
Evolutionary Algorithm Approaches for Detecting
Computer Network Intrusion

(Extended Abstract)

Kevin P. Anchor, Paul D. Williams, Gregg H. Gunsch, and Gary B. Lamont

Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology, Wright-Patterson AFB, (Dayton)OH 45433

1 Introduction

Attacks against computer networks are becoming more sophisticated, with adversaries
using new attacks or modifying existing attacks. With increased global interconnec-
tivity, reliance on e-commerce, network services, and Internet communication, com-
puter security has become a necessity. Organizations must protect their systems from
intrusion and computer-virus attacks. Such protection must detect anomalous patterns
by exploiting known signatures while monitoring normal computer programs and net-
work usage for abnormalities. Current antivirus and network intrusion detection so-
lutions can become overwhelmed by the burden of capturing and classifying new vi-
ral stains and intrusion patterns. To overcome this problem, a self-adaptive distributed
agent-based defense immune system based on biological strategies is developed within
a hierarchical layered architecture using genetic algorithms. A prototype interactive
system is designed, implemented in Java, and tested. The results validate the use of a
distributed-agent biological- system approach toward the computer-security problems
of virus elimination and intrusion detection. Also, a intrusion detection variation us-
ing evolutionary programming is introduced. This generic research is sponsored by the
Defensive Information Warfare Branch, Information Directorate, Air Force Research
Laboratory, Rome, NY.

In its purest form, intrusion detection (ID) is the process of identifying the presence
of unauthorized access to an enterprises computing resources. In practice, ID is broader
and includes the detection of: 1) misuse/abuse; unauthorized activities by authorized
users (e.g., accessing pornography, theft of information, using corporate resources for
personal gain); 2) reconnaissance; determination of systems and services that may be
exploitable; 3) penetration; attempt of unauthorized activity to gain access to computing
resources; 4) penetration; successful access to computing resources by unauthorized
users; 5) trojanization; presence and activity of unauthorized processes; 6) denial of
service; an attack that obstructs legitimate access to computing resources.

2 Computer Defense Immune System (CDIS)

The major objective of our prototype system is to detect the existence of nonself patterns
within a potentially larger set of existing self patterns. This is modelled as a formal set



2

theory notation. This detection methodology can generate two types of errors: Type I, or
false-positive errors, and Type II, or false-negative errors which need to be continually
evaluated.

The antibodies for detecting file infections are simple byte strings. These patterns
are compared to the bytes within the computer file system. Antibodies for network
intrusion are longer and segregated because they utilize the IP packet structures as a
template. There are many types of protocols flowing on our networks. For the purposes
of this system, only the three most common protocols are monitored: TCP, UDP, and
ICMP. All three of these protocols are layered on top of the IP. The generated antibodies,
are deployed and compared to possible malicious attacks by a matching-rule function .
It is this function that provides the core functionality of the detection process.

The many pattern-matching functions come in two varieties: distance measures,
which express how different two sequences are, and similarity functions, which measure
how alike they are. Intuitively, objects that are close together in the feature space must
be similar, while those that are farther apart are dissimilar. A geometric modelling of
this space defines self and nonself regions that are represented as hyper-rectangles.
Those that are similar to a nonself pattern within a certain threshold can be classified
as nonself. The matching rules investigated in this study utilize statistical, physical, and
binary measures of distance or similarity. One statistically based similarity measure is
the correlation factor or correlation coefficient.

The overall goal is to create an agent-based CDIS. This was accomplished suc-
cessfully and two layers of defense have been implemented. Effective system and local
models of immune system operation were constructed that realize improvements over
current virus antibodies and packet-based ID solutions. Based on these models, the mul-
tilayered implementation provides an effective solution for the detection, identification,
and elimination of computer viruses and network attacks. The prototype was used to
gain insight into the efficiency and effectiveness of an agent-based AIS. The successful
use of agents and the integration of pattern recognition principles are valuable contri-
butions to the immunological computation community. This research was conducted by
integrating many different domains including immunology, immunological computa-
tion, malicious code, multiagent systems, and parallel and distributed computation.

