
Designing Evolvable Hardware for Military Systems
(Extended Abstract)

Gary Lamont, Yong Kim, Rusty Baldwin, Guna Seetharanan
Department of Electrical And Computer Engineering

Air Force Institute of Technology

Dan Burns and Robert Ewing
Information Directorate

Air Force Research Laboratory

1 Introduction

Evolutionary Algorithms (EAs) and in particular Genetic
Algorithms (GAs) are stochastic optimization heuristics in
which searches in solution space are carried out by imitating
the population genetics stated in Darwin’s theory of evolu-
tion; ”survival of the fittest.” Selection, crossover and muta-
tion operators, derived directly from natural evolution mech-
anisms are applied to a population of solutions, thus favor-
ing the birth and survival of the best solutions. One needs to
create an initial population, to define an objective function to
measure the fitness of each solution. and to design the genetic
operators that produce a new population of solutions from a
previous one. By iteratively applying the genetic operators to
the current generation population. It is hoped that the fitness
of the best individuals in the population converges to at least
a local optima, if not the global optimum.

Thus, the evolvable nature of a genetic algorithm (GA)
provides a robust problem-solving method based on natu-
ral selection. Hardware’s speed advantage and its ability
to parallelize offer more efficient genetic algorithms compu-
tation(engines), possible meeting time-critical requirements.
Speedups of 1-3 orders of magnitude have been observed
when frequently used software routines were implemented
in hardware by way of reprogrammable field-programmable
gate arrays (FPGAs). Also, this research direction is part of
a larger meta-level effort revolving around the system-on-a-
chip concept. Reprogrammability is essential in a general-
purpose GA engine because certain GA modules require
changeability (e.g. the function to be optimized by the GA).
Thus a hardware-based GA known as evolvable hardware is
both feasible and desirable. Fully functional hardware-based
genetic algorithms are discussed as a proof-of-concept sys-
tem. They are generally designed using VHDL to allow for
easy scalability. In general, they are designed to act as a co-

processor with the CPU of a PC. The user programs the FP-
GAs which implement the function to be optimized. Other
GA parameters may also be specified by the user. Simulation
results and performance analysis are required in order to val-
idate each of the integrated designs. Various GA-FPGA pro-
totypes are described. In general, the advantage of hardware
implementations is that they are more efficiency as compared
to similar GA software implementations. Our current work
[2] reflects a comprehensive discussion of contemporary GA-
FPGA research and system-on-a-chip efforts along with an
extensive bibliography. The efforts of individuals indicated
in the following text are reflected in this bibliography.

1.1 Application

The major objective of this paper is to consider various
generic FPGA designs employing genetic algorithm types
that reflect upon various AF applications. In particular, those
appropriate applications are in the Air Force Research Lab-
oratory, the Information Directorate and the Sensors Direc-
torate. The following is a incomplete list of known GA-
FPGA activity:

• Reconfigurable Computing

- Robot/UAV motion planning & path correction

- Image processing and recognition

- Fault tolerant computing

• Homeland Defense and Security

- Internet monitoring & intruder detection

- Use of GA-FPGA for recognizing intrusions

- Chemical spectra analysis

• High Performance Time-Critical Algorithms

1



• Data and Video Processing

• Pattern classification and profiling

• Wavelet transformations and coefficients

• Target recognition and prediction

• DSP algorithms

• Nonlinear modeling

In designing specific GAs, appropriate representations are
studied and efficient operators (crossover, mutation, selec-
tion) developed. Along with designing GA-FPGA implemen-
tations, our intent is to include GAs in the design process it-
self in order to move towards ”optimal” GA-FPGA designs.

2 Field-Programmable Devices

Prompted by the development of new types of sophis-
ticated Field-Programmable Devices (FPDs), such as Field
Programmable Gate Arrays (FPGAs), the process of design-
ing digital hardware has changed dramatically over the past
few years. Unlike previous generations of technology, in
which board-level designs included large numbers of SSI
chips containing basic gates, virtually every digital design
produced today consists mostly of high-density devices. This
applies not only to custom devices like processors and mem-
ory, but also for logic circuits such as state machine con-
trollers, counters, registers, and decoders. When such cir-
cuits are destined for high-volume systems they have been
integrated into high-density gate arrays. However, gate array
Nonrecurring-Engineering (NRE) costs often are too expen-
sive and gate arrays take too long to manufacture to be viable
for prototyping or other low-volume scenarios. For these rea-
sons, most prototypes, and also many production designs are
now built using FPGAs. The most compelling advantages
of FPGAs are instant manufacturing turnaround, low start-up
costs, low financial risk, easy of design changes, and perfor-
mance near equal to that of Application Specific Integrated
Circuits (ASICs).

