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Abstract. To design practical black-box optimizers, one of the primary
goals is to minimize the amount of work that must be done by the user
while ensuring that a high-quality solution will be found quickly and
reliably. This paper shows that probabilistic model-building genetic al-
gorithms (PMBGAs) provide a great framework for designing practical
and powerful black-box optimizers. The paper focuses on two algorithms
that are among the most powerful PMBGAs: The Bayesian optimization
algorithm (BOA) and the hierarchical BOA (hBOA).

1 Introduction

Design of practical, robust, and scalable black-box optimization algorithms is
an important challenge. There are several design issues that are of primary im-
portance. First of all, the optimization algorithm should not require the user to
modify representation of candidate solutions much or to map the original op-
timization problem to yet another problem of different structure. Instead, the
optimization algorithm itself should be able to manipulate representation or map
the problem if necessary. Second, one should minimize the number of parameters
that the practitioner must set to ensure successful search for the optimum (e.g.
thresholds, step size, or the number of iterations). Third, it should be possible to
incorporate all tools available to further enhance efficiency of the optimizer (e.g.
heuristics, constraints, prior knowledge). Fourth, the optimizer should be robust
and it should be able to solve broad classes of problems, so that the practitioner
would not have to consider hundreds optimizers for each new optimization prob-
lem but he should get satisfactory results by choosing from a small number of
robust optimizers. The optimization method should be able to deal with multiple
objectives and noise in evaluation. Finally, scalability is important so that the
results on toy problems are relevant also for solving more challenging real-world
problems.

The purpose of this paper is to show that most of these important issues
can be approached with great success using probabilistic model-building genetic
algorithms (PMBGAs). The paper focuses on two of the most powerful PM-
BGAs: The Bayesian optimization algorithm (BOA) [1] and the hierarchical
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BOA (hBOA) [2, 3], and discusses features that make these algorithms espe-
cially useful for optimization practitioners. In the remainder of this paper we
assume that candidate solutions are represented by fixed-length binary strings,
but other finite alphabets can be used for each position in solution strings in a
straightforward manner.

The paper starts with a brief description of PMBGAs, BOA, and hBOA. Sec-
tion 3 discusses problems that can be solved using BOA and hBOA and presents
main results of BOA and hBOA scalability theory. Section 4 focuses on meth-
ods for enhancing efficiency of BOA and hBOA, including parallelization, fitness
estimation, prior knowledge utilization, and hybridization. Section 5 discusses
how parameters can be eliminated from BOA and hBOA. Finally, Section 6
summarizes and concludes the paper.

2 Hierarchical Bayesian optimization algorithm (hBOA)

Probabilistic model-building genetic algorithms (PMBGAs) [4, 5] replace tradi-
tional variation operators of genetic and evolutionary algorithms by a two-step
procedure. In the first step, a probabilistic model is built for promising solu-
tions after selection. Next, the probabilistic model is sampled to generate new
solutions. By replacing variation operators inspired by genetics with machine
learning techniques that allow automatic discovery of problem regularities from
populations of promising solutions, PMBGAs provide quick, accurate, and reli-
able solution to broad classes of difficult problems, many of which are intractable
using other optimizers [2, 3].

For an overview of PMBGAs, please see references [4] and [5]. PMBGAs
are also known as estimation of distribution algorithms (EDAs) [6] and iter-
ated density-estimation algorithms (IDEAs) [7]. The remainder of this section
describes the Bayesian optimization algorithm (BOA) and its hierarchical ex-
tension, the hierarchical BOA (hBOA).

2.1 Bayesian optimization algorithm (BOA)

The Bayesian optimization algorithm (BOA) [1] evolves a population of candi-
date solutions to the given problem. The first population of candidate solutions
is usually generated at random. The population is updated for a number of iter-
ations using two basic operators: (1) selection, and (2) variation. The selection
operator selects better solutions at the expense of the worse ones from the cur-
rent population, yielding a population of promising candidates. The variation
operator starts by learning a probabilistic model of the selected solutions. BOA
uses Bayesian networks [8] to model promising solutions. The variation operator
then proceeds by sampling the probabilistic model to generate new solutions,
which then replace the original population of candidate solutions or its part.

