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Abstract. This paper presents two different efficiency-enhancement tech-
niques for probabilistic model building genetic algorithms. The first tech-
nique proposes the use of a mutation operator which performs local
search in the sub-solution neighborhood identified through the proba-
bilistic model. The second technique proposes building and using an
internal probabilistic model of the fitness along with the probabilistic
model of variable interactions. The fitness values of some offspring are
estimated using the probabilistic model, thereby avoiding computation-
ally expensive function evaluations. The scalability of the aforementioned
techniques are analyzed using facetwise models for convergence time and
population sizing. The speed-up obtained by each of the methods is pre-
dicted and verified with empirical results. The results show that for ad-
ditively separable problems the competent mutation operator requires
O(

√
k logm)—where k is the building-block size, and m is the number of

building blocks—less function evaluations than its selectorecombinative
counterpart. The results also show that the use of an internal probabilis-
tic fitness model reduces the required number of function evaluations to
as low as 1-10% and yields a speed-up of 2–50.

1 Introduction

A key challenge in genetic and evolutionary computation (GEC) research is the
design of competent genetic algorithms (GAs). By competent we mean GAs that
can solve hard problems, quickly, reliably, and accurately, and much progress has
been made along these lines [1, 2]. In essence, competent GA design takes prob-
lems that were intractable with first generation GAs and renders them tractable,
oftentimes requiring only a subquadratic number of fitness evaluations. However,
for large-scale problems, the task of computing even a subquadratic number of
function evaluations can be daunting. This is especially the case if the fitness eval-
uation is a complex simulation, model, or computation. This places a premium
on a variety of efficiency enhancement techniques. In essence, while competence



leads us from intractability to tractability , efficiency enhancement takes us from
tractability to practicality .

In this paper, we propose two different efficiency-enhancement techniques
for competent genetic algorithms in general, and probabilistic model building
genetic algorithms in particular: (1) Using a competent mutation operator that
performs local search in building-block neighborhoods identified by the prob-
abilistic model of variable interactions [3, 4], and (2) Building and Using an
internal probabilistic model of fitness instead of the more expensive fitness func-
tion [5, 6]. We develop facetwise models to predict the scalability and speed-up of
both efficiency-enhancement techniques. Specifically, we summarize and combine
the analysis and results presented elsewhere [3–6].

This paper is organized as follows. The next section gives a brief introduc-
tion to extended compact genetic algorithm (eCGA), followed by a description
of a scalable mutation algorithm. We analyze the scalability of the mutation
algorithm and the speed-up obtained by using it. Section 4 discusses evaluation
relaxation in PMBGAs by building and using an internal probabilistic model of
fitness. We analyze the scalability and the speed-up of the evaluation-relaxation
scheme. Finally, we outline future research directions followed by conclusions.

2 Extended Compact Genetic Algorithm (eCGA)

The extended compact GA proposed by Harik [7], like traditional genetic algo-
rithms, is a selectionist search method, where only a subset of better individuals
influence the subsequent generation of candidate solutions. However, like other
probabilistic model building genetic algorithms (PMBGAs) [8], eCGA replaces
the traditional variation operators of genetic algorithms by building a proba-
bilistic model of promising solutions and sampling the model to generate new
candidate solutions.

The probabilistic model in eCGA is represented by a class of probability mod-
els known as marginal product models (MPMs). MPMs are formed as a product
of marginal distributions on a partition of the genes. MPMs also facilitate a
direct linkage map with each partition separating tightly linked genes. For ex-
ample, the following MPM, [1,3][2][4], for a four-bit problem represents that
the 1st and 3rd genes are linked and 2nd and 4th genes are independent.

In eCGA, both the structure and the parameters of the model are searched
and optimized to best fit the data. To distinguish between better model instances
from worse ones, eCGA uses a minimum description length (MDL) metric as the
class-selection metric. In essence, the MDL metric penalizes both complex as well
as inaccurate models. The MDL metric used in eCGA is a sum of model com-
plexity, Cm, and compressed population complexity, Cp. In essence, the model
complexity, Cm, quantifies the model representation size in terms of number of
bits required to store all the marginal probabilities. Let, a given problem of size `
with binary alphabets, have m partitions with ki genes in the ith partition, such
that

∑m
i=1 ki = `. Then each partition i requires 2k

i − 1 independent frequencies
to completely define its marginal distribution. Furthermore, each frequency is



of size log2(n), where n is the population size. Therefore, the model complexity
Cm, is given by

Cm = log2(n)

m
∑

i=1

(

2ki − 1
)

. (1)

The compressed population complexity, Cp, represents the cost of using a
simple model as against a complex one. In essence, the compressed population
complexity, Cp, quantifies the data compression in terms of the entropy of the
marginal distribution over all partitions. Therefore, Cp is evaluated as

Cp = n

m
∑

i=1

2ki
∑

j=1

−pij log2 (pij) (2)

where pij is the frequency of the jth gene sequence of the genes belonging to the
ith partition. In other words, pij = nij/n, where nij is the number of chromo-
somes in the population (after selection) possessing bit-sequence j ∈ [1, 2ki ] for
ith partition.

