
Open-Ended Evolution With or Without A Priori
Knowledge Included?

Jim Torresen

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern
N-0316 Oslo, Norway

jimtoer@ifi.uio.no
http://www.ifi.uio.no/∼jimtoer

Abstract. Several approaches exist to improve the quality of evolution. In this
paper, a priori knowledge applied to open-ended evolution will be discussed. It
will be focused at assessing the positives and negatives related toextendingthe
complexity of evolved systems andlimiting the evolutionary exploration, respec-
tively. Relevant knowledge relates to functional modularity, structural regularity
as well as hierarchy.

1 Introduction

Open-ended evolution represents systems where the evolution is continuous and not
stopped by a fitness criteria. There is an expectation that evolvable systems would
become crucial in the future development of computer systems as traditional design
schemes are reaching their limits. Increasing size and complexity of electronic devices
and systems have during the recent years led to a demand for new design schemes
and tools. The new technology could be appropriate for systems implementing com-
plex real-world applications within image and signal processing. Much research is now
conducted on such applications to improve the performance as well as the speed of
processing using traditional algorithms.

Evolving a system is promising but there is still a long way togo before it is a real
alternative to traditional design schemes [6]. By searching a larger design search space,
evolution may find solutions for a task, unsolvable, or more optimal than those found
using traditional design methods. However, this is also a problems since the search
space easily becomes too large [2, 12]. Starting from scratch when evolving is not very
biological motivated. Human beings try to apply all their earlier knowledge and skills
when trying to solve a problem. If we are not able to solve it byourselves, we search
knowledge either in books/web etc. or by getting help from computer tools or other
people, who have more knowledge or skills, to solve the problem. In evolution, there has
been a tendency that introducing human expert knowledge would limit the exploration
of the large search space. Thus, risking to loose interesting solutions that humans would
not in their wildest dreams have thought of. This is true, butso far few such revo-
lutionary systems have occurred.



Therefore, we find it appropriate to think it the other way around. If we tell the
system what we know already, the evolution can go on from there to explore new and
revolutionary systems. This is motivated by “inventing thewheel”: If you know about
the wheel, there is a much higher chance that you could inventa vehicle of some sort
than if you did not.

Incremental evolution for evolvable hardware (EHW) was first introduced by Tor-
resen in [4]. This is an approach that uses divide-and-conquer of the application. It has
been shown that dividing the application is a very promisingapproach. It was proposed
for EHW as a way to incrementally evolve a hardware system. The scheme is called
increased complexity evolutionsince the system is evolved by evolving smaller sub-
systems. Increased building block complexity is also a partof this approach, where the
building blocks are becoming more complex as the system complexity increases.

Experiments show that the number of generations required for evolution by the new
method can be substantially reduced compared to evolving a system directly in one
operation. This has been shown both for a character recognition problem [5], a road
image recognition problem [7] and prosthetic hand control [8]. In some experiments,
better classification results than for artificial neural network were obtained. In addition,
the hardware circuit was much smaller than what would have been required for running
a neural network. Further, circuits for larger problems – than those evolvable by other
schemes, have been evolved [11].

Through the research, the architecture as well as the incremental evolutionary algo-
rithm have been extended and improved. It has been shown thateven though the total
number of generations is less, the performance of the evolved circuit is substantially
better with the proposed scheme [8]. Thus, one achieves to solve complex problems
where no good solution can be found by a single run evolution.Moreover, different
ways of conducting the evolution have been proposed and tested. This includes evolv-
ing the best combination of circuits among a set of alternative circuits [10] and dynamic
fitness functions in evolvable hardware [9]. Thus, we believe this approach is a good
foundation for introducingmorehumanknowledgeinto the design. That is, more man-
ual design knowledge would be applied in the evolution. Thisis the topic to be further
presented in this paper. By including morea priori knowledge, we should be able to
evolve more complex and thus, more useful systems than the systems that have been
evolvable so far.

2 A priori Knowledge

This section gives an overview of different aspects of design knowledge [3]. That is, we
list those methods which a designer would apply to design a system. A priori hardware
design knowledge is applied in a set of different ways:

– Design specification.Most traditional design is according to a predefined detailed
design specificationof the system. In evolution of digital circuits, normally only
input-output vectors are specified. Specification of e.g. timing is rare even though
this is often important in traditional design.

– Partitioning the design task.This regards how to best partition a given problem to
solve. This design scheme is also called a hierarchical design scheme. For normal



design, it will be a mixture of top-down and bottom-up design. A designer would
normally start with preparing a top-level block description and continue by imple-
menting one sub-circuit of the system at a time. He would usually know what is a
reasonable partition of the design-task whereas this wouldnormally not be avail-
able for a fully automatic design of a system. However, this would be quite similar
to design based on increased complexity evolution presented in the introduction.
We start with a complete data set that is partitioned (top-down). This is followed by
a bottom-up evolution of the system. Thus, a priory knowledge is put into the top-
down design only. Another aspect – at lower level, is to emphasize on the parts (or
function) of the system not working. That is, when evolving asystem, the fitness
function should be adaptable to change its behavior according what is still left to
be solved. This would have to be done in such a way that the parts working do not
stop working.

– Reuse.Designing a large circuit would be almost impossible if the designer had
to design each sub-circuit from scratch every time it is used[1]. Predesigned units
for evolution could be simple Intellectual Property (IPs) cores, custom functional
blocks or design library objects. Further, an interesting aspect is to re-useevolved
structures several times in a system. This could either be about extracting promising
parts of a chromosome [1] or apply evolved units in later evolution [4].

