
Efficient Allele Fitness Assignment with
Self-organizing Multi-agent System

Adrian Agogino1 and Risto Miikkulainen2

1 UC Santa Cruz, NASA Ames Research Center, Mailstop 269-3, Moffett Field CA
94035, USA,

adrian@email.arc.nasa.gov
2 Department of Computer Sciences, The University of Texas at Austin, 1 University

Station C0500, Austin TX 78712-1188, USA,
risto@cs.utexas.edu

Abstract. The problem of discovering complex control policies for con-
tinuous tasks is often best addressed by decomposing the policy into
several simpler parts. While a genetic algorithm usually decomposes the
task by encoding a chromosome over multiple genes, it faces the difficult
credit assignment problem of evaluating how a single allele in a chro-
mosome contributes to the full solution. Typically a single evaluation
function is used for the entire chromosome, implicitly giving each allele
in the chromosome the same evaluation. This method is inefficient be-
cause an allele will get credit for the contribution of all the other alleles
as well. Accurately measuring the fitness of an individual allele in such a
large search space requires many trials and may result in stagnation. This
paper instead proposes turning this single complex search problem into a
multi-agent search problem, where each agent has the simpler task of dis-
covering a suitable allele. Gene-specific evaluation functions can then be
created that have better theoretical properties than a single evaluation
function over all genes. Even though each gene has its own evaluation
function, through the process of self-organization a set of compatible al-
leles can be found to form a high performing chromosome. The method is
tested on the double-pole balancing problem, showing that agents that
self-organize using gene-specific evaluation functions can create a suc-
cessful control policy in 20% fewer trials than the best existing genetic
algorithms.

1 Introduction

Genetic algorithms (GAs) combined with neural networks can be effective
in finding solutions to continuous single-agent control tasks, such as pole
balancing, robot navigation and rocket control [6, 5, 4]. As an example
consider how a GA can be used for rocket control, where a rocket is
controlled by a neural network. This neural network will be fully defined
by a chromosome, which is often broken up into alleles, where each allele



defines part of the neural network. The task of the GA is to discover a
neural network that controls the rocket well.

A critical step in the GA’s discovery process is the fitness evaluation of
a chromosome. This evaluation can be done by measuring the performance
of the rocket over a series of trials. For example, suppose a chromosome,
C1, was used 100 times to control the rocket, and the rocket crashed 50
times. Then a chromosome, C2, was used 100 times to control the rocket,
and the rocket crashed 30 times. We may be able to say from these tests
that chromosome C2 has a higher fitness than chromosome C1. However,
how can a single allele be evaluated? Suppose an allele A1 was part of
100 different chromosomes that were tested, and the rocket crashed 50
times. In addition an allele A2 was part of a new set of 100 different
chromosomes that were tested, and the rocket crashed 30 times. Can
we say that allele A2 has a higher fitness than A1? Probably not if the
chromosome consisted of many alleles, since chromosome A1 could have
just been unlucky and have been tested with chromosomes consisting of
many highly unfit alleles. The difficulty arises from using rocket crashing,
which is inherently a function of an entire chromosome, as evaluation for
a single allele.

This paper shows that it is often possible to evaluate alleles individu-
ally by using evaluation functions designed for self-organizing multi-agent
systems: The task of each agent is to discover a highly fit allele, and these
alleles are put together to form a chromosome. These agents can be much
simpler than a full genetic algorithm since they are only finding a single
allele and can often use simple evolutionary algorithms without crossover.
For allele evaluation functions to be effective, the system has to be self-
organizing so that each allele evaluation function can be defined in terms
of the likely allele choices of the other agents. A simple example where
this is possible is a resource summation problem, where each allele de-
fines a bit and the goal of the problem is to have the bits sum to a value
within a fixed range. When the self-organization starts, each allele evalu-
ation function is not very accurate, since it does not know the bit-choices
of all the other agents. However once the bit choices of the agents begin
to stabilize, the allele evaluation function can give a good signal to the
agent for its choice of bit. Note that when this problem is changed to
a parity problem, then self-organization is not possible since any change
in any bit affects the evaluation of all the other bits and the system can
never converge. Luckily many real-world control domains are more sim-
ilar to the summation problem than to the parity problem and fitness
evaluations can be made for an allele that are not completely dependent



on the value of the other alleles. Note that this does not imply that each
allele is being evaluated out the context of the other alleles, just that the
self-organization process of finding a compatible set of highly fit alleles
depends on the evaluation of one allele not changing dramatically when
the other alleles are altered slightly.