The MDL metric is used to evaluate alternative probabilistic models (cho-
sen from admissible MPMs). Similar to other PMBGAs, eCGA uses a greedy
search heuristic is used to find an optimal model of the selected individuals in
the population. The greedy-search method begins with models at a low level
of complexity (all independent variables), and then adding complexity when it
locally improves the MDL metric value. This process continues, until no further
improvement is possible.

Once the best probabilistic model is built, the new individuals are created
by sampling the probabilistic model. The offspring population are generated
by randomly choosing subsets from the current individuals according to the
probabilities of the subsets as calculated in the probabilistic model.

The population-sizing and the scalability of PMBGAs in general, and the
Bayesian optimization algorithm and eCGA in particular, have been studied
elsewhere [9, 10, 4]. The models predict that the population size required to solve
a problem with m building blocks (BBs) of size k with a failure rate of α = 1/m
is given by

n ∝ 2k
(σBB

d

)

m logm, (3)

and the number of function evaluations is given by

nfe ∝
(σBB

d

)√
k · 2km1.5 logm, (4)

where σBB is fitness-variance of a BB and d is the signal difference between com-
peting BBs [11]. In other words, the models predict that for additively separable
problems, eCGA scales subquadratically, O(2km1.5 logm), with problem size.

3 Probabilistic Model Building BB-wise Mutation

As explained in the previous section, eCGA builds marginal product models
that yields a direct mapping of linkage groups among successful individuals.



The probabilistic model yields a global neighborhood information and can be
effectively exploited by a mutation operators that performs local search in the
building-block neighborhood. In other words, we can replace a bit-wise muta-
tion method that scales exponentially, by an an enumerative BB-wise mutation
operator as used elsewhere [3], which scales subquadratically with problem size.

The BB-wise mutation uses the best individual, and searches for the best
building block for each linkage-group identified by the MPM. For example, if
model builder identifies m variable-groups with k variables in each group, the
BB-wise algorithm will select the best BB out of 2k possible ones in each of the
m partition. Note that the performance of the BB-wise mutation can be slightly
improved by using a greedy heuristic to search for the best among competing
BBs, however, as shown later, the scalability of the probabilistic model building
BB-wise mutation operator is determined by the population-size required to
accurately identify the building blocks.

It should be noted that while eCGA can only build linkage groups with non-
overlapping variables, the mutation procedure can be easily used with other
linkage identification techniques that can handle overlapping BBs such as BOA
[12] or DSMDGA [13]. However, since the effect of overlapping interactions be-
tween variables is similar to that of an exogenous noise [2], crossover is likely to
be more effective than mutation [3].

Moreover, we perform linkage identification only once in the initial gener-
ation. This offline linkage identification works well on problems with BBs of
nearly equal salience. However, for problems with BBs of non-uniform salience,
we would have to perform linkage identification and update BB information in
regular intervals. Furthermore, it might be more efficient to utilize both BB-wise
mutation and eCGA model sampling simultaneously or sequentially along the
lines of hybridization [14–16] and time-continuation [1, 17] techniques.

To reiterate, the objective of this paper is to couple linkage identification
with a mutation operator that performs local search in the BB neighborhood
and to verify its effectiveness in solving boundedly difficult additively separable
problems. Moreover, the aforementioned enhancements can be designed on the
proposed competent selectomutative GA.

3.1 Scalability of the BB-wise Mutation

As mentioned earlier, eCGA without mutation scales as O(2km1.5 logm). Here,
we consider the scalability of the selectomutative GA, which depends on two
factors: (1) The population size required to build accurate probabilistic models
of the linkage groups, and (2) the total number of evaluations performed by the
BB-wise mutation operator to find optimum BBs in all the partitions.

Pelikan and Sastry [10] observed that to build accurate models the population
size has to be scaled as,

O
(

2km1.05
)

≤ n ≤ O
(

2km2.1
)

. (5)
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Fig. 1. Empirical verification of the scalability and speed-up (Equation 10) obtained
by using the probabilistic model building BB-wise mutation over eCGA for the m k-
Trap function. The results show that the BB-wise mutation scales as O(2km1.5) and
the speed-up scales as O(

√
k logm).

