
Implementation of a Prototypal Simulator
for a Formal Model Based on

Pattern Matching and Recombination

Kazuto Tominaga

Tokyo University of Technology, School of Computer Science
1404-1 Katakura, Hachioji, Tokyo 192-0982 Japan

tomi@acm.org

Abstract. We implemented a prototypal simulator for a formal model
based on pattern matching and recombination, which is a variation of
artificial chemistries. The model was designed to capture the properties
of complex systems, including those that show self-organizing behavior.
The simulator is implemented in Ruby, an object-oriented programming
language. The development of the software showed that reducing the
number of recombination possibilities by aggregating molecules of the
same type contributes to a large performance improvement.

1 Introduction

Self-organization phenomena are found in various forms in natural systems. One
interesting from of self-organization is organization of structures, such as onto-
genesis. For studying such phenomena, artificial chemistries [1] are suitable tools
because they model the behavior of systems in terms of reactions among and
changes to molecules: structural self-organization can be modelled as processes
of forming a large molecule in the course of a sequence of reactions.

We developed a prototypal simulator for an artificial chemistry based on
pattern matching and recombination [2]. The model was designed to capture
the properties of complex systems, including those that show self-organizing
behavior. In this paper, we discuss the implementation of the simulator in detail
in order to discern useful techniques for implementing such simulators.

2 The Model

The developed software simulates the behavior of systems that are described in
terms of a formal model [2], which is a variation of artificial chemistries [1]. In
other words, the simulator is an interpreter for “programs” written as definitions
in the model. We will explain the model by way of example in this section. A
more formal definition is given in [3].

2.1 A Simple Example

In this model, a molecule is represented as one or more sequences of elements.
Let us suppose we are to have a world that contains series of ab, that is, ab,
abab, ababab, and so on. Each of these is an object, consisting of elements a and
b. The object abab can be formed by concatenating two objects of the form ab.
Let us have an object cd to help this concatenation, just as a catalyst does in
natural chemical reactions.

The world has a multiset of objects that holds the objects existing in the
world at each point in time. Let us call this multiset the working multiset. This
multiset has one cd and numerous ab at first (Figure 1).

'

&

$

%

c d

a b

a b

a b

a b

a b

a b

a b

a b

a b

a b

Fig. 1. Initial working multiset.

Objects of the form ab can be concatenated by the object cd by the following
process.

1. cd attaches at the end of an object that ends with ab to form one new
compound object.

2. To this object, an object that starts with ab attaches and forms a new object.
3. cd parts from this object.

Each of the above corresponds to a recombination rule. The recombination rules
are illustrated in Figure 2. Note that an object can be a single line (such as cd
in Rule 1) or a stack of lines adjoined top to bottom (such as the compound of
· · ·ab and cd in Rule 1).

By applying the recombination rules in an appropriate order, any sequence
of the form abab· · · can eventually be obtained. But a problem arises here: the
length of the sequence is limited by the number of objects of the form ab in the
working multiset at the initial state. To obviate this problem, we introduce an
infinite supply of ab. Let us call it the source of ab. This source supplies one ab
at a time to the working multiset. Now it is sufficient for the initial multiset to
contain only one object cd. This completes the system that models our world
(Figure 3).

The system is interpreted nondeterministically: any sequence of applications
of the rules and supplying ab from the source is considered. Then this system
models the world in which objects ab· · · of any length are generated.

a b

c d

?

a b
c d

Rule 1

a b
c d

a b

?

a b a b
c d

Rule 2

a b a b
c d

?

a b a b

c d

Rule 3

Fig. 2. Recombination rules.

Working multiset'

&

$

%

c d

a b

a b

a b

¡ª
¾@I

Rule 1

Rule 2

Rule 3

Source of ab

Fig. 3. A simple system.

2.2 Components of the Model

Elements. We have four types of elements, namely, a, b, c and d, in the example
system.

Objects. An object is a stack of sequences of elements. An example object is
0:abab/3:cd/, which is depicted as follows.

a b a b
c d

Each sequence of elements, called a line, is denoted by “number:sequence/”.
Number is the offset of the line from the first line; it is always 0 for the first line.

