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Abstract. This paper reports research on the design of structures using genetic 
algorithms.  It presents the design of a program that uses genetic algorithms to 
optimize a truss structure, along with an example of truss optimization.  

1   Introduction 

The use of genetic algorithms (GA) for the optimal design of civil engineering struc-
tures has been explored in recent years.  Ghasemi et al. [1] have demonstrated the 
suitability of GA to address large trusses with many uncertain variables.  This paper 
illustrates how an algorithm of our design can be used to duplicate this earlier work.  
Our larger contribution lies in the application of GA to trusses designed under uncer-
tain conditions (Ganzerli et al [2], [3]).  Our team1 is currently writing up the results 
of research using GA to optimize highly complex trusses.2 

2   Truss Structures 

A truss, found in bridges and roof-supports, is a structure composed of members 
joined at their end points.  See Figure 1.  A fundamental engineering task is to mini-
mize the cross-sectional area of the members, while guaranteeing that the truss sup-
ports a specified load.  This, of course, is an optimization problem.  The task is to 
minimize the overall volume of the truss members while adhering to specified con-
straints:  predicted stresses on the members and the allowable displacements at the 
joints.  Using traditional calculus-based optimization techniques, this is computation-
ally expensive.   But traditional techniques have a further drawback.  They require 
that the function used to model the truss be differentiable, and so, continuous.  But 
members are usually off-the-shelf components, available in a range of discrete sizes.  
The GA allows us to specify truss populations with members drawn from this range.    

                                                           
1 Sara Ganzerli, Department of Civil Engineering, Paul De Palma, and Andrew Burton,  De-

partment of Mathematics and Computer Science.  Ganzerli and De Palma directed the re-
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2 The research presented in this paper was made possible through a McDonald Work Award, 
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The 10-bar truss, whose solution we illustrate, is shown in Fig. 1.  Joints may 
move only horizontally and vertically.  Xi represents the positive displacements, and 
Pi are the loads.  The triangles at Joints A and F indicate that they are externally con-
strained, and so cannot move.  The structural response to the external load consists of 
three terms: 1) the internal forces of each member, 2) the internal stresses (equal to 
the internal forces divided by the members’ cross-sectional areas) and 3) the dis-
placements.  Well-understood matrix relationships allow us to derive structural re-
sponses for a given load condition [4]. 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 1. Ten-bar truss 

3   Optimal Structural Design Using Genetic Algorithms 

GA-Truss is coded in C++, using object-oriented techniques.  A generic genetic 
algorithm class and a parameter class form the base.  Derived from these are classes 
that can use different mating and pairing algorithms.  At the next level is a class that 
calculates a truss’s volume and determines whether its constraints have been violated. 

The goal is to minimize truss volume—the sum of the cross-sectional areas times 
the member lengths—with fixed geometry and load conditions.  The design process 
sets constraints on the maximum stresses and displacements, so that the structure’s 
safety and serviceability do not fall below a specified minimum.  The optimal design 
problem for a truss can be stated like this: 

 
minimize f (A, P) 

        

such that gj(A, P) ≤ 0 where j = 1...n  
 

where f is the volume expressed as a function of the cross-sectional areas (A) and the 
external loads (P); gj(A,P) are the constraints, and n is the number of constraints to be 
satisfied by the optimal design.  If gj(A, P) exceeds 0 for any constraint, the particular 
configuration under consideration is unfit.   

GA-Truss works with a population of trusses whose members differ in cross-
sectional area.  Each chromosome in the population is represented as a sequence of 
member cross-sectional areas, randomly generated.  Our cost-function is based on the 
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structural responses for a given load condition, as defined above.  Those trusses that 
do not meet the constraints are assigned a cost penalty.  GA-Truss sorts the popula-
tion and allows the top half to mate.  Parents are paired using a tournament algorithm 
with a subset size of 20.  Three mating algorithms are used, single point crossover, 
greedy crossover, and static random crossover [5].  One of these is chosen at random 
at each generation.  We begin with a mutation rate of 5%, gradually decreasing to 
1%.  Convergence is reached when the best truss in the population does not improve 
over 10 generations. 

4   Example: 10-bar Truss 

The 10-bar truss of Fig. 1 is a commonly used benchmark in the literature.  The con-
straint is that each member’s stress may not exceed 25 kips per square inch (ksi) for 
both tension and compression, where a kip is 1000 pounds.  Member 9 is the excep-
tion.  Its stress may not exceed 75 ksi.  The cross sectional areas are within the range 
0.1 in2  < area < 10 in2 .  The truss is aluminum, with a Young’s Modulus of 1.0 × 105 
psi, where Young’s Modulus is parameter describing the stiffness of materials.  
Ghasemi et al. [1] provides an exact solution to the problem, solved using sequential 
quadratic programming (SQP), as well as a GA solution.  GA-Truss compares fa-
vorably to the results published in [1]. 

 
Table 1. 10-bar Truss Results 
Member 

 
 

SQP 
from [1] 

(in2) 

GA 
from [1] 

(in2) 

GA-Truss 
integers 

(in2) 

GA-Truss 
floating 

(in2) 

GA-Truss 
rebirth 
(in2) 

A1 7.900 7.518 8 7.021 7.437 
A2 0.100 0.458 1 0.980 0.574 
A3 3.900 3.544 4 3.021 3.437 
A4 8.100 8.430 9 8.984 8.576 
A5 0.100 0.100 1 0.100 0.101 
A6 0.100 0.460 1 0.980 0.576 
A7 5.800 6.287 7 7.045 6.469 
A8 5.510 4.992 5 4.274 4.853 
A9 3.680 3.350 4 2.847 3.230 
A10 0.140 0.645 1 1.386 0.813 

Volume 
(in3) 14970 15160 17300 15510 15270 

 
A comparison between the published results and the results obtained with GA-

Truss is shown in Table 1.1. The solution of GA-Truss, that is, the overall volume of 
the truss, is within 2% of the SQP solution.  Column 4 presents the situation where 
design variables were limited to integer values.   This reduces convergence time and 
provides an estimate of an optimal solution.  Column 5 is GA-Truss with continuous 



design variables.  Column 6 presents GA-Truss with continuous design variables 
using rebirthing.  Rebirthing is method of restricting the range of allowable values for 
the design variables based on their values after a partial run of GA.  Since the new 
population has tighter bounds on the variables it will converge faster.  The new 
ranges are calculated as plus or minus a percentage of the values of each variable 
after the partial run.  A population may be rebirthed several times, with each rebirth 
giving a tighter bound for the design variables, effectively reducing the search space. 

5   Conclusions and Future Work 

Here are some generalizations: Two runs might not converge upon the same solution; 
A larger initial population converges to a better truss; If the mutation rate is set too 
high, passing on good genes is more difficult; If mutation rate is set too low, the algo-
rithm can get stuck in local minima; A population represented with less precision 
converges faster; A population represented with more precision converges on a better 
truss; The precision, or bit depth, can be arranged to allow only integer values for 
truss member widths.  This is useful for a preliminary design.  The bit depth may be 
adjusted for the existing population at run time. 

We have also used GA-Truss to solve a 64-bar truss.  Further, we have adapted the 
code to account for uncertainties in the load conditions.  Our team is currently ex-
perimenting with allowing the uncertainties to vary.  The result will be design curves 
for truss fit that satisfy any level of uncertainty.  Of course, there is a tradeoff be-
tween the level of uncertainty and the structural cost:  the higher the uncertainty, the 
higher the cost.  The design curves should help identify the best possible compromise, 
providing a useful tool for the engineer. 
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