
Truss Optimization Using Genetic Algorithms

Andrew Burton
Mathematics and Computer Science, Gonzaga University

Spokane, WA 99258
aburton@gonzaga.edu

Abstract. This paper reports research on the design of structures using genetic
algorithms. It presents the design of a program that uses genetic algorithms to
optimize a truss structure, along with an example of truss optimization.

1 Introduction

The use of genetic algorithms (GA) for the optimal design of civil engineering struc-
tures has been explored in recent years. Ghasemi et al. [1] have demonstrated the
suitability of GA to address large trusses with many uncertain variables. This paper
illustrates how an algorithm of our design can be used to duplicate this earlier work.
Our larger contribution lies in the application of GA to trusses designed under uncer-
tain conditions (Ganzerli et al [2], [3]). Our team1 is currently writing up the results
of research using GA to optimize highly complex trusses.2

2 Truss Structures

A truss, found in bridges and roof-supports, is a structure composed of members
joined at their end points. See Figure 1. A fundamental engineering task is to mini-
mize the cross-sectional area of the members, while guaranteeing that the truss sup-
ports a specified load. This, of course, is an optimization problem. The task is to
minimize the overall volume of the truss members while adhering to specified con-
straints: predicted stresses on the members and the allowable displacements at the
joints. Using traditional calculus-based optimization techniques, this is computation-
ally expensive. But traditional techniques have a further drawback. They require
that the function used to model the truss be differentiable, and so, continuous. But
members are usually off-the-shelf components, available in a range of discrete sizes.
The GA allows us to specify truss populations with members drawn from this range.

1 Sara Ganzerli, Department of Civil Engineering, Paul De Palma, and Andrew Burton, De-

partment of Mathematics and Computer Science. Ganzerli and De Palma directed the re-
search presented here.

2 The research presented in this paper was made possible through a McDonald Work Award,
Gonzaga University.

The 10-bar truss, whose solution we illustrate, is shown in Fig. 1. Joints may
move only horizontally and vertically. Xi represents the positive displacements, and
Pi are the loads. The triangles at Joints A and F indicate that they are externally con-
strained, and so cannot move. The structural response to the external load consists of
three terms: 1) the internal forces of each member, 2) the internal stresses (equal to
the internal forces divided by the members’ cross-sectional areas) and 3) the dis-
placements. Well-understood matrix relationships allow us to derive structural re-
sponses for a given load condition [4].

Figure 1. Ten-bar truss

3 Optimal Structural Design Using Genetic Algorithms

GA-Truss is coded in C++, using object-oriented techniques. A generic genetic
algorithm class and a parameter class form the base. Derived from these are classes
that can use different mating and pairing algorithms. At the next level is a class that
calculates a truss’s volume and determines whether its constraints have been violated.

The goal is to minimize truss volume—the sum of the cross-sectional areas times
the member lengths—with fixed geometry and load conditions. The design process
sets constraints on the maximum stresses and displacements, so that the structure’s
safety and serviceability do not fall below a specified minimum. The optimal design
problem for a truss can be stated like this:

minimize f (A, P)

such that gj(A, P) ≤ 0 where j = 1...n

where f is the volume expressed as a function of the cross-sectional areas (A) and the
external loads (P); gj(A,P) are the constraints, and n is the number of constraints to be
satisfied by the optimal design. If gj(A, P) exceeds 0 for any constraint, the particular
configuration under consideration is unfit.

GA-Truss works with a population of trusses whose members differ in cross-
sectional area. Each chromosome in the population is represented as a sequence of
member cross-sectional areas, randomly generated. Our cost-function is based on the

X1
X2

X3
X4

X7
X8

X5
X6

P1=100 k

P2=400 k3 4

1 2

5 6

7

8 9

10

A B C

DEF

360 ft 360 ft

P1=100 k

360 ft

structural responses for a given load condition, as defined above. Those trusses that
do not meet the constraints are assigned a cost penalty. GA-Truss sorts the popula-
tion and allows the top half to mate. Parents are paired using a tournament algorithm
with a subset size of 20. Three mating algorithms are used, single point crossover,
greedy crossover, and static random crossover [5]. One of these is chosen at random
at each generation. We begin with a mutation rate of 5%, gradually decreasing to
1%. Convergence is reached when the best truss in the population does not improve
over 10 generations.