The market for FPDs has grown dramatically over the past
decade to the point where there is now a wide assortment of
devices to choose from. A designer today faces a daunting
task to research the different types of chips, understand what
they can best be used for, choose a particular manufacturer’s
product, learn the intricacies of vendor-specific software and
then design the hardware. Confusion for designers is exacer-
bated by not only the sheer number of FPDs available, but
also by the complexity of the more sophisticated devices.
Moreover, there are complex embedded engineering prob-
lems associated with input/output, memory overhead, spe-
cialized device interfacing for the variety of applications.

Currently there are many different types of FPDs, such
as Programmable Logic Array, Programmable Array Logic,

Complex Programmable Logic Device), Field Programmable
Gate Array, and High Capacity PLDs. Among all these pro-
grammable devices, FPGA is the mostly commonly used and
considered for implementing GAs for its versitility and high
performance.

There are two basic categories of FPGAs on the market
today, SRAM-based FPGAs and antifuse-based FPGAs. In
the first category, Xilinx and Altera are the leading manufac-
turers in terms of number of users. For antifuse-based prod-
ucts, Actel, Quicklogic, Cypress, and Xilinx offer competing
products. FPGAs are produced by many vendors, but cur-
rent state-of-the-art FPGAs are produced by Altera and Xil-
inx. The current flagship FPGAs from Xilinx and Altera were
introduced on first half of 2003 and both features an 1.5v
system, 130nm copper wiring, 100k logic cells, and 10Mb
RAM. The basic structure of xilinx FPGAs is array-based,
meaning that each chip comprises a two-dimensional array
of logic blocks that can be interconnected via horizontal and
vertical routing channels. Altera’s FLEX 8000 series consists
of a three-level hierarchy.

3 GA-FPGA Research

Various researchers have and are continuing to develop
GA inspired FPGA implementations [1]. Some of these are
discussed here. The intent is to map various GA algorith-
mic elements to FPGA structures and implement in various
architectures. The various GA types include the simple GA,
the compact GA, and the extended compact GA and possi-
bly a multi-objective GA. Also, single objective and multi-
objective applications are addressed. It is desired that hierar-
chical testing of such systems compare software implemen-
tations with various FPGA designs and implementations. Of
course since GAs are stochastic techniques, realtime opera-
tion depends upon the application and desired results.

3.1 GA-FPGA Design

The desire is to create an implementable VHDL represen-
tation of a general genetic algorithm similar to that in Figure
2 which would allow the user to choose several GA param-
eters. The user-controlled parameters are the initial popula-
tion’s size and its members, the number of generations, the
initial seed for the pseudorandom number generator, and the
mutation and crossover probabilities. Values for these param-
eters would be selected by the user in software which would
send the appropriate signals to initialize and start a hardware
GA-FPGA.

3.1.1 The Modules and Their Functions

The modules in Figure 1 are patterned after the GA operators
defined in Goldberg’s simple genetic algorithm (SGA). The

2



Figure 1. Box-level schematic of the overall
HGA system.

Hardware GA (HGA) of S. Scott (1998) has modules that op-
erate concurrently with each other and together form a coarse-
grained pipeline. All modules are written in VHDL and are
independent of the operating environment and implementa-
tion technology (e.g. Xilinx FPGAs or fabricated chips) ex-
cept for the memory interface module. The functionality of
this module varies according to the physical memory attached
to it and the desired interface between the HGA and its user.