The system design integrates the power, flexibility, adaption, and capabilities of the
BIS into an architecture realizable in the information system domain. Based on the
models, the prototype implementation provides an effective solution for the detection,
identification, and elimination of malicious code and bad packets. The level of effective-
ness is tunable through the proper selection of the number of antibodies, the antibody
length, and the detection threshold. These must be selected based on the contents of
known self and with an understanding of their ramifications on negative-selection time,
scan time, and nonself space coverage. The use of the agent paradigm facilitates the
construction of an AIS because of the performance limitations of a monolithic imple-
mentation and the biological basis for the architecture can be viewed as a system of
collaborating agents. While using agents improves the understanding of the system de-
sign and the mapping to the biological domain, the deployment of the agents must be
done by considering the principles of parallel software design in order to improve per-
formance. For an agent-based Similarly, the addition of a new application may require



3

recensoring of the antibodies. Care must be taken to ensure the new software is not
already infected. An alternative is to scan with the current antibodies: a positive de-
tection could indicate the presence of a virus or recognition that this self has not been
encountered before by the system. The decision on whether this is a false-positive error
rests with the system administrator, and is accommodated by the system through the
costimulation function of the antibody lifecycle. Additional required features include
the assurance of detection and elimination, features essential to system effectiveness.

Developing a CDIS involves reducing communication and placing detection agents
near their I/O sources. This CDIS design is scaleable in terms of scope and coverage
through the simple addition of new agent types and participating system nodes. The
prototype implements file system and IP packet detection, but a more complete multi-
layered defense could be realized by adding agent types for monitoring memory, email,
boot sectors, complex intrusions, and more. Additionally, because the JSDT provides
lookup services, agents can join or leave the system at anytime. At its current level
of maturity, the prototype does not provide for a practical implementation nor unobtru-
sive operation. The Java implementation provides a good prototype environment, but its
speed limits the system usability. The negative-selection and scanning times measured
in years are unacceptable for a practical system. An implementation improvement to in-
crease the system speed is paramount to future system viability. The agent-based CDIS
offers detection and management capabilities that are absent from current deployed
solutions. The abilities of these facets working together promises an enterprise-wide
computer-security solution. At the heart of CDIS is the ability to proactively generate
antibodies capable of detecting nonself data; the research presented herein investigates
a method of generating antibodies for the computer-virus and network intrusion prob-
lem domains. The preliminary results, though limited, indicate that this approach holds
promise and deserves continuing investigation.

3 Evolutionary Programming and MOEAs

This evolutionary programming research uses two types of multiobjective approaches,
lexicographic and Pareto-based, in a multiobjective evolutionary programming algo-
rithm to develop a new method for detecting such attacks. The approach evolves fi-
nite state transducers to detect attacks; this approach may allow the system to detect
attacks with features similar to known attacks. Initial testing shows the algorithm per-
forms satisfactorily in generating finite state transducers cable of detecting simulated
attacks. 1 Introduction Attacks, or intrusions, against computer systems and networks
have become commonplace events. Many intrusion detection systems and other tools
are available to help counter the threat of these attacks; however, none of these tools is
perfect, and attackers are continually trying to evade detection. This paper presents re-
search into detecting attacks using an evolutionary algorithm, specifically evolutionary
programming. The algorithm uses multiple objectives to learn to recognize computer
attacks, thereby treating the problem of intrusion detection as a multiobjective search
problem.

As indicted, an intrusion detection system (IDS) helps detect and identify an attack,
which is defined as any inappropriate, incorrect, or anomalous activity, on a computer



4

system or network. The EP research system is a hybrid of two forms, as it uses knowl-
edge about an attack and information based on a partial model of known good network
traffic, or self, to evolve finite state transducers (FSTs) that can detect the attack and
other similar or related attacks.