Since we perform the model building only once, the total number of function
evaluations scales as the population size. That is,

O
(

2km1.05
)

≤ nfe,1 ≤ O
(

2km2.1
)

. (6)

During BB-wise mutation, we evaluate 2k−1 individuals for determining the
best BBs in each of the m partitions. Therefore, the total number of function
evaluations used during BB-wise mutation is

nfe,2 =
(

2k − 1
)

m = O
(

2km
)

. (7)

From Equations 6 and 7, the total number of function evaluations scales as

O
(

2km1.05
)

≤ nfe ≤ O
(

2km2.1
)

. (8)

Indeed, we empirically observed [4] that the number of function evaluations scales
as (see Figure 1(a))

nfe = O(2km1.5). (9)

The results (Equations 4 and 9) indicate that the selectomutative algorithm

is O
(√

k logm
)

faster than eCGA in solving boundedly difficult additively sepa-

rable problems. That is, the speed-up—which is defined as the ratio of number of
function evaluations required by eCGA to that required by the selectomutative
GA—is given by

η =
nfe(eCGA)

nfe(BBwise Mutation)
= O

(√
k logm

)

. (10)



Empirical results shown in Figure 1(b) agrees with the above equation. The
results show that the probabilistic model building BB-wise mutation is O(

√
km)

times faster than the extended compact GA.

4 Evaluation-Relaxation in PMBGAs

Evaluation-relaxation schemes are efficiency-enhancement techniques, where an
accurate, but computationally-expensive fitness evaluation is replaced (or aug-
mented) with a less-accurate, but computationally less expensive fitness evalua-
tion [18]. The low-cost, less-accurate fitness estimate can either be (1) Exogenous,
as in the case of surrogate (or, approximate) fitness functions, where an external
means is used to develop the fitness estimate (For example, see [19]), or (2) En-
dogenous, as in fitness inheritance [20], where, the fitness estimate is computed
internally based on parental fitnesses.

While the use of exogenous models have been extensively—both empirically
and analytically—studied (see [18] and [21] and references therein), limited at-
tention has been paid towards analysis and development of competent meth-
ods for building endogenous fitness estimates. The endogenous models used in
evolutionary-computation literature are näıve [20, 22] and analytically have been
shown to yield limited speed-up of about 1.25, both in single-objective [23], and
in multiobjective cases [24]. In this study, we develop an efficient and effec-
tive endogenous probabilistic fitness model, that automatically and adaptively
exploits the regularities of the search problem. We show that the speed-up ob-
tained by the use of such a model for estimating the fitness of some offspring,
yields significant speed-up.

Similar to earlier studies on fitness inheritance, in the proposed method,all
the individuals in the initial population are evaluated and subsequently a por-
tion of the offspring population receives inherited fitness and the other receive
actual fitness evaluation. That is, an offspring receives inherited fitness with a
probability pi, or an evaluated fitness with a probability 1− pi. However, unlike
previous works, which used either average or weighted average of parental fit-
nesses as the inherited fitness, here we employ the probabilistic model built by
eCGA and estimates of linkage-group fitnesses in determining the inherited fit-
ness. Specifically, individuals from parental population that received evaluated
fitnesses (that is, individuals whose fitnesses were not estimated) are used to
determine the fitnesses of schemata that are defined by the probabilistic model.
The schema fitness from different partitions are then used to estimate the fitness
of an offspring. The procedure is detailed in the following paragraph.

After the probabilistic model is built and the linkage map is obtained (step 4
of the eCGA algorithm outlined in the previous section), we estimate the fitness
of schemata using only those individuals whose fitnesses were not inherited.
In all, we estimate the fitness of a total of

∑m
i=1 2

ki schemas. Considering our
previous example (Section 2) of a four-bit problem, whose model is [1,3][2][4],
the schemata whose fitnesses are estimated are: {0*0*, 0*1*, 1*0*, 1*1*, *0**,
*1**, ***0, ***1}.



The fitness of a schema, h, is defined as the difference between the average
fitness of individuals that contain the schema and the average fitness of all the
individuals. That is,

f̂s(h) =
1

nh

∑

{i|xi⊃h}

f (xi)−
1

n′

n′

∑

i=1

f (xi) (11)

where nh is the total number of individuals that contain the schema h, xi is
the ith individual and f(xi) is its fitness, n′ is the total number of individuals
that were evaluated. If a particular schema is not present in the population,
its fitness is arbitrarily set to zero. Furthermore, it should be noted that the
above definition of schema fitness is not unique and other estimates can be used.
The key point however is the use of the probabilistic model in determining the
schema fitnesses.