The basic functionality of the HGA design of Figure 1 is
as follows: After all the parameters have been loaded into
the shared memory, the memory interface module (MIM) re-
ceives a “Go” signal from the front end. The MIM acts as
the main control unit of the HGA and is the HGA’s sole inter-
face to the outside world. The MIM notifies the fitness mod-
ule (FM), crossover/mutation module (CMM), the pseudoran-
dom number generator (RNG) and the population sequencer
(PS) that the HGA is to begin execution. Each of these mod-
ules requests its required parameters from the MIM, which
fetches them from the appropriate places of the shared mem-
ory. The population sequencer starts the pipeline by request-
ing population members from the MIM and passing them
along to the selection module. The task of the selection mod-
ule (SM) is to receive new members from the PS and judge
them until a pair of sufficiently fit members is found based
on a random number. At that time it passes the pair to the
crossover/mutation module (CMM), resets itself, and restarts
the selection process. When the crossover/mutation module
receives a selected pair of members from the SM, it decides
whether to perform crossover and mutation based on random
values sent from the RNG. When done, the new members are
sent to the fitness module for evaluation.

The fitness module evaluates the two new members from
the CMM and writes the new members to memory through
the MIM. The FM also maintains some records concerning
the current state of the HGA that are used by the SM to select
new members and by the FM to determine when the HGA is
finished. The above steps continue until the FM determines
that the current HGA run is finished. It then notifies the MIM
of completion which in turn shuts down the HGA modules

and sends the “Done” signal to the front end.
Since the modules of the HGA system are written entirely

in VHDL, specific aspects of the design such as I/O bus size,
storage facility size, etc. can be specified in terms of param-
eters which can be easily changed when the need arises. The
interesting parameters of the HGA are n, the maximum width
in bits of the population members, the maximum width in bits
of the fitness values, the maximum size of the population, and
the maximum number of generations. Many parameters are
specified at VHDL compile time and are different than the
HGA run time parameters.

Design Pipelining and Parallelization: The design in Fig-
ure 1 is a coarse-grained pipeline. This is evident by noting
that when a module completes a task, it immediately awaits
more input to repeat processing. Because of this pipelining,
GA operations do not have to be suspended while other GA
operations run, which happens in a sequential software im-
plementation. Thus a significant speedup over software is re-
alized. Parallelization of HGA modules is also possible.

3.1.2 VHDL Implementation

A genetic algorithm is usually written in VHDL and in-
tended for parallel FPGA hardware implementation. Some
contemporary developers include S. Scott(1998), C. Apornte-
wan (2001), P. Martin (2002). Due to pipelining, paralleliza-
tion, and no function call overhead, a hardware GA yields
a significant speedup over a software GA, which can be es-
pecially useful when the GA is used for real-time applica-
tions, e.g. disk scheduling and image registration. Since
a general-purpose GA requires that the fitness function be
easily changed, the hardware implementation must exploit
the reprogrammability of certain types of field-programmable
gate arrays (FPGAs), which are programmed via a bit pattern
stored in a static RAM and are thus somewhat easily reconfig-
ured. Also course-grained and fine-grained parallel pipelin-
ing need to be considered. Automated GA-FPGA detailed de-
sign and implementation synthesis is a desired development
environment. Other technologies might also be considered
such as use of systolic array libraries. In this section, we
briefly discuss some of work in hardware-based GAs.

The Compact GA-FPGA: J. I. Hadalgo (2001, 2002)
has investigated the design of a compact genetic algorithm
(cGA)to solve Multi-FPGA Partitioning problems. Nowa-
days Multi-FPGA systems are used for a great variety of ap-
plications such as dynamically re-configurable hardware ap-
plications, digital circuit emulation, and numerical compu-
tation. Both a sequential and a parallel version of a com-
pact genetic algorithm have been designed and implemented
on a cluster of workstations. The peculiarities of the cGA
permits one to save memory in order to address large Multi-
FPGA Partitioning problems, while the exploitation of par-
allelism allows to reduce execution times. The good results
achieved on several experiments conduced on different Multi-

3



FPGA Partitioning instances show that their solution is viable
to solve Multi-FPGA Partitioning problems.