Patterns. A pattern matches (or does not match) an object. A pattern is com-
posed of the following components.

– literal : a literal is denoted by an element, and it matches the element.
– element wildcard : denoted by a digit (0 to 9). An element wildcard matches

any element.
– sequence wildcard : denoted by a digit and an asterisk (*0 to *9 and 0* to

9*). A sequence wildcard is allowed to appear only at the beginning or at
the end of a line. A sequence wildcard that appears at the beginning of a
line is denoted by *0 to *9, and one at the end by 0* to 9*.

An example pattern is 0:*1ab/1:cd/, which is depicted as follows. The offset
of each line decides the position of the first component that is not a sequence
wildcard.

*1 a b
c d

This pattern matches the object 0:abab/3:cd/, but does not match the object
0:abab/1:cd/.

a b a b
c d

matched

a b a b
c d

not matched

Recombination Rules. A recombination rule is expressed as a pair of two mul-
tisets of patterns; let us call these multisets lhs and rhs. A group of objects
matched by lhs is transformed to a group of objects that is represented by rhs.
The element or the sequence of elements matched by a wildcard in lhs is placed
where the same wildcard appears in rhs. To conserve elements in recombina-
tion, and to keep the model simple, the following conditions are imposed on
recombination rules.

– The multiset of literals in lhs equals the multiset of literals in rhs.
– A wildcard in lhs must be unique in lhs.
– A wildcard that appears in lhs must appear once and only once in rhs.

For example, Rule 2 of the example system

a b
c d

a b
- a b a b

c d

is expressed as the following recombination rule.1

[0:*1ab/1:cd/, 0:ab2*/] → [0:*1abab2*/1:cd/]

Sources. A source is defined as an object, and when it operates, it adds one
instance of that object to the working multiset.

Drains. A drain removes objects from the working multiset. A drain is defined
as a pattern, and when it operates, it removes one object that is matched by the
pattern. The example system has no drains.

1 We use [] to denote a multiset (and { } to denote a set).

2.3 Specification of a System

The complete specification of a system is given by defining its elements, sources,
drains, initial multiset and recombination rules. The specification of the example
system is therefore as follows.

– Elements: { a, b, c, d }
– Sources: [0:ab/]
– Drains: none
– Initial multiset: [0:cd/]
– Recombination rules:

[0:*1ab/, 0:cd/] → [0:*1ab/1:cd/] (Rule 1)
[0:*1ab/1:cd/, 0:ab2*/] → [0:*1abab2*/1:cd/] (Rule 2)
[0:*1abab2*/1:cd/] → [0:*1abab2*/, 0:cd/] (Rule 3)

2.4 Interpretation of the System

A system described in this model is interpreted as follows.

1. Initialize the working multiset to have a specified collection of objects.
2. Do one of the following.

– Apply one recombination rule to a collection of objects.
– Operate one source.
– Operate one drain.

3. Go to Step 2.

The interpretation is nondeterministic: every possible sequence of choices from
the initial state is considered. Conditions for termination can be specified (for
example, if a specified object appears in the working multiset, or a specified
drain operates), or the behavior can be open-ended.

3 Implementation

We implemented a prototypal simulator for this model using Ruby [4], an object-
oriented programming language with a number of built-in classes — such as char-
acter strings, arrays and hashes — that are particularly useful for implementing
our system.

To avoid confusion, in the following discussion we will use the word molecule
to refer to an object in the formal model, and the word object to refer to an
object in the object-oriented programming language.

The basic design of the implementation is as follows.

– Molecules are kept in an AVL tree [5], an instance of the class AVL [6, 7];
this tree represents the working multiset. A key is a string of characters that
denotes the molecule, such as 0:abab/1:cd/, and the stored value is a pair
(an array of two elements) 〈num,mol〉 where num is the number of molecules
of that form, and mol is the internal representation of the molecule.

– Operations of the sources, the drains, and the recombination rules are per-
formed in sequence; the decision as to which operates next is made randomly
at each step.