Once the schema fitnesses across partitions are estimated, the offspring pop-
ulation is created as outlined in Section 2. An offspring receives inherited fitness
with a probability pi, referred to as the inheritance probability. The inherited
fitness is computed as follows:

finh (y) =
1

n′

n′

∑

i=1

f (xi) +

m
∑

i=1

f̂s (hi ∈ y) (12)

where y is the offspring individual. It should be noted that the eCGA model
yields non-overlapping linkage groups and might not be appropriate for problems
with overlapping BBs. However, similar concepts can be incorporated in other
PMBGAs such as the Bayesian optimization algorithm (BOA) [12] which can
handle overlapping BBs. Moreover, the inherited fitness can be computed in
other manner, but the key is to use the estimates of substructure fitnesses in the
computation.

With this understanding of the inheritance mechanism, we will now model
the effects of fitness inheritance on the scalability of the GA and to predict the
speed-up (or efficiency enhancement) obtained through fitness inheritance in the
following section.

4.1 Scalability of Using the Internal Fitness Model

Elsewhere, facetwise models have been developed for analyzing the effect of using
the probabilistic fitness model on the population sizing and convergence time for
a GA success [5]. The population-sizing model is given by

n = −cn log(α)2kσ2
f (1 + pi) , (13)

where n is the population size, cn is a problem-dependent constant, k is the
BB length, α is the probability of failure, and σ2

f is the fitness variance. The
convergence-time model is given by

tc = ct
√
m · k

√

1 +
σ2

N

σ2
f

, (14)



where ct is a problem dependent constant.
We now use the convergence-time and population-sizing models to predict

the number of function evaluations required for eCGA success:

nfe = n+ n (tc − 1) (1− pi) . (15)

Recall that all the individuals in the initial population are evaluated and there
after on an average n(1− pi) individuals are evaluated.

To isolate the effect of fitness inheritance on the scalability of eCGA, we
consider the ratio of total number of function evaluations required with fitness
inheritance and that required without fitness inheritance. That is, we consider
the function-evaluation ratio, nfe,r = nfe/nfe(pi = 0). From Equations 13 and
14, we obtain the following approximation for nfe,r:

nfe,r ≈ (1 + pi)
1.5

(1− pi) . (16)

The speed-up that can be obtained through fitness inheritance is given by
the inverse of the function-evaluation ratio:

ηinh =
1

(1 + pi)
1.5

(1− pi)
. (17)

Equation 16 indicates that the function-evaluation ratio increases (or the
speed-up reduces) at low pi values, reaches a maximum at pi = 0.2. When
pi = 0.2 the number of function evaluations required is 5% more than that
required without inheritance. In other words, the speed-up at pi = 0.2 is 0.95.
For inheritance probabilities above 0.2 the function-evaluation ratio decreases
(speed-up increases) with the inheritance probability. Equation 17 predicts that
the speed-up is maximum when pi = 1.0, however, it should be noted that the
models derived are not entirely valid for higher pi values (pi ≥ 0.95). While the
fitness model built on eCGA requires fitness evaluation for about 10% of the
population, yielding a speed-up of about 1.8–2.25, the fitness model built on
BOA requires fitness evaluation for about only 1% of the population, yielding a
speed-up of about 35–50 [6].

The predicted values of function-evaluation-ratio (Equation 16) and the speed-
up (Equation 17 are verified with empirical results for OneMax and m k-Trap in
Figures 2(a) and 2(b). As shown in Figures 2(a) and 2(b), the empirical results
agree with the analytical models. Furthermore, the agreement for the OneMax
problem with the models is good even though the building-block identification
for the OneMax problem is only partially correct. The results show that the
required number of function evaluations is almost of halved with the use of fit-
ness inheritance thereby leading to a speed-up of 1.75–2.25. This is a significant
improvement over a speed-up of 1.25 observed for simple GAs with a simple
inheritance mechanism. Furthermore, fitness inheritance yields speed-up even
when the inheritance probabilities is very high, even as high as 0.85-0.99, which
is similar to the empirical observation of Smith, Dike, and Stegmann [20]. As
mentioned earlier, when we used the Bayesian optimization algorithm instead
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Fig. 2. Verification of the function-evaluation-ratio model (Equation 16) and the speed-
up model (Equation 17) with empirical results on 100-bit OneMax and 10 4-Trap
problems. The total number of function evaluations is determined such that the failure
probability of an eCGA run is at most 1/m. The results are averaged over 900–3000
independent runs.

of eCGA, we observed that fitness evaluation was required only for 1% of the
population, yielding a speed-up of about 35–50.