The run is terminated when termination criteria are satisfied; for example,
the run can be terminated when a good enough solution has been found, when the
population has not improved for a long time, or when the number of generations
has exceeded a given upper bound.
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Hierarchical BOA (hBOA)

t := 0;

generate initial population P(0);

while (not done) {

select population of promising solutions S(t);

build Bayesian network B(t) with local struct. for S(t);

sample B(t) to generate offspring O(t);

incorporate O(t) into P(t) using RTR yielding P(t+1);

t := t+1;

};

Fig. 1. The pseudocode of the hierarchical BOA (hBOA).

2.2 Hierarchical BOA (hBOA)

The hierarchical Bayesian optimization algorithm (hBOA) [2, 3] extends BOA by
using Bayesian networks with local structures [8] to model promising solutions
and by using the restricted tournament replacement (RTR) [9] to incorporate
new solutions into the original population. Local structures in Bayesian networks
ensure efficient representation of high order interactions, whereas RTR ensures
that useful diversity in the population is maintained for long periods of time.
Figure 1 shows the pseudocode of hBOA. For a more detailed description of
hBOA, see [10].

The following section discusses the classes of problems that can be solved by
BOA and hBOA and it overviews basic theoretical and empirical results.

3 Scalability of BOA and hBOA

This section discusses the class of problems that hBOA can solve, and it summa-
rizes important theoretical and empirical results related to scalability of hBOA.

3.1 Decomposition in optimization

From no free lunch theorem for optimization [11], it is known that all opti-
mization algorithms perform the same if their performance is averaged over all
possible optimization problems. However, it is a different story when we look
at algorithm performance for some more specific classes of problems, such as
linear problems (e.g. onemax) or separable problems of bounded difficulty [12].
So before talking about scalability and efficient performance, one must answer
the following important question: “What problems do we want a particular al-
gorithm to solve?”

BOA attempts to solve problems that can be decomposed into subproblems
of bounded order on a single level. hBOA extends the applicability of BOA to
problems that can be decomposed over multiple levels of difficulty into a hier-
archy. The reason for using decomposability as the basic concept for robust and
scalable solution to broad classes of problems is that many complex real-world
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Fig. 2. An illustrative example of problem decomposition of a problem with 11 variables
into 3 subproblems. Edges between the variables denote connections in a Bayesian
network.

systems can be decomposed into simpler subsystems so that interactions within
each subsystem are of much higher magnitude than the interactions between the
subsystems. Decomposition is one of the primary concepts used by humans to
build models of complex real-world systems, get to understand these systems,
and design artificial complex systems [13, 12]. That is why decomposition as a
tool for cracking tough optimization problems holds a big promise.

To use decomposition in optimization, genetic and evolutionary algorithms
represent a good candidate, because they allow a practical and flexible population-
based search where most variation operators are based on problem decomposi-
tion. However, if the variation operator exploits wrong decomposition, evolution-
ary algorithms may take exponential time to solve the problem [14, 15]. That is
why it is necessary that both (1) the problem is decomposed properly, and (2)
the learned decomposition is used well. PMBGAs address both these issues by
using methods of machine learning and statistics as is discussed next.

3.2 Solving decomposable problems using BOA and hBOA

In BOA and hBOA, identifying important subproblems corresponds to learning
a Bayesian network [16, 17] that captures the structure of the problem. Loosely
said, a good network should connect variables within each subproblem and it
should have no connections between the variables in different subproblems as is
illustrated in Figure 2. For more complex problems where subproblems interact
in some way, the groups of variables corresponding to different subproblems can
be connected as well. For an exact definition of a proper distribution factorization
for the use with decomposable functions, see [18]. Adequate population sizing
ensures that there exist a reasonable number of copies of the solution to each
subproblem [19]. Solutions to the different subproblems are then juxtaposed by
sampling the Bayesian network.