3.1 Programs

The system is described as a “program” that defines the components of the
system. A program for the example system is given below. The program is a
code fragment in Ruby, and the components are defined as objects in Ruby.

Sources = ["0:ab/"]

Drains = []

Initpool = [[1,"0:cd/"]]

Rules = [

[["0:*1ab/","0:cd/"],["0:*1ab/1:cd/"]], # Rule 1
[["0:*1ab/1:cd/","0:ab2*/"],["0:*1abab2*/1:cd/"]], # Rule 2
[["0:*1abab2*/1:cd/"],["0:*1abab2*/","0:cd/"]] # Rule 3
]

SRCPROB = 1

DRNPROB = 1

The array Sources represents the sources and Drains represents the drains.
Initpool is the initial working multiset, which contains one molecule of the
form 0:cd/. The recombination rules are defined as the array Rules: each line,
corresponding to one rule, is an array of two elements; the first element is lhs, and
the second is rhs. The above definitions are easily obtained from the specification
of the system given in Section 2.3. The constants SRCPROB and DRNPROB specify
probabilities for operating the sources and drains (see the next section).

3.2 Dealing with Nondeterminism

In processing programs written in a logic programming language, or in processing
terms in a term-rewriting system, the nondeterminism of the system is often
dealt with by backtracking. But in simulating a system modelled in an artificial
chemistry, backtracking is generally not practical because the number of possible
rule applications is often vast due to the large number of molecules contained in
the system.

In this implementation, the nondeterminism of the model is dealt with by
random choices. In the main loop, the simulator chooses one of the following
operations with equal probability.

– To run the sources randomly; each source operates with the probability of
1/SRCPROB.

– To run the drains randomly; each drain operates with the probability of
1/DRNPROB.

– To apply one of the recombination rules.

If recombination is chosen to be performed, the simulator does the following.

1. For each recombination rule, the simulator lists all the possible combinations
of molecules in the multiset to which the recombination rule can be applied.

2. Then the simulator chooses one combination (and its recombination rule)
from the aggregate lists, and applies the rule to the molecules.

Because one entry in the AVL tree 〈num,mol〉 represents all the molecules of
the same form, the number of entries in the AVL tree is usually far smaller than
the number of molecules. For example, only 41 entries are required to express
1643 molecules in the example execution of solving a 3SAT problem shown in
Section 4. This makes the enumerating of possible recombinations less costly.

3.3 Pattern Matching

Pattern matching in this model is easier than that of regular expressions for char-
acter strings used in general programming languages, since the expressive power
of patterns employed in this model is limited, specifically because a sequence
wildcard can only appear at either end of a line: it gives fewer possibilities of
matching positions.

Instead of adopting the regular-expression class of Ruby, we implemented the
pattern-matching function by array operations, aiming future implementations
at faster platforms such as those using C [8].

4 Examples

An example execution of the program given in Section 3.1 is shown below. The
number after #types is the number of variations of molecules in the working
multiset. (cmd) is the prompt for the user; the execution continues with the
next iteration when the user pushes the return key.

*** iteration 0: #types 1 ***

<1 0:cd/>

(cmd)

run sources

*** iteration 1: #types 2 ***

<1 0:ab/> <1 0:cd/>

(cmd)

run sources

*** iteration 2: #types 2 ***

<2 0:ab/> <1 0:cd/>

(cmd)

recombination

*** iteration 3: #types 2 ***

<1 0:ab/> <1 0:ab/1:cd/>

(cmd)

run drains

*** iteration 4: #types 2 ***

<1 0:ab/> <1 0:ab/1:cd/>

(cmd)

recombination

*** iteration 5: #types 1 ***

<1 0:abab/1:cd/>

(cmd)

recombination

*** iteration 6: #types 2 ***

<1 0:abab/> <1 0:cd/>

(cmd)

After the sixth iteration, a molecule of the form 0:abab/ is generated; the
execution can continue further.

