

GEVOSH: A Grammatical Evolution System

Patrick Berarducci1, Demetrius Jordan1, David Martin1, Jennifer Seitzer1

 1 Computer Science Department, University of Dayton,

Dayton, OH 45469-2160

{ berardpb, jordandt, martindw, seitzer @ notes.udayton.edu}

Abstract. In this paper, we present system GEVOSH, Grammatically
Evolved Hashing. GEVOSH evolves hashing functions using grammati-
cal evolution techniques. Hashing functions are used to expedite search
in a wide number of domains. In our work, GEVOSH created hashing
functions that, on average, perform better than many standard (human-
generated) hash functions extracted from the literature. In this paper,
we present the architecture of system GEVOSH, its main components
and algorithms, and resultant generated hash functions along with com-
parisons to standard, human-generated functions.

1 Introduction

Grammatical Evolution is a method of machine generating computer programs of any
arbitrary computer language, so long as that language has an associated BNF (Backus-
Naur Form) grammar [Ryan, 1998]. Our system, Grammatically Evolved Hashing
(GEVOSH), uses the method of Grammatical Evolution to generate hashing functions.
The GEVOSH system produces hash functions by using a diminutive C++ grammar as
its input.

1.1 GRAMMATICAL EVOLUTION

The precursors of Grammatical Evolution are Genetic Algorithms (GA) and Genetic
Programming (GP). Genetic Algorithms is an area of artificial intelligence that can be
described as “a search algorithm based on the mechanics of natural selection and natu-
ral genetics” [Stanford]. Genetic Programming is “the method of creating computer
[Hyper Dictionary]. Grammatical Evolution (GE) can be defined as a grammar based
genetic algorithm, the purpose of which is to generate executable programs. GE is
clearly similar to GP. GE, however, has the distinction that its input is a BNF gram-
mar which allows GE’s to generate programs in any language. The use of BNF also
allows GE systems to more closely model real world DNA [Ryan, 1998] [Brabazon,

2002] [O’Neill, 2002]. Backus Naur Form or BNF is a context free meta-language. In
particular, it is “a formal metasyntax used to express context-free grammars” [Uni-
code]. Thus, it is the notation used to specify programming languages.

1.2 HASHING

Hashing is a method of mapping a large range of keys into a smaller range of indices
for compact storage and quick retrieval of information. A collision is the mapping of
two or more keys to the same index; a seek is an attempt to locate an item when a
collision has occurred; linear probing is the attempt to store a key sequentially after
a collision has occurred [Flajolet, 1998]. Thus, the desirable hash function is one that
generates few (if any) collisions, and provides the ability to find information without
exhaustively searching a table of records.

2 The GEVOSH System

The GEVOSH system is designed to generate static hashing functions, and depicts
each member as a unique hash function. The fitness of a member is determined by the
percentage of keys hashed without collision. The fitness grade is used to rank popula-
tion members, and ultimately determine which members of the population will survive
through the next generation. GEVOSH is comprised of four modules, the interaction
of which is shown below in Figure 1.

The Load Grammar Module opens a file specified by the user and reads in the BNF.

Figure 1: GEVOSH System Diagram

The Write Function Module decodes a member of the population to decide which
grammar rules to follow, and ultimately, what code to write out for the function. The
main activity involves the system resolving an identifier by following the BNF rule
number that is given by taking the integer at position i modulo the number of rules for
the given identifier. An example of this resolution can be seen below in Figure 2. The
Gather Statistics Module ascertains the merit of the newly created hash function by
using and measuring the hash function in a prewritten secondary program.

Member: 19 26 13 39 48 6

 Value
Number of
Rules

Rule to
Follow

<Statement-Line> 19 6 1
<var> = <expr> ; 1 0
value = <expr> ; 26 4 2

 value = <expr> <op> <expr>; 13 4 1
value = <var> <op> <expr> ; 1 0
value = value <op> <expr> ; 39 7 4
value = value % <expr> ; 48 4 0
value = value % <num> ; 8 11 8
value = value % 7 ;

Figure 2: Resolution of <statement-line>

Lastly, the Evolution Module assigns fitness values to the members of the population.
It then augments the population occur by spawning the next generation of hash func-
tions through the use of genetic operators as shown below in Figure 3.

Begin GEVOSH-Algorithm()
 Load Grammar
 Randomly Generate N members
 Do Until fitness equals 100 or forced to quit
 For each member of the population
 Write function
 Compile secondary program
 Run secondary program
 Input statistics
 End For
 Compute fitness value
 Evolve population
 End Do
End GEVOSH

 Figure 3: Main Algorithm of GEVOSH

3 Results

We are pleased to report that our system generated two hashing functions that show
extremely promising potential as shown in Figure 4. That is, on average, these two
functions in some ways are superior to six commonly used hashing functions that we
extracted from the literature [Wang, 2002]. These hash functions produce collisions
that are close in value with each other. Our testing involves comparing the number of
seeks and collisions of our functions to these standard hash functions. As of now we
have not simplified GEVOSH 2, but we have simplified GEVOSH 1 and found it to
be a very interesting function. The number of shifts is actually 12 rather than 76
(which is far greater than the number of bits that are used to represent an integer); the
function is quite successful in mapping and retrieving keys,

Even though GEVOSH 1 out performs all other hash functions on average, it can be
seen from below on the graphs that the function is not stable. That is, the generated
function seems to be dependent on the data. The six other functions are not dependent
on the data. The standard deviation of GEVOSH 1 is 0.186 where the standard devia-
tion of the six testing functions are all approximately 0.01. Although GEVOSH 2’s
average percent hit rate without collisions is much lower than all of the other func-
tions, its standard deviation is approximately 0.02, which implies that GEVOSH 2 is
less dependent on the data. In general, we find these results to be promising, since the
GEVOSH system can produce both functions with high averages and low standard
deviations as shown below.

Figure 4: GEVOSH System Created Hash Function and Results

In summary, we believe that the GEVOSH system is exhibiting promising results and,
as in most evolutionary computation systems, we are continuing to run GEVOSH
through days and days of execution to evolve even stronger hash functions.

References

[Ryan, 1998] Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving Programs for an
Arbitrary Language; EuroGP 1998.
[Brabazon, 2002] Brabazon A., Matthews R., O’Neill M., Ryan C. Grammatical Evolution and Corporate
Failure Prediction; GECCO 2002.
[Corman, 1990] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms; The MIT Press, 1990.
[Nicolau, 2002] Nicolau M., Ryan C. LINKGAUGE: Tackling hard deceptive problems with a new linkage
learning genetic algorithm; GECCO 2002.
[O’Neill, 2002] O’Neill M., Ryan C. Investigations into Memory in Grammatical Evolution; GECCO
2002.
[Fogel, 2000] Fogel D. Evolutionary Computation Toward a New Philosophy of Machine Intelligence;
IEEE Inc.
[Flajolet, 1998] Flajolet P. On the Analysis of Linear Probing Hashing; France Algorithms Seminar 1998.
[Wang, 2002] Wang T. Integer Hash Functions; http://www.concentric.net/~Ttwang/tech/inthash.htm.
[Stanford] www.stanford.edu/~buc/SPHINcsX/bkhm15.htm.
[Hyper Dictionary]http://www.hyperdictionary.com/computing/genetic+programming.
[Unicode] http://www.unicode.org/glossary/.