Decomposition can be used on one or multiple levels. To juxtapose solutions
on several levels of difficulty and enable the algorithm to exploit hierarchical
decomposition, replacing traditional variation of genetic algorithms by building
and sampling Bayesian networks is insufficient and additional features must be
incorporated as well [2, 3]. First of all, noninferior partial solutions must be pre-
served to enable that there is enough material to combine solutions on the next
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higher level. Useful diversity preservation thus becomes important. Second, an
algorithm must be capable of working with large partial solutions and expressing
dependencies between and within these larger partial solutions. By using RTR
for diversity preservation and local structures in Bayesian networks for efficient
representation of dependencies of large order, hBOA becomes capable of learning
and exploiting decomposition over multiple levels of difficulty. For more details
on hierarchical optimization with hBOA, please see [2, 3].

To enable solution to challenging optimization problems, it is necessary to
ensure that time complexity of these two algorithms grows with a low-order poly-
nomial with respect to the number of variables in the problem (string positions).
There are two basic approaches to showing that the optimizer scales up well on
the target class of problems:

– Design artificial problems to test the algorithm on the boundary of its design
envelope as is common in engineering design. The problems should challenge
the optimizer along different dimensions of problem difficulty that are char-
acteristic for the target class of problems (e.g., interactions between decision
variables, external noise, and scaling).

– Develop theory that captures dynamics of the optimization algorithm on the
target class of problems.

The remainder of this section overviews important results in the above two areas.

3.3 Scalability of BOA

There are three primary sources of computational complexity in BOA and hBOA:

(1) evaluation of candidate solutions,
(2) model building and sampling, and
(3) restricted tournament replacement (RTR).

The overhead related to the remaining operation of BOA and hBOA is negligible
compared to the above two sources of complexity. Additionally, although the
asymptotic computational complexity of RTR can be the same as that for model
building and sampling, the actual time spent in this operator is usually orders
of magnitude smaller than that spent in model building. For some problems,
where the number of decision variables to optimize is small but each evaluation
takes long time, evaluation of candidate solutions is the bottleneck. For other
problems, where each evaluation can be done quickly but the number of bits is
large, model building becomes the bottleneck.

All the aforementioned sources of complexity depend on the same three fac-
tors:

(1) G, the number of iterations (generations) until convergence,
(2) N , the population size, and
(3) k, the order of statistics necessary to solve the problem.
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For good scalability it is necessary that k is bounded by a constant or that it
grows at most logarithmically with the size of the problem, because the popu-
lation size grows faster than proportionally to 2k due to the initial supply [19].
Nonetheless, there is nothing BOA and hBOA can do to influence k, which is
directly related to the definition and complexity of the problem. Here we focus
on classes of problems with k upper-bounded by a constant, called also problems
decomposable problems of bounded difficulty [12].

For any constant upper bound on k, it is important to make sure that both the
population size and the number of iterations grow with a low-order polynomial
with respect to the number of decision variables in the problem. Next, we review
theory for population sizing and the number of generations until convergence
applicable to BOA. These are then adopted to hBOA. These results are then
verified with a number of experiments on artificial problems designed to test
BOA and hBOA on the boundary of their design envelopes.

Population sizing in BOA There are 4 facets to consider to estimate an
adequate population size, N , for hBOA [12, 10]:

(1) Initial supply of building blocks [19]. To ensure that BOA finds the opti-
mum, it is necessary that each subproblem in a proper problem decomposi-
tion receives a sufficient number of copies of all possible instances that the
variables included in this subproblem can obtain. According to this facet,
N ∝ 2k log n.

(2) Delayed supply of building blocks [20]. If subproblems are scaled differently,
they converge in a sequential manner where at each iteration, only one or
several subproblems influence selection. The population size must be large
enough to ensure that supply of alternative instances for subproblems that
converge later in the run is not eliminated due to the stochastic nature of
search operators in BOA. According to this facet, N = O(n).

(3) Decision making between competing building blocks [21]. For each subprob-
lem, decisions between alternative instantiations of this subproblem are done
statistically across the entire population. Although the influence of other
positions should average out over the population, the population must be
large enough to ensure that good instantiations of variables in each sub-
problem are indeed going to increase in proportion. According to this facet,
N ∝

√
n log n.