– Data buses.Almost no digital design is conducted without the use of databuses,
while many systems are evolved with single bit wires only. Toincrease the com-
plexity of a design, data buses would probably have to be included. Still, single
bit lines will be needed. Thus, an evolvable architecture would have to consist of
both busses and bit lines. This issue is also related to reusewith applying func-
tional blocks in the evolution. A scheme for evolution with reuse and data buses is
presented in [3].

– Design optimization knowledge.There exists a set of computer based optimiza-
tion tools that could be applied in hardware design. That is,the designer specify a
more or less abstract description of the system which the tool synthesize an opti-
mized design for. Not much work has been published on combining evolution and
optimization tools.

– Prototyping. This is very closely related to evolution. It consists of building various
designs – with alternative architectures, to compare what is best. This is inherently
what evolution consists of as well.

– Hardware/software co-design.Normally, hardware is developed in close cooper-
ation with software being developed. What to implement in hardware and what to
code as software are often an open question in the initial design phase. In evolution,
designs are mainly either for softwareor hardware.

Not all of these issues are straightforward to combine with evolution. The one most
explored (that probably will be more explored in the future)seems to be partitioning
of the design task. Another one that probably could be usefulis reuse. This could be at
several levels. One of the problems with fixed length geneticalgorithms is that a build-
ing block found in one part of the chromosome could not be reused in another part [1].
Further, standard crossover (with random crossover point)is not structure preserving.
There have been introduced algorithms trying to overcome these problems. However,



we feel that reuse should be further investigated when trying to build complex struc-
tures and systems. We have undertaken experiments involving both reuse as well as
data buses. In the future, the goal is tocombineas much a priori knowledge as possible
together to make advanced open-ended evolution.

3 Conclusions

This paper has introduced various aspects of how a priori knowledge can be applied
to open-ended evolution. It has been focused at assessing the positives and negatives
related toextendingthe complexity of evolved systems andlimiting the evolutionary
exploration, respectively.

Acknowledgments

The work presented in this paper is a part of the projectBiological-Inspired Design of
Systems for Complex Real-World Applications(project number 160308/V30) funded by
the The Research Council of Norway.

References

1. J.R. Koza et al. The importance of reuse and development inevolvable hardware. In J. Lohn
et al., editor,Proc. of the 2003 NASA/DoD Conference on Evolvable Hardware, pages 33–42.
IEEE, 2003.

2. W-P. Lee, J. Hallam, and H.H. Lund. Learning complex robotbehaviours by evolutionary
computing with task decomposition. In A. Birk and J. Demiris, editors,Learning Robots:
Proc. of 6th European Workshop, EWLR-6 Brighton, volume 1545 ofLecture Notes in Arti-
ficial Intelligence, pages 155–172. Springer-Verlag, 1997.

3. J. Torresen. Exploring knowledge schemes for efficient evolution of hardware. InProc. of
the 2004 NASA/DoD Conference on Evolvable Hardware.

4. J. Torresen. A divide-and-conquer approach to evolvablehardware. In M. Sipper et al.,
editors,Evolvable Systems: From Biology to Hardware. Second International Conference,
ICES 98, volume 1478 ofLecture Notes in Computer Science, pages 57–65. Springer-Verlag,
1998.

5. J. Torresen. Increased complexity evolution applied to evolvable hardware. In Dagli et al.,
editors,Smart Engineering System Design: Neural Networks, Fuzzy Logic , Evolutionary
Programming, Data Mining, and Complex Systems, Proc. of ANNIE’99, pages 429–436.
ASME Press, November 1999.

6. J. Torresen. Possibilities and limitations of applying evolvable hardware to real-world ap-
plication. In R.W. Hartenstein et al., editors,Field-Programmable Logic and Applications:
10th International Conference on Field Programmable Logicand Applications (FPL-2000),
volume 1896 ofLecture Notes in Computer Science, pages 230–239. Springer-Verlag, 2000.

7. J. Torresen. Scalable evolvable hardware applied to roadimage recognition. In J. Lohn et al.,
editor,Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 245–252. IEEE
Computer Society, Silicon Valley, USA, July 2000.



8. J. Torresen. Two-step incremental evolution of a digitallogic gate based prosthetic hand
controller. InEvolvable Systems: From Biology to Hardware. Fourth International Confer-
ence, (ICES’01), volume 2210 ofLecture Notes in Computer Science, pages 1–13. Springer-
Verlag, 2001.

9. J. Torresen. A dynamic fitness function applied to improvethe generalisation when evolv-
ing a signal processing hardware architecture. InApplications of Evolutionary Computing:
EvoWorkshops 2002, volume 2279 ofLecture Notes in Computer Science, pages 267–279.
Springer-Verlag, 2002.

10. J. Torresen. Evolving both hardware subsystems and the selection of variants of such into an
assembled system. InProc. of the 16th European Simulation Multiconference (ESM2002),
pages 451–457. SCS Europe, June 2002.

11. J. Torresen. Evolving multiplier circuits by training set and training vector partitioning. In
P. Hadddow A. Tyrrel and J. Torresen, editors,Evolvable Systems: From Biology to Hard-
ware. Fifth International Conference, ICES’03, volume 2606 ofLecture Notes in Computer
Science, pages 228–237. Springer-Verlag, 2003.

12. X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. In T. Higuchi
et al., editors,Evolvable Systems: From Biology to Hardware. First International Confer-
ence, ICES 96, volume 1259 ofLecture Notes in Computer Science, pages 55–78. Springer-
Verlag, 1997.