Section 2 explains this multi-agent system in more detail, showing how
it maps to a genome and how alleles are generated. Section 3 summarizes
principles of multi-agent evaluation functions that can be used to eval-
uate alleles. Section 4 discusses issues with computing these multi-agent
evaluation functions in Markov Decision Processes. Section 5 shows how
these issues can be resolved by using a Radial Basis Function Network
(RBFN) as the controller in the Markov Decision Process. Finally, Section
6 shows how a multi-agent system can self-organize to discover an RBFN
that solves the difficult double-pole-balancing problem more quickly than
the best existing genetic algorithms.

2 Multi-Agent System Structure

This paper proposes creating high-fitness chromosomes that have n alle-
les, using a multi-agent system with n agents. Each agent is mapped to
a single gene and is responsible for creating an allele for a single position
on the chromosome. Each agent stores a population of alleles and uses
a simple evolutionary algorithm to improve the fitness of the population
over a series of trials, as shown in Figure 1.

At the beginning of every trial, each agent chooses an allele from its
population. All their alleles are then concatenated to form a chromosome,
defining a neural network. The trial is conducted by using this neural net-
work as the controller for a Markov Decision Process, until the process
terminates. Information from the trial is then used to evaluate each al-
lele, using evaluation techniques from multi-agent systems (Section 3).
Each agent then uses its evaluation to modify its population using an
evolutionary algorithm.

This paper will use a simple evolutionary algorithm that removes the
worst performing allele from the population at the end of the trial and
replaces it with a mutated version of the best allele. While more advanced
evolutionary methods could be used, this method was found to perform
well in the test domain. The main requirement of the evolutionary algo-
rithm is that it tends to converge to a set of similar solutions with time
so that the multi-agent system can self-organize.



Allele

Agent 1

Allele Allele

Chromosome
Control

Population 1
Allele
Allele

Allele
Agent 2

Population 2
Allele
Allele

Allele
Agent n

Population n
Allele
Allele

Allele

Chromosome
EvaluationAllele

Evaluations

Fig. 1. Multi-agent System Producing Chromosomes for a Control Problem.
At the beginning of a trial, each agent chooses an allele, which encodes the weights for
a hidden node of a neural network. The choice of all the agents forms a chromosome
representing an entire neural network. The neural network is then used as a controller.
Standard genetic algorithms will evaluate entire chromosome after trial. Agents instead
evaluate only the contribution of their allele, leveraging evaluation methods used in
self-organizing multi-agent systems. Allele evaluation can be more efficient allowing a
solution to be found in fewer trials.

3 Multi-agent System Evaluation Functions

Finding a fitness evaluation function for a single allele that can be used by
the agents described in Section 2 is a difficult problem. Here is an instance
of the general credit assignment problem found in multi-agent systems:
how to give credit to an individual agent’s action when the multi-agent
task depends on the actions of all the agents. This section will outline a
solution to this problem coming from the theory of collectives [8], in the
specific context of the multi-agent system in Section 2.

Mathematically, the goal of a genetic algorithm is to maximize a global
fitness evaluation function, G(z), which is a function of a chromosome, z.
This chromosome is broken down into n alleles:

z = (z1, z2, ..., zn) , (1)

Maximizing G(z) is also the goal of the multi-agent system. However each
agent will not try to maximize G(z) directly. Instead, each agent will try
to maximize its allele evaluation function gη(z), where η is the symbol
this paper will use to denote an agent.