(4) Building an adequate model [22]. It is necessary that the population is large
enough to be able to learn an adequate Bayesian network. That means that
(1) the dependencies must be identified properly, and (2) the parameters
of the resulting Bayesian network structure must be estimated accurately.
According to this facet, N = O(n1.05).

The first three factors are adopted from GA theory [12], whereas the last factor
is related to building a Bayesian network that captures appropriate problem
decomposition. The last factor is related directly to BOA and the necessity to
use an appropriate problem decomposition. Putting all factors together results
in an upper bound on the population size of O(n1.05).
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Fig. 3. Experimental verification of BOA scalability theory

Number of iterations until convergence To estimate the number of gen-
erations until convergence, two extreme cases can be considered. For uniformly
scaled problems (all subproblems are scaled similarly), the number of gener-
ations until convergence grows as O(

√
n) [6]. This model captures population

dynamics for a Bayesian network with no edges (probability vector), onemax
(task is to maximize the number of ones), and infinite population. Although
these assumptions are usually not satisfied in practice, the actual dynamics for
adequate population sizes is very close to this estimate assuming that problem
can indeed be decomposed into subproblems of order k and that an adequate
population size is used. For small population sizes the number of generations
can grow faster, but it will never grow faster than linearly with the number
of decision variables in the problem [23]. For exponentially scaled subproblems,
subproblems converge in a sequential fashion and thus the number of generations
until convergence can be upper bounded by O(n).

Experimental verification Given the above theory, the number of evaluations
should grow between O(n1.55) to O(n2), depending on scaling of subproblems.
Figure 3 (from [10]) verifies this result for concatenated trap functions of order
5, which are created by decomposing the problem into disjoint groups of 5 bits
and applying a trap function to each subproblem. In all experiments, an average
number of evaluations is computed for 30 independent runs, where the popu-
lation size is set to the minimum population size ensuring that 30 independent
runs converge to the optimum. The figure also shows an exponentially scaled
problem where subproblems of order 3 are considered where each subproblem
uses a deceptive function of order 3.

The quadratic or subquadratic growth of the number of evaluations inde-
pendently of k is qualitatively better than the growth proportional to nk for
algorithms based on local variation operators [24], and the exponential growth
for genetic algorithms without any additional assumptions about problem en-
coding [15, 12].
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Fig. 4. Experimental verification of hBOA scalability theory.

3.4 Scalability of hBOA

hBOA must solve the problem on several levels. The number of evaluations
for BOA should thus be multiplied by the number of levels. Figure 4 shows the
number of evaluations for hBOA on a hierarchical trap problem, where the num-
ber of levels grows as a logarithm of problem size. The complexity should thus
be bounded by O(n1.55 log n). The figure confirms this result. For hierarchical
traps, both local search operators as well as traditional genetic algorithms scale
exponentially with the number of variables in the problem.

4 Efficiency enhancement of BOA and hBOA

Solving nearly decomposable and hierarchical problems in quadratic or sub-
quadratic time ensures good scalability, but even quadratic performance can be
prohibitive if there are thousands or tens of thousands of variables, or if one
evaluation takes tens of seconds, minutes, or even hours. There are several ways
in which performance of BOA and hBOA can be improved. The following list
extends the IlliGAL efficiency enhancement techniques decomposition [12] to
incorporate new ways of enhancing efficiency of BOA and hBOA:

1. Parallelization,
2. hybridization,
3. time continuation,
4. fitness evaluation relaxation,
5. prior knowledge utilization,
6. incremental and sporadic model building, and
7. learning from problem-specific experience.

The following list overviews important results in several of the above tech-
niques for efficiency enhancement:

Parallelization. There are two primary sources of computational complexity
in BOA and hBOA. The first is the model building and sampling, which can
be computationally expensive if many variables are included in the model.
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Promising results were reported for parallelization of the model building
and sampling in BOA and hBOA [25–27]. The second source is evaluation of
candidate solutions. Parallelization of evaluation can be done similarly as in
conventional genetic algorithms [28]. Both the model building and evaluation
of candidate solutions can thus be distributed among multiple processors.