Another example is a program to solve a 3SAT problem [2]. This program
finds assignments to variables x1, x2, x3 and x4 that satisfy f = t1t2t3 = (x1 +
x2 + x′3)(x

′
1 + x3 + x4)(x2 + x3 + x′4), where x′i denotes the negation of xi.

Sources = [

"0:a/","0:b/","0:c/","0:q/","0:z/",

"0:t/","0:f/","0:d/","0:as/","0:bs/","0:cs/",

"0:aptdddz/","0:apdtddz/","0:apddfdz/",

"0:bpfdddz/","0:bpddtdz/","0:bpdddtz/",

"0:cpdtddz/","0:cpddtdz/","0:cpdddfz/"

]

Drains = []

Initpool = []

Rules = [

Rules to find assignments that make t1 true
[["0:ap1*/","0:as/","0:a/","0:q/"],["0:ap1*/1:as/0:aq/"]],

[["0:*1t2*/-1:as/0:*3/","0:t/"],["0:*1t2*/0:as/0:*3t/"]],

[["0:*1f2*/-1:as/0:*3/","0:f/"],["0:*1f2*/0:as/0:*3f/"]],

[["0:*1d2*/-1:as/0:*3/","0:d/"],["0:*1d2*/0:as/0:*3d/"]],

[["0:*1z/-1:as/0:*2/","0:z/"],["0:*1z/","0:as/","0:*2z/"]],

[["0:aq1*/","0:bp2*/"],["0:aq1*/0:bp2*/"]],

Rules to find assignments that make t1t2 true
[["0:aq1*/0:bp2*/","0:bs/","0:b/","0:q/"],["0:aq1*/0:bp2*/1:bs/0:bq/"]],

[["0:*1t2*/0:*3t4*/-1:bs/0:*5/","0:t/"],["0:*1t2*/0:*3t4*/0:bs/0:*5t/"]],

[["0:*1t2*/0:*3d4*/-1:bs/0:*5/","0:t/"],["0:*1t2*/0:*3d4*/0:bs/0:*5t/"]],

[["0:*1d2*/0:*3t4*/-1:bs/0:*5/","0:t/"],["0:*1d2*/0:*3t4*/0:bs/0:*5t/"]],

[["0:*1f2*/0:*3f4*/-1:bs/0:*5/","0:f/"],["0:*1f2*/0:*3f4*/0:bs/0:*5f/"]],

[["0:*1f2*/0:*3d4*/-1:bs/0:*5/","0:f/"],["0:*1f2*/0:*3d4*/0:bs/0:*5f/"]],

[["0:*1d2*/0:*3f4*/-1:bs/0:*5/","0:f/"],["0:*1d2*/0:*3f4*/0:bs/0:*5f/"]],

[["0:*1d2*/0:*3d4*/-1:bs/0:*5/","0:d/"],["0:*1d2*/0:*3d4*/0:bs/0:*5d/"]],

[["0:*1z/0:*2z/-1:bs/0:*3/","0:z/"],["0:*1z/","0:*2z/","0:bs/","0:*3z/"]],

[["0:bq1*/","0:cp2*/"],["0:bq1*/0:cp2*/"]],

Rules to find assignments that make f = t1t2t3 true
[["0:bq1*/0:cp2*/","0:cs/","0:c/","0:q/"],["0:bq1*/0:cp2*/1:cs/0:cq/"]],

[["0:*1t2*/0:*3t4*/-1:cs/0:*5/","0:t/"],["0:*1t2*/0:*3t4*/0:cs/0:*5t/"]],

[["0:*1t2*/0:*3d4*/-1:cs/0:*5/","0:t/"],["0:*1t2*/0:*3d4*/0:cs/0:*5t/"]],

[["0:*1d2*/0:*3t4*/-1:cs/0:*5/","0:t/"],["0:*1d2*/0:*3t4*/0:cs/0:*5t/"]],

[["0:*1f2*/0:*3f4*/-1:cs/0:*5/","0:f/"],["0:*1f2*/0:*3f4*/0:cs/0:*5f/"]],

[["0:*1f2*/0:*3d4*/-1:cs/0:*5/","0:f/"],["0:*1f2*/0:*3d4*/0:cs/0:*5f/"]],

[["0:*1d2*/0:*3f4*/-1:cs/0:*5/","0:f/"],["0:*1d2*/0:*3f4*/0:cs/0:*5f/"]],

[["0:*1d2*/0:*3d4*/-1:cs/0:*5/","0:d/"],["0:*1d2*/0:*3d4*/0:cs/0:*5d/"]],

[["0:*1z/0:*2z/-1:cs/0:*3/","0:z/"],["0:*1z/","0:*2z/","0:cs/","0:*3z/"]]