Overall, the results suggest that significant efficiency enhancement that can
be achieved through an inheritance mechanism that incorporates knowledge of
important sub-solutions of a problem and their partial fitnesses.

5 Future Work

We demonstrated two efficiency-enhancement techniques for probabilistic model
building genetic algorithms that provide significant speed-up. The first method
demonstrated the potential of inducting global neighborhood information into
mutation operations via the automatic discovery of linkage groups by proba-
bilistic model building techniques. The second method illustrated the use of an
endogenous probabilistic fitness model for estimating fitness of some individuals
instead of the computationally expensive fitness evaluation. The results are very
encouraging and warrants further research in the following avenues:

Hybridization of competent crossover and mutation: While we consid-
ered a bounding case of crossover vs. mutation, it is likely to be more efficient
to use an efficient hybrid of competent crossover and mutation operators. For
example, we can consider a hybrid GA with oscillating populations. A large
population is used to gather linkage information and used for crossover, while
a small population is used for searching in BB neighborhood.



Problems with overlapping building blocks: While this paper considered
problems with non-overlapping building blocks, many problems have differ-
ent building blocks that share common components. The performance of
probabilistic model building BB-wise mutation on problems with overlap-
ping building blocks have to be analyzed. Since the effect of overlapping
variable interactions is similar to that of exogenous noise [2], based on our
recent analysis [3], a crossover is likely to be more useful than mutation.
Moreover, while considering problems with overlapping building blocks, the
use of eCGA might not be appropriate, however the fitness model building
mechanism should still be valid which can be used in other more sophisti-
cated PMBGAs such as the Bayesian optimization algorithm [6].

Problems with non-uniform BB salience: In this paper we considered ad-
ditively separable problems with uniform sub-solution salience. Unlike uniformly-
scaled problems, in non-uniformly scaled problems BBs are identified sequen-
tially over time. Therefore, in such cases, we would need to regularly update
the BB information and develop theory to predict the updating schedule.
The effect of non-uniform building-block salience on the speed-up and opti-
mal inheritance proportion should also be investigated.

Hierarchical problems: One of the important class of nearly decomposable
problems is hierarchical problems, in which the building-block interactions
are present at more than a single level. Further investigation is necessary
to analyze the performance of BB-wise mutation on hierarchical problems.
Additionally, the fitness model building mechanism used in this study could
be enhanced and incorporated into hBOA and the efficiency enhancement
provided by inheritance can also be investigated.

Additional dimensions of problem difficulty: In this paper we considered
one of the dimensions of GA problem difficulty, deception. However, there are
other dimensions of problem difficulty [2] such as epistasis and external noise.
This factors should be included in isolation or in conjunction with other
factors of problem difficulty in determining a complete picture of efficiency
enhancement provided by fitness inheritance.

Real-World problems: One of the key objectives of analyzing and develop-
ing fitness-inheritance mechanism is to aid the principled incorporation of
such an mechanism in competent genetic and evolutionary algorithms for
successfully solving complex real-world problems in practical time.

6 Summary & Conclusions

In this paper, we proposed two efficiency-enhancement techniques for probabilis-
tic model building genetic algorithms. The first method is a scalable mutation
operator, which performs local search in the neighborhood dictated by the prob-
abilistic model. The second method is an evaluation-relaxation scheme, where
an endogenous probabilistic fitness model is developed and used to estimate
the fitnesses of some of the offspring instead of expensive function evaluations.
We analyze the scalability and speed-up of both the efficiency-enhancement tech-
niques using facetwise models and verify them with empirical results. The results



show that for additively-separable problems, the competent mutation operator
scales as O(2km1.5)—where, k is the building-block size, and m is the number of
building blocks—and provides a speed-up of O(

√
k logm) over a selectorecombi-

native PMBGA. The results also show that for additively separable problems, by
developing and using an endogenous probabilistic fitness model, only 1–10% of
the population requires actual fitness evaluation, providing a speed-up of 2–50.

Overall, the results in this paper demonstrate that the probabilistic model
built in PMBGAs can be used in developing a scalable mutation operator and an
effective fitness-estimation model, which can both provide significant efficiency
enhancement and speed-up the GA process, while yielding high-quality solu-
tions quickly, reliably and accurately. Additionally, since the speed-up provided
by the two efficiency-enhancement techniques are nearly independent of each
other, the combined speed-up obtained by using both simultaneously should be
multiplicative of the individual speed-ups.
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