Hybridization. Promising results obtained with a hybrid method consisting of
hBOA and a simple deterministic local searcher were reported for the Ising
spin glass problem [29], which is a class of highly multimodal optimization
problems with high order of interactions between problem variables. The
results indicated that using local search can significantly reduce population
size. A simplex method was successfully incorporated into ECGA for silicon
cluster optimization [30], where the number of evaluations until convergence
was significantly decreased when using the hybrid algorithm. Finally, LFDA
(also a PMBGA based on Bayesian network models) for graph partitioning
was improved by incorporating Kernighan-Lin algorithm to improve solu-
tions locally [31]. To summarize, incorporating a local searcher into BOA
and hBOA is as straightforward as for any other genetic and evolutionary
algorithm, and it appears to be beneficial especially for difficult and highly
multimodal problems.

Fitness evaluation relaxation. Several approaches were presented to extend-
ing the probabilistic model in PMBGAs by incorporating statistics about the
fitness [32–34]. Modeling fitness can be especially useful for problems with
enormously expensive fitness evaluation (e.g. problems that involve a finite
element analysis or a stochastic simulation), where a portion of fitness eval-
uations can be replaced with a sample from the model. Speed-ups of over 30
(with respect to the number of fitness evaluations) were reported for BOA
on decomposable problems of bounded difficulty [34].

Prior knowledge utilization. There are several ways in which prior infor-
mation about the problem can be incorporated into PMBGAs. First, model
building can be modified to bias the search toward models of particular form.
Second, promising candidate solutions or partial candidate solutions can be
incorporated into the population.

For example, Schwarz and Ocenasek [35] bias the initial population of BOA
on graph partitioning using a simple local searcher. Additionally, they used
edges in the input graph to bias model building so that dependencies that
agree with the edges in the input graph were favored. Results indicated that
using prior knowledge improves performance of BOA. Prior knowledge was
also used for efficient cluster optimization in ECGA [30], where the initial
population was biased to optimal clusters of smaller size. Finally, prior knowl-
edge was used to restrict the model of LFDA to contain only dependencies
that agree with the edges of the input graph in graph partitioning [31]. In all
cases, prior knowledge improved performance of BOA and hBOA, although
no results were reported that would indicate that eliminating prior knowl-
edge would lead to a qualitative decrease in performance of PMBGAs (by
more than a constant factor).
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5 Eliminating parameters of hBOA

To ensure that BOA or hBOA finds an optimum accurately and reliably, it
is necessary that its parameters are set adequately. Nonetheless, there is only
one crucial parameter—population size—because all other parameters influence
convergence only by a constant factor. Even the population size can be eliminated
using the population sizing scheme of the parameter-less genetic algorithm [36].
Using the aforementioned population sizing approach, a series of populations
of different sizes are evolved in parallel. The approach ensures that both the
optimum will be found reliably and that the overhead with respect to the number
of function evaluations will be of at most a logarithmic factor [37]; initial results
with a fully parameter-less hBOA confirm this [38].

As a result, BOA and hBOA can be used without setting any parameters, and
they should still ensure low-order polynomial scalability on the class of nearly
decomposable problems of bounded difficulty.

6 Summary and conclusions

This paper argued that BOA and hBOA provide the practitioner with a powerful
and flexible tool for solving difficult optimization problems that can be applied
without much prior knowledge about the problem or the algorithms themselves.
BOA and hBOA solve a broad class of nearly decomposable and hierarchical
problems in a scalable manner, without the necessity to set any parameters. A
number of methods for enhancing efficiency of BOA and hBOA are available to
further improve performance of these algorithms.

Results overviewed in this paper show that incorporating advanced machine
learning techniques, such as methods for learning and sampling Bayesian net-
works, is proving to be one of the most promising and dynamic areas of genetic
and evolutionary computation but also computational optimization at large.

Acknowledgments

Martin Pelikan was supported by the Research Award at the University of Mis-
souri at St. Louis and the Research Board at the University of Missouri at
Columbia.

References
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