4 Example: 10-bar Truss

The 10-bar truss of Fig. 1 is a commonly used benchmark in the literature. The con-
straint is that each member’s stress may not exceed 25 kips per square inch (ksi) for
both tension and compression, where a kip is 1000 pounds. Member 9 is the excep-
tion. Its stress may not exceed 75 ksi. The cross sectional areas are within the range
0.1 in2 < area < 10 in2 . The truss is aluminum, with a Young’s Modulus of 1.0 × 105
psi, where Young’s Modulus is parameter describing the stiffness of materials.
Ghasemi et al. [1] provides an exact solution to the problem, solved using sequential
quadratic programming (SQP), as well as a GA solution. GA-Truss compares fa-
vorably to the results published in [1].

Table 1. 10-bar Truss Results
Member

SQP
from [1]

(in2)

GA
from [1]

(in2)

GA-Truss
integers

(in2)

GA-Truss
floating

(in2)

GA-Truss
rebirth
(in2)

A1 7.900 7.518 8 7.021 7.437
A2 0.100 0.458 1 0.980 0.574
A3 3.900 3.544 4 3.021 3.437
A4 8.100 8.430 9 8.984 8.576
A5 0.100 0.100 1 0.100 0.101
A6 0.100 0.460 1 0.980 0.576
A7 5.800 6.287 7 7.045 6.469
A8 5.510 4.992 5 4.274 4.853
A9 3.680 3.350 4 2.847 3.230
A10 0.140 0.645 1 1.386 0.813

Volume
(in3) 14970 15160 17300 15510 15270

A comparison between the published results and the results obtained with GA-

Truss is shown in Table 1.1. The solution of GA-Truss, that is, the overall volume of
the truss, is within 2% of the SQP solution. Column 4 presents the situation where
design variables were limited to integer values. This reduces convergence time and
provides an estimate of an optimal solution. Column 5 is GA-Truss with continuous

design variables. Column 6 presents GA-Truss with continuous design variables
using rebirthing. Rebirthing is method of restricting the range of allowable values for
the design variables based on their values after a partial run of GA. Since the new
population has tighter bounds on the variables it will converge faster. The new
ranges are calculated as plus or minus a percentage of the values of each variable
after the partial run. A population may be rebirthed several times, with each rebirth
giving a tighter bound for the design variables, effectively reducing the search space.

5 Conclusions and Future Work

Here are some generalizations: Two runs might not converge upon the same solution;
A larger initial population converges to a better truss; If the mutation rate is set too
high, passing on good genes is more difficult; If mutation rate is set too low, the algo-
rithm can get stuck in local minima; A population represented with less precision
converges faster; A population represented with more precision converges on a better
truss; The precision, or bit depth, can be arranged to allow only integer values for
truss member widths. This is useful for a preliminary design. The bit depth may be
adjusted for the existing population at run time.

We have also used GA-Truss to solve a 64-bar truss. Further, we have adapted the
code to account for uncertainties in the load conditions. Our team is currently ex-
perimenting with allowing the uncertainties to vary. The result will be design curves
for truss fit that satisfy any level of uncertainty. Of course, there is a tradeoff be-
tween the level of uncertainty and the structural cost: the higher the uncertainty, the
higher the cost. The design curves should help identify the best possible compromise,
providing a useful tool for the engineer.

References

1. Ghasemi, M., et al.. 1999. Optimization of Trusses Using Genetic Algorithms for Dis-
crete and Continuous Variables. Engineering Computations. MCB Univ. Press Ltd.,
Bradford, Engl. Vol. 16 (No. 3): 272-301.

2. Ganzerli, S., De Palma, P., Smith, J., Burkhart, M. 2003. Efficiency of genetic algorithms
for optimal structural design considering convex models of uncertainty. Proceedings of
The Ninth International Conference on Applications of Statistics and Probability in Civil
Engineering, San Francisco, July 6-9, 2003.

3. Ganzerli S. and Burkhart M.F. 2002. Genetic algorithms for optimal structural design
using convex models of uncertainties. Fourth International Conference on Computational
Stochastic Mechanics (CSM4), Kerkyra (Corfu), Greece. June 9-12, 2002.

4. Wang, C.K. 1986. Structural Analysis on Microcomputers. New York, NY: Macmillan.
5. Haupt, R., Haupt, S., 1997. Practical Genetic Algorithms. Wiley-Interscience. Hoboken,

NJ.