The Extended Compact GA-FPGA: The eCGA by Kumara
Sasty (2000) is based on the idea that the choice of a good
probability distribution is equivalent to linkage learning. The
measure of a good distribution is quantified based on min-
imum description length (MDL) models. The key concept
behind MDL models is that given all things are equal, sim-
pler distributions are better than the complex ones. The MDL
restriction penalizes both inaccurate and complex models,
thereby leading to an optimal probability distribution. Thus,
MDL restriction reformulates the problem of finding a good
distribution as an optimization problem that minimizes both
the probability model as well as population representation.
The probability distribution used in ECGA is a class of prob-
ability models known as marginal product models (MPMs).
MPMs are formed as a product of marginal distributions on a
partition of the genes and are similar to those of compact ge-
netic algorithm and others. Unlike the models used in CGA,
MPMs can represent probability distributions for more than
one gene at a time. MPMs also facilitate a direct linkage map
with each partition separating tightly linked genes. Hence, in
the current study each gene partition would refer to a build-
ing block (BB). The identification of MPM using MDL and
the creation of a new population based on MPM need to be
explained. The identification of MPM in every generation is
formulated as a constrained optimization problem.

Multi-Objective Genetic Algorithms: A multi-objective
optimization problem (MOP) consists of decision variables,
two or more objective functions, and constraints. These three
components of an MOP are defined as follows: 1) decision
variables: variables whose numerical values are controlled
by the decision maker. 2) objective function: a function that
maps decision variable values to values reflecting a perfor-
mance level; optimizing this performance level entails either
maximization or minimization. 3) constraints: restrictions
imposed by the particular problem that must be satisfied to
render a solution acceptable. They describe dependencies
among decision variables and constants (or parameters) in-
volved in the problem. Our intent is to continue designing
and implementing MOGAs for selected Air Force problems
in a multiple parallel FPGA environment.

4 Generic Design Validation and Analysis

In previous sections, we presented several hardware-based
GAs for FPGAs. Each is a variation of the genetic algorithm
potentially implementable in hardware and each can provides
significant speed increase over the same algorithms executed
on a general-purpose computer.

The various GA-FPGAs should be simulated in order
to validate correct functionality and to analyze the per-
formance of the design. Various FPGA technologies are

and will be considered. Initially, pedagogical test prob-
lems are to be utilized with real-world higher-dimensional
examples to follow. The performance efficiency analy-
sis includes analyzing the pipelines to identify bottlenecks,
understanding the memory access processes and identify-
ing the I/O traffic, as well as others: Verification of Cor-
rect Functionality,Performance (efficiency and effectiveness)
Analysis,Design Improvements,Prototype System Compar-
isons with a Software-Based GA. Note that associated efforts
are also being supported by the NSF, DARPA, and the other
military services.

Reconfigurable hardware by itself, however, cannot pro-
vide the GA solution for all possible situations. One of the
major problems is that not all functions or VHDL codes are
synthesizable/implementable using FPGAs. When a highly
abstract function is required, it may be difficult or even im-
possible to realize such function using real hardware. This is
true for not only FPGA-based implementation, but also true
for more versatile ASIC-based implementation. The appro-
priate way to approach such problem is to consider and find a
system-wide solution.

A flexible, future-proof platform must contain supporting
hardware and interface as a whole system, such as multiple
microprocessors, ASICs and memories to support the core
FPGAs to maximize the effectiveness of genetic algorithm
based applications. In addition, a specific operating system
and matched hardware to reconfigure and monitor current
GA operation are essential to accommodate varying nature of
GAs. A new GA high-level language standard and library,
such as VHDL, are required and desirable to facilitate di-
rect implementation and to optimize GA applications. Most
importantly, a verifiable and/or fault-tolerant implementation
are required to validate, to monitor current process, and to
provide reliable service especially for various military appli-
cations.

References

[1] John C. Gallagher, Saranyan Vigraham, and Gregory
Kramer. A family of compact genetic algorithms for in-
strinsic evolvable hardware. IEEE Trans. on Evolution-
ary Computation, vol. 8, no. 2:pp. 111–126, April 2004.

[2] Gary Lamont, Yong Kim, Rusty Baldwin, and Guna
Seetharanan. Designing FPGA Based Genetic Algorithm
Systems. Report, Department of Electrical and Computer
Engineeing, Graduate School of Engineering and Man-
agement, Air Force Institute of Technology, March, 2004.

4