3.1 Factoredness and Learnability

For the multi-agent system to achieve high values of the global evaluation
function, G, the allele evaluation functions need to have two properties,
called factoredness and learnability. First the allele evaluation func-
tions of each agent should to be factored with respect to G, intuitively
meaning that when an agent choses an allele that improves its allele eval-
uation function, this choice also improves the global evaluation function
(i.e. G and gη are aligned). Also when an agent choses an allele that re-
duces G, it should also reduce gη. Formally an evaluation function gη is
factored when:

gη(z) ≥ gη(z′) ⇔ G(z) ≥ G(z′) ∀z, z′ s.t. z−η = z′−η .

where z−η and z′−η contain the alleles not chosen by agent η. In game
theory language, the Nash equilibria of a factored system are local maxima
of G. In addition to this desirable equilibrium behavior, factored systems
also automatically provide appropriate off-equilibrium incentives to the
agents.

In addition to being factored, the agents’ allele evaluation functions
should be highly learnable, intuitively meaning that an agent’s evaluation
function should be sensitive to its own choice of allele and insensitive to
the choices of other agents. For a given chromosome z, the higher the
learnability, the more gη(z) depends on the allele choice of agent η, i.e.,
the better the associated signal-to-noise ratio for η.

As a trivial example, any “team game” in which all the allele evalua-
tion functions equal the global evaluation G is factored [3]. Most genetic
algorithms either explicitly or implicitly use this global evaluation to eval-
uate alleles. However in a large system, an agent will have a difficult time
discerning the effects of its choice of allele on G. As a consequence, each
η has difficulty achieving high gη (i.e. G has low learnability).

3.2 Difference Evaluation Functions

It is desirable for an agent’s allele evaluation function to be factored and
to have high learnability. Factoredness assures that an agent will try to
produce alleles that maximize the fitness of the chromosome. Having a
highly learnable evaluation function will reduce the number of trials that
are needed for an agent to achieve this high level of fitness. An evaluation
function that is factored, yet still highly learnable (unlike the G) is the
difference evaluation function, defined as follows:

Dη = G(z)−G(z−η, Cη) , (2)



where z−η contains all the alleles chosen by agents other than agent η. The
allele, zη, chosen by agent η is replaced with the fixed constant Cη. Such
difference evaluation functions are factored no matter what the choice of
Cη because the second term does not depend on η’s choice of allele [8].
Furthermore, they usually have far better learnability than does a team
game because the second term of D removes a lot of the effect of other
agents (i.e., noise) from η’s evaluation function. This evaluation function
has proven effective in many multi-agent system domains including net-
work routing, job scheduling and control [8, 7]. Because it is effective, Dη

will be used in this paper too.
While this paper focuses on finding chromosomes that encodes neural

networks, a multi-agent system using the difference allele evaluation can
be used to find almost any type of chromosome that is separated into
alleles. However, in many domains Dη can be difficult to evaluate and
great care has to be given to approximate Dη in such away that it retains
its high learnability. Section 4 discusses the issues with computing Dη,
when the chromosome describes a controller used in a Markov Decision
Process and Section 5 goes into to more specific issues with effectively
approximating Dη when the chromosome describes a neural network.

4 Difference Evaluation for MDPs

A Markov Decision Process (MDP) represents an important class of con-
trol problems, where a decision maker bases its action on its current state
without a need to know its previous actions or states. The problems of
pole balancing, robot navigation and rocket control all can be represented
as MDPs. In this paper the decision maker is called an MDP-agent (not
to be confused with an agent in the multi-agent system) and uses a neural
network to map states into actions. At every time step, the state of the
MDP-agent is fed into the input of its neural network, and the action of
the agent is determined from the output of the neural network. After the
MDP-agent takes an action it receives a reward and moves to a different
state. Both the reward and the new state are functions of the action and
the previous state. At the beginning of a trial, the MDP-agent starts in
a start-state and over the course of the trial takes T actions, receives T
rewards and enter T states. The goal of the system is to maximize the
sum of rewards received during a trial. Given the agent’s start-state, this
sum of rewards completely depends on the neural network it uses. The
remainder of this section will show how a multi-agent system can be used
to produce a neural network that performs well in an MDP.



