2], but here it is proposed that the 
tiling problem itself has properties amenable to analysis of modularity, regularity, and 
hierarchy. 

Tiling problems can be specified at any dimension, and with any number of primi-
tive tiles, but for the purpose of illustration let us consider the case of a two-
dimensional tiling problem using a single tile.  
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Fig. 1. Tiling-problem model of synthesis. (a) A primitive tile, (b) a problem: An area to be 
tiled, and (c) a solution: tiling of the area. Some problems cannot be solved, and some can be 
solved in many different ways, some more and some less modular, regular, hierarchical. 

Consider the example shown in Figure 1. A single L-shaped tile constitutes the 
building block of this domain. It can appear in any of four orientations. The ‘prob-
lem’ is to tile a given area completely, such as the area shown in Figure 1b. The ac-
tual tessellation of the area is the ‘solution’ to the problem, as shown for some of the 
problems in Figure 1c. 

In tiling problems, the arrangement of tiles is the structure of the solution, and the 
geometry of the covered area is the function of the solution. Thus an area can specify 
a target function (a problem) without describing the structure of the solution. Some 
problems may be simple, some may be difficult, and some may be impossible. For 
example, the two untiled problems in Figure 1c are impossible: The right grid is im-
possible to tile because it has an area that is not an integer multiple of the tile area, 
and so it is ‘outside the scope of the search space’. The 3x5 grid is an integer multiple 
of the tile area, but still is not tillable. It is not always clear what makes a given area 
easy or difficult to solve. 

Multiple solutions with different structure but identical function may exist. For ex-
ample, Figure 2 shows a 4x6 function that is solved using two different structures. 
Clearly, the left solution is more regular than the solution on the right. The solution 
on the left is probably easier to come by if the highlighted set of building blocks is 
discovered early and encapsulated as module.  

Some tiling problems have only non-periodic solutions, and are similar to a needle-
in-a-haystack. Other tiling problems, such as the one shown in Figure 2b have a self-
similar solution. The highlighted set of building blocks in Figure 2b is geometrically 
similar to its basic building block. It can be shown that in contrast with periodic til-
ing, in self-similar tilling it is not possible to determine the next tile to place using 
only local information. 

 



 

 

 

 
(a) (b) 

Fig. 2. Tiling-problems: (a) two different structures achieve same function, but one is less 
regular and modular. (b) A self-similar hierarchical tiling. Highlighted elements constitute a 
potential module. 

5 Conclusions 

This paper proposes some quantitative definitions for the concepts of modularity, 
regularity and hierarchy. A number of observations about the properties, dependen-
cies and tradeoffs among these principles have been discussed: Modularity and regu-
larity are distinct, independent properties that embody a tradeoff due to coupling. 
They are desired, though not necessary properties of the solution, not the problem. 
Geometrical tiling problems are one domain where such issues can be studied. 
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