]

SRCPROB = 2

DRNPROB = 1

The molecules starting with ap specified in the initial multiset represent the
assignments that satisfy t1. The element t means true, f false, and d don’t-care.
For example, the molecule 0:aptdddz/ represents the assignment x1 (i.e., true
to x1 and don’t-care to the other variables), which satisfies t1 = (x1 + x2 + x′3).
The molecules starting with bp satisfy t2, and those starting with cp satisfy
t3. The recombination rules gradually make molecules of forms starting with aq
(satisfying t1)2, starting with bq (satisfying t1t2), and starting with cq (satisfying
f , which are solutions to the problem).

An example execution is as follows.

*** iteration 0: #types 0 ***

the initial multiset is empty
(cmd)

run sources

*** iteration 1: #types 8 ***

<1 0:apddfdz/> <1 0:apdtddz/> <1 0:b/> <1 0:bpdddtz/> <1 0:bpddtdz/> <1 0

:bs/> <1 0:cs/> <1 0:f/>

(cmd)

run sources

*** iteration 2: #types 15 ***

<1 0:apddfdz/> <2 0:apdtddz/> <1 0:as/> <2 0:b/> <1 0:bpdddtz/> <2 0:bpdd

tdz/> <1 0:bpfdddz/> <1 0:bs/> <1 0:cpdddfz/> <1 0:cpddtdz/> <1 0:cpdtddz

/> <1 0:cs/> <1 0:d/> <2 0:f/> <1 0:t/>

(cmd) cq\w\w\w\wz ← the user specified a terminating condition
auto run until /cq\w\w\w\wz/ found? [y/N] y

run drains

*** iteration 3: #types 15 ***

<1 0:apddfdz/> <2 0:apdtddz/> <1 0:as/> <2 0:b/> <1 0:bpdddtz/> <2 0:bpdd

tdz/> <1 0:bpfdddz/> <1 0:bs/> <1 0:cpdddfz/> <1 0:cpddtdz/> <1 0:cpdtddz

/> <1 0:cs/> <1 0:d/> <2 0:f/> <1 0:t/>

omitted output of 506 iterations
recombination

*** iteration 509: #types 41 ***

<49 0:a/> <81 0:apddfdz/> <7 0:apddfdz/1:as/0:aq/> <2 0:apddfdz/2:as/0:aq

d/> <1 0:apddfdz/3:as/0:aqdd/> <3 0:apddfdz/4:as/0:aqddf/> <1 0:apddfdz/5

:as/0:aqddfd/> <87 0:apdtddz/> <2 0:apdtddz/1:as/0:aq/> <3 0:apdtddz/2:as

/0:aqd/> <77 0:aptdddz/> <3 0:aptdddz/1:as/0:aq/> <1 0:aptdddz/2:as/0:aqt

/> <1 0:aptdddz/3:as/0:aqtd/> <2 0:aptdddz/5:as/0:aqtddd/> <1 0:aqddfdz/0

:bpddtdz/1:bs/0:bq/> <1 0:aqddfdz/0:bpddtdz/3:bs/0:bqdd/> <1 0:aqddfdz/0:

bpfdddz/> <1 0:aqddfdz/0:bpfdddz/1:bs/0:bq/> <2 0:aqdtddz/0:bpfdddz/4:bs/

0:bqftd/> <1 0:aqtdddz/0:bpddtdz/1:bs/0:bq/> <1 0:aqtdddz/0:bpfdddz/> <68

0:as/> <79 0:b/> <92 0:bpdddtz/> <93 0:bpddtdz/> <94 0:bpfdddz/> <1 0:bq

ddftz/0:cpdddfz/3:cs/0:cqdd/> <1 0:bqdttdz/> <84 0:bs/> <93 0:c/> <89 0:c

pdddfz/> <110 0:cpddtdz/> <93 0:cpdtddz/> <1 0:cqdttdz/> <97 0:cs/> <29 0

:d/> <94 0:f/> <44 0:q/> <73 0:t/> <80 0:z/>

match for /cq\w\w\w\wz/ found: 0:cqdttdz/

2 This process is redundant because the molecules starting with ap represent assign-
ments that satisfy t1, but we introduced this step for symmetry and understandabil-
ity.

clear pattern and continue? [Yn] (n to exit)

The molecule 0:cqdttdz/ represents the assignment x2x3, which makes f =
(x1 + x2 + x′3)(x

′
1 + x3 + x4)(x2 + x3 + x′4) true.

5 Discussion

The simulator was implemented as approximately 600 lines of code in Ruby. The
main reasons of this easy implementation are as follows.

– A molecule can be represented using a traditional data structure, namely,
an array of character strings, and it is processed by traditional string opera-
tions, such as pattern matching. The data structure and the operations are
supported by the classes and the functions of the programming language.

– A molecule is denoted simply by its structure, and no additional information
is necessary, such as its state or location.

– The model does not have the notion of time steps. Because of this, the
nondeterminism of the model can be dealt with largely at the discretion of
the implementation.

Aggregating molecules of the same form as a pair 〈num,mol〉 and storing
them in an AVL tree contributes to good performance, since it reduces the
number of possible combinations that have to be taken into account. In a previous
implementation (also in Ruby), the working multiset was represented as an array
(one molecule occupied one element of the array), and it solved the same 3SAT
problem in approximately 46.5 CPU hours on a Pentium 4 (1.8GHz) PC with
1GB memory; the final working multiset contained 1805 molecules of 114 types.
In contrast, this implementation solved the problem in 4.4 CPU seconds on the
same machine; the final working multiset had 1643 molecules of 41 types.

The simulator chooses one from among all the possible applications of the re-
combination rules. Computing all possibilities is more costly than the method in
which molecules are first chosen randomly from the working multiset before ap-
plicable rules are sought. Furthermore, from the viewpoint of modelling physical
or chemical reactions, the latter approach seems more natural. We will develop
a simulator adopting this approach.

6 Concluding Remarks

We developed prototypal software that simulates the behavior of systems de-
scribed in a formal model, which is a variation of artificial chemistries. The sim-
ulator was implemented easily because the model is based on traditional string
operations such as pattern matching, and the platform of the implementation,
Ruby, has convenient functions and classes that support those operations.

Although we have not given example descriptions for self-organizing systems,
we believe that the model can describe systems that show some kind of structural
self-organization. If indeed it can, a simulator of this model will be helpful to
study such systems.

References

1. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries — a review. Artificial
Life 7 (2001) 225–275

2. Tominaga, K.: A formal model based on affinity among elements for describing be-
havior of complex systems. Technical Report UIUCDCS-R-2004-2413, Department
of Computer Science, University of Illinois at Urbana-Champaign (2004)

3. Tominaga, K.: A discussion on self-reproducing machines using an artificial chem-
istry based on pattern matching and recombination (2004) In review.

4. Matsumoto, Y.: Ruby In A Nutshell. O’Reilly & Associates (2001)
5. Adel’son-Vel’skĭi, G.M., Landis, E.M.: An algorithm for the organization of infor-

mation. Soviet Mathematics, Doklady 3 (1962) 1259–1263 English translation of
Doklady Akademii nauk SSSR, Tom 146, Nos. 1–6, 1962 (Russian).

6. Pfaff, B.: libavl (1999) C library manipulating AVL trees.
7. Pizlo, F.: Ruby/avl (2001) Ruby interface to libavl.
8. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Second edn. Pren-

tice Hall (1988)