Since the goal of the MDP is to maximize the sum of rewards received
during a trial, this sum is used as the global fitness evaluation function
for the multi-agent system:

G(z) =
∑

t

Rt(z) , (3)

where Rt(z) is the reward received at time step t, and z is the chro-
mosome defining the neural network used by the MDP-agent. Note that
this equation assumes a fixed start-state, which enables each reward to
be represented as a function of a chromosome. Given the global fitness
function, the difference allele evaluation function is:

Dη(z) = G(z)−G(z−η, Cη) (4)

=
∑

t

Rt(z)−
∑

t

Rt(z−η, Cη) . (5)

This is the function that each agent uses to evaluate the allele it chose
at the beginning of the trial. Computing the second term of the differ-
ence allele evaluation, G(z−η, Cη), may be difficult. Recall from Section 3
that G(z−η, Cη) returns what the global evaluation would be if agent η’s
choice of allele were changed to an arbitrary allele Cη. In general, comput-
ing G(z−η, Cη) would necessitate running an entire trial using the chro-
mosome (z−η, Cη) defining the neural network for the MDP agent. This
computation would have to be done for every agent η. While computation-
ally difficult in simulated environments, the computation of G(z−η, Cη)
would often be completely impractical in real environments. For exam-
ple consider the rocket-control domain where a rocket is controlled by
a neural network defined by 100 alleles. After a single rocket test, the
rocket would have to be tested 100 more times just to compute the allele
evaluation functions for the initial test.

To overcome the difficulties in computing G(z−η, Cη), an estimate
can be made by determining which rewards received during a trial were
affected by agent η’s choice of allele. Recall that G(z−η, Cη) is a sum of
rewards:

∑
t Rt(z−η, Cη). Also the reward for time step t is a function of

the action at time step t and all the previous actions. Since the actions are
the output of the neural network, they are functions of the chromosome.
Therefore a reward Rt(z−η, Cη) can be represented as:

Rt(z−η, Cη) = Rt(a1(z−η, Cη), · · · , at(z−η, Cη)) , (6)

where at(z−η, Cη) is the action taken at time t. Therefore if agent η’s
choice of allele does not significantly affect any action before time t, it



should not significantly affect any reward before time t. Let the level of
how much an allele affects an action be formally defined as the action
sensitivity at time t :

Lη,t(z) =
δat((z−η, zη))

δzη
, (7)

In addition define Tη as the first time step in which Lη,t(z) is greater than
a threshold τ . For all t < Tη, the choice of zη has little influence on the
MDP-agent’s moves and therefore the MDP-agent’s rewards. The values
of Rt(z−η, Cη) can then be approximated as Rt(z) for all t < Tη. For time
steps after Tη, the value of Rt(z−η, Cη) is unknown. As a first approxima-
tion, these unknown reward values can be set to zero. An agents difference
allele evaluation function Dη(z) can then be computed as follows:

Dη(z) =
∑

t

Rt(z)−
∑
t<Tη

Rt(z) (8)

=
∑
t≥Tη

Rt(z) . (9)

The setting of the threshold τ moves the tradeoff between factoredness
and learnability. When τ is very small, the difference evaluation function is
almost always factored since it includes all the rewards an agent influences
by even the smallest amount. However it has low learnability since Tη is
close to zero making the difference evaluation almost the same as the
global evaluation. In contrast, when τ is large, the difference evaluation
is very learnable since many of the rewards are be removed from the
evaluation, but it can be very far from being factored since the agent
could have a significant influence over many of the removed rewards. In
addition to the setting of τ , the value of Tη is also highly dependent on
the type of neural network used. This issue is explored in the next section.

5 MLPs vs. RBFs for Markov Decision Problems

The controller has been assumed to be a neural network, but its type has
not been specified. However, the type of network influences the value of
Tη, the first time step that an agent’s choice of allele significantly affects
the output of the neural network. The value of Tη is important because it
is used to estimate Dη(z). If Tη tends to be close to the first time step for
most agents, then the value the second term of of the Dη(z) will be close
to zero and then Dη(z) will essentially be the global evaluation function.