The goal of this investigation is to develop an innovative method for detecting new
or stealthy attacks on the network. One type of stealthy attack, called a low and slow
attack, is a probe or intrusion attempt that is stealthy in that it takes place over a long pe-
riod of time, covers a large number of targets, or originates from a number of different,
coordinated sources. Because these attacks are designed to be stealthy, they are hard to
detect using current intrusion detection systems. Current IDSs can be tuned to detect
some stealthy attacks, but the resulting false alarm, or false detection, rate usually in-
creases to an unacceptable level. Thus, new methods for detecting these types of attacks
are needed. New attacks may be modifications of existing attacks, so an approach for
an ID system is to use knowledge of existing attacks to develop generalized detectors.
These generalized detectors might have the ability to detect unknown attacks that are
based on existing attacks or that are similar to existing attacks. Developing such gen-
eralized detectors is one aspect of the Intrusion Detection (ID) problem. This approach
appears to map to the Time Series Prediction problem, in which a sequence of symbols
is input and the correct output symbol must be predicted based on the input symbols.
In this mapping, the input symbols are a sequence of network packets, and the output
symbols represent whether the sequence is assumed to be an attack or not.

Although the packet content or payload is an important part of each packet, it is not
used in this research for two reasons. The main reason is that the size of the search space
increases immensely if this field is used; the second reason is that existing signature-
based detectors can be used to examine the content field in an efficient manner. Network
traffic consists of a sequence of packets, and an attack is also a sequence of packets. The
packet features and relationships between features of multiple packets can be used to
determine if a particular sequence of packets is an attack or not. The previous discus-
sion motivates a new method for detecting attacks. This method is to use a finite state
transducer (FST) to examine the relationships between packets coming across the net-
work to determine if any particular sequence contains an attack. This type of detection
provides the ability to define patterns of known attacks and variations or modifications
of known attacks. This method might also detect new attacks that have similar packet
relationships as do existing attacks. In addition, this method allows for distinguishing
between attack sequences and non-attack sequences because the FST can be built to ac-
cept an attack sequence while rejecting a non-attack sequence. The genotype, or internal
representation, of a detector in this scheme is an FST, which represents some regular
language or pattern. The phenotype, or outward expression, of the detector is a Detect
or Not Detect signal, which corresponds to the FST rejecting or accepting the word,
which represents the network packets that may constitute an attack. The fitness value of
a particular FST is dependent on two factors: whether it detects an attack correctly and
whether it does not detect a non-attack string as an attack. Because there are multiple
factors involved, a multiobjective approach to solving this problem seems a natural fit.

The original EP algorithm for this problem used only the single objective for de-
tecting a given attack string, while the second version added the ability to use a single



5

self-string along with the attack string in a lexicographic multiobjective fashion. The
current implementation provides the ability to use an arbitrary number of self-strings
along with the attack string in either a lexicographic or pareto dominance multiobjective
optimization.

The testing performed on the algorithm is designed to determine whether the two
multiobjective EP algorithms are capable of finding solutions, or good detectors, over
a range of input attack strings. In this case, a good detector is one which detects the
input string developed from a sequence of attack packets and generates a Detect signal.
Thus, the outputs of the algorithms are the time required to find a good solution and the
number of generations needed to find that solution. The algorithms are tested using five
representative input strings, or benchmark attack packets. The false alarm rate plays
a key factor in determining the usefulness of an intrusion detection system, so it is
important to test. Our conjecture is that the quicker execution time of the appropriate
tests leads to a larger false alarm rate, or lower solution quality; solution quality.

This research presents an initial step in detecting computer network intrusions through
the use of two different multiobjective evolutionary programming algorithms. The test-
ing shows that the evolutionary programming technique generates finite state trans-
ducers, or Mealy-type finite state machines, capable of matching or detecting an input
attack string, for the simulated attacks tested. The lexicographic approach allows the
use of the attack and self strings while performing significantly faster than the pareto
dominance approach; however, further testing is required.

4 Conclusions

The use of EPs has shown to beneficial in finding network intrusions across a lim-
ited set of benchmarks. Also, the continuing development of an network intrusion soft-
ware system (CDIS) has performed well over a series of tests. Future work includes
more elaborate testing, analysis and evaluation. It should be mention that we are also
studying the use of wavelet-based steganalysis using a computational immune system
approach. And, we are using an artificial immune system techniques for identifying
chemical spectra.