While Dη(z) would still be factored, none of the learnability advantages of
allele evaluation functions will be achieved. This section compares Multi-
Layer Perceptrons and Radial Basis Function Networks with respect to
their affect on the value of T (η).

5.1 Multi-Layer Perceptron

Consider a two-layer Multi-Layer Perceptron (MLP) [2] where each allele,
zη, determines one of the network weights. At each time step the current
state is fed into the input layer of the MLP, and the action for the agent
in that state is taken from the output layer. For MLPs with sigmoid
activation functions, the output of the network is a(s) = g(

∑
i wiφi(s))

where φi(s) is the evaluation for hidden unit i and g(x) is the sigmoid
function, 1

1+e−x . The action sensitivity for a time t is therefore:

Lη,t(z) = g(
∑

i

wiφi(st))(1− g(
∑

i

wiφi(st)))φη(st) .

Note that the action sensitivity will be low either when the network is
saturated or the activation of the hidden unit is low. If the network is
saturated, little information is going to be gained from the trial, and
some external mechanism will have to be applied to get the system out of
saturation. In general there is no reason to expect the output of the hidden
unit to be low, so that the first time an agent’s action has significant
impact on the output of the network is likely to be very early in the trial.
Therefore the value of Tη is likely to be close to zero for most agents.
This problem arises from the highly distributed nature of MLPs, where
every weight will have an influence on the network output at most time
steps. If an MLP is used as the controller, the allele evaluation function,
Dη(z), is likely to have low learnability since it would have the same value
as the global evaluation function. A system using MLPs in this context
would therefore need many trials before a high performance MLP could
be discovered.

5.2 Radial Basis Function Networks

Instead of an MLP, a radial basis function network (RBFN) can be used
[2]. Like the MLP, the state is fed into the input layer of the RBFN and
the action is determined by the output of the RBFN. Consider a standard
RBFN with n bases with fixed width d. The output of the RBFN is a
linear sum of the basis activations, a(s) =

∑
η wiφη(s), where φη(s) is the



basis function and weight wη is the action of agent η. For RBFNs, the
action sensitivity at time t is simply equal to φη(st), the activation of the
basis function. RBFNs typically use gaussian activation functions of the
form:

φη(s) = e
1
2
(s−cη)2/d2

, (10)

where cη is the centroid of the basis function. Due to the localized nature
of this type of activation function, one can expect that the value of Lη,t

will be very low for most states. Only states that are close to the centroid
will produce significant activation. Therefore Tη will be equal to the time
step that the MDP entered a state that was close to the centroid φη.
In many cases Tη will not be close to zero and the value of Dη(z) will
be significantly more learnable than the global evaluation function. This
increased learnability arises from the rewards that were not influence by
agent η’s choice of allele being removed from Dη(z). Since Dη(z) is more
learnable when RBFNs are used, the multi-agent system using Dη(z)
should be able to discover a high performance RBFN with fewer trials
than a high performance MLP. Note that this result is only in the context
of the specific approximation to Dη(z) previously described. For other
forms the allele evaluation functions, MLPs could be superior.

6 Results

The effectiveness of a multi-agent system in discovering an RBFN that
performs well as a control policy was tested on the MDP version of the
double pole balancing experiment. In this experiment there is a cart that
can move along one axis. Two poles of different lengths are attached to
the cart, and can pivot at the attachment point. The controller can apply
a positive or negative force to the cart. The goal of the controller is to
keep the two poles from falling while keeping the position of the cart
within a fixed set of bounds. The state space consists of six values: the
position and velocity of the cart, and the angles and angular velocities of
the two poles. At each time step a reward of 1 is received. The trial ends
when either the angle of either pole or the cart position goes outside of
bounds.

The learning algorithms were evaluated based on the number of tri-
als that needed to be completed before a solution could be found that
balanced the poles for 50,000 time steps. In this particular problem, the
length of one of the poles was one meter and the other was one tenth of
a meter. The time resolution was 20 milliseconds. For all five algorithms,
the same code base was used to simulate the pole.



Algorithm Average Trials Deviation in Mean

SANE 12,600
ESP 3,800
NEAT 3,578 257
RBFN (G) 4,025 178
RBFN (Dη) 2,815 91

Table 1. Effectiveness of Allele-evaluations in Double Pole Balancing Prob-
lem. The multi-agent system evolving RBFN controllers and using Dη for allele eval-
uations finds a solution in 20% fewer trials than best previously existing algorithm.

The controller was an RBFN with six input units and one output unit.
The basis functions were added dynamically to cover the input space as
described in [1]. In a typical problem several hundred basis functions
were created. At every time step the six values of the state space were
fed into the RBFN and its output determined the force applied to the
cart. The controller RBFN was encoded by a chromosome produced by
a multi-agent system. In one set of experiments the difference evaluation
function, Dη, was used by the agents to evaluate their choice of allele. In
a second set of experiments the global fitness evaluation was used by the
agents to evaluate their choice of allele.

Based on the evaluation function, the agents made their choice of
allele using a very simple evolutionary algorithm, based on a population
of ten weights. Each agent starts with a random population based on
identical distributions, but through time each population converges to
a different distribution through self-organization. At the beginning of a
trial, an agent would select the most fit weight 90% of the time and a
random weight 10% of the time. At the end of the trial, it would evaluate
its choice of weight based on its allele evaluation function. It would then
remove the worst performing weight from its population and replace it
with a mutated copy of the best performing weight. The mutation was
done using the Cauchy Distribution. With time each population tends
to slowly converge to a set of similar alleles. This convergence allows for
self-organization as the agents make more diverging choices of alleles in
early trials and then begin to refine their choices based on the choices of
the other agents.

The results averaged over for 400 runs are shown in Table 1. The
RBFN using a global evaluation function performs almost as well as the
two existing high performance algorithms, ESP and NEAT [4, 6]. This is
to be expected since these algorithms have some features in common. Sim-
ilar to ESP, the multi-agent system evolves separate “sub-populations.”
It is also related to the speciation in NEAT, since each agent evolves
specialized populations.



However the results for using Dη are significantly better than for G.
This increased performance can be expected since the Dη for an agent
eliminates the reward values that the agent could not possibly influence,
therefore giving it a cleaner signal.

7 Conclusion

Many single-agent problems that can be solved by genetic algorithms,
can also be solved by a self-organizing multi-agent system, where each
agent focuses on the simpler problem of producing a single allele. Instead
of utilizing recombination to search for a good chromosome, the multi-
agent approach has a large advantage in that each agent can use its own
evaluation function to evaluate a single allele independently. Even though
each agents begins identically, through their allele evaluation functions,
they self-organize to produce a set of compatible alleles that combine to
form a global solution. This paper shows how evaluation functions known
to be effective in multi-agent problems can be used to evaluate alleles
as well. The resulting multi-agent system is able to produce a solution
using 20% fewer trials than the best previously existing method in the
difficult double-pole-balancing problem, making it a promising approach
to problems where the alleles have some independence.

References

1. Adrian Agogino. Design and Control of Large Collections of Learning Agents. PhD
thesis, The University of Texas at Austin, December 2003.

2. Christopher M. Bishop. Neural networks for pattern recognition. Oxford University
Press, 1996.

3. R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement
learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems - 8, pages 1017–1023. MIT Press, 1996.

4. F. Gomez and R. Miikkulainen. Active guidance for a finless rocket through neu-
roevolution. In Proc of GECCO-2003, Chicago, IL., 2003.

5. David Moriarty and Risto Miikkulainen. Forming neural networks through efficient
and adaptive coevolution. Evolutionary Computation, 5:373–399, 2002.

6. K. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolving
neural network topologies. In Pro. of GECCO-2002), San Francisco, CA, 2002.

7. K. Tumer, A. Agogino, and D. Wolpert. Learning sequences of actions in collectives
of autonomous agents. In Proc. of AAMAS 2002, Bologna, Italy, July 2002.

8. D. H. Wolpert, K. Tumer, and J. Frank. Using collective intelligence to route
internet traffic. In Advances in Neural Information Processing Systems - 11, pages
952–958. MIT Press, 1999.


