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Abstract:  This  paper  describes  an experiment  to  evolve a predator-and-prey
system where the primary input for each robot is a linear camera. The method of
learning is a Learning Classifier System. It builds on similar work implemented
with an evolved  neural  network,  in  which  both  predator  and prey behaviors
were learned based mostly upon camera input. It is designed for implementation
on two Khepera model robots with standard K213 Vision Turrets from K-Team
[1], but the actual learning will be done in simulation.

1 Introduction

Imagine watching a game of tag in a small square room played by two children, both
wearing helmets with only a slit of vision available to them. One is chasing the other,
but both are limited by their restricted vision and are feeling with their hands to make
sure they do not run into a wall. My experiment models this behavior on a smaller
scale, using two Khepera robots in a one-meter square arena. They play very poorly at
first, but through the use of a Learning Classifier System a complex set of behaviors is
evolved for both contestants. The limited vision can be captured with a linear camera,
while feeling for walls will be done with IR sensors.

2 Background

Learning Classifier Systems [2] (LCSs) utilize reinforcement learning and a genetic
algorithm to evolve a set of condition-action pairs, or classifiers. The LCS has little
inherent knowledge of the exterior world – the environment is a black box from which
it receives input, and, after selecting an appropriate classifier, returns an output. In a
robot  system,  these  outputs  are  commonly  motor  actions.  The  LCS used  in  this
experiment have no internal memory nor any predictive ability.

The predator-and-prey task emerged in 1986 [3],  and was originally designed with
four predators and a single prey. The world was divided into a grid, and movement
was restricted to north, south, east, and west, and in addition, full knowledge of the
world was known to all five agents. Recent work has limited the knowledge available
to each participant, and also moved away from the rigid grid format as well: the result
being a partial-knowledge system with a full range of motion. In particular, Bauson &
Ziemke [4] evolved an optimal field of vision for each robot in a two-robot predator-
and-prey system where each robot was equipped with a linear camera. All behavior
was learned by means of an evolved neural network. Interestingly, in this experiment,
the prey developed a strategy based on constant movement, circling the arena despite
whatever the predator was doing. However, the predator developed a highly reactive



strategy, searching the center of the arena for the prey, then attempting to track and
catch the prey once it could see it. In this experiment, both predator and prey will
develop reactive behavior.

3 System Design

3.1 Hardware

The experiments described in this paper are designed for a 50 mm Khepera robot,
with eight IR sensors  and a linear  camera.  This  camera has a  resolution of  64x1,
returning essentially a string of 64 8-bit pixels. For the sake of simplicity, while the
camera can detect 256 levels of gray, the output is abstracted to black  or white. The
threshold will be calibrated for each robot at  the beginning of each experiment in
order to best distinguish between light and dark. The cameras sit on top of the robot,
and  are  positioned  level,  so  all  one  camera  can  see  is  composed  of  the  white
background walls, or the other camera, if it happens to be in its field of vision. The
range of the cameras is 5-500 mm. The view angle is 36 degrees.

Fig. 1. A Khepera type robot in an arena (to scale). Note that almost the whole arena
would be visible to a robot in the center of the area if it turned in place

3.2 Environment

The arena is a well-lit (no shadows) one by one meter square with white walls, with no
internal  obstacles,  and  the  target  behavior  is  that  of  predator  and  prey.  Both  the
predator and the prey are relying solely on their cameras for tracking and following
the  opponent.   The  predator  is  considered  to  have  won if  it  can  touch  the  prey
(detected by the IR sensors), while the prey is declared victor if it survives a preset
time  ceiling  of  500  time  steps.  Simulation  is  performed  in  Webots[5],  a  3D
commercially available robot simulator available from Cyberbotics, but the code can
and will be run on actual robots for demonstration purposes.



3.3 Classifier Structure

The LCS used to evolve the predator and the prey receives binary encodings of the
state of the environment as input and returns motor actions to the robot as output.
Based on the input string, a classifier is chosen, and its corresponding action dictates
the output string. Sets of classifiers (each robot has exactly one set) are evolved as an
entire string by the software package GENESIS [6].

Input. The input string is composed of the following elements: proximity to opponent,
angle to opponent, and proximity of walls. 

- The proximity to opponent can be gleaned from the number of pixels that are black
(this should be one contiguous band representing the other robot, if it is in the field of
vision).  There are four  different  zones:  more than 32  pixels,  between 20  and 31,
between 8  and  19,  and  less  than  8.  Four  bits,  one  for  each  zone,  represent  this
information.
- Angle to opponent can similarly be obtained from the camera data as the distance (in
pixels) from the center of the field of vision to the center of the band. With 36 degrees
in the field of vision, five zones seems appropriate: 12 to 18 degrees to the left, 6 to
12 degrees to the left, 6 to 12 degrees to the right, 12 to 18 degrees to the right, and
the center, or 6 degrees left to 6 degrees right. This information fits in 5 bits.
- Proximity to the walls is calculated for each side of the robot, and is based on IR
input.  For  each  side  (front,  right,  back,  and  left)  of  the  robot,  there  exists  three
possibilities: a wall within 5 cm, between 5 and 15 cm, and farther than 15 cm. Four
sets of 3 bits encode this information.

For example, the  21-bit input string 0010-00100-001-001-001-010 would mean that
the robot was relatively close to its opponent, the opponent is in the central vision
sector, and that walls are over 16 cm front, right, and behind, while there is a wall
between 6 and 15 cm to the left of the current position.

Output. The output string specifies only two things: a number of motor steps for the
left motor to perform before the next cycle, followed by the same information for the
right motor.  The number of steps can be specified in six bits: a sign bit (1 for forward,
0 for backward) followed by a five-bit binary number. 

As another  example,  the  12-bit  output  string  1-01000-0-01001  would  tell  the  left
motor to move forward eight steps, while the right motor should move backward nine
steps.

Classifiers. The classifiers are composed of a 21-bit condition followed by a 12-bit
action, matching the input and output string lengths. The format for a condition is that
a 1 in the input must match a 1 in the condition, while a 0 in the input can match a 0 or
a 1 in the condition. For example, the condition 01100 may match either 01000 or
00100.

To illustrate a full classifier, the string  0110-01110-001-111-111-111 / 1-01000-1-
01000 would mean that  if  the target  is  mid-range, and in  one of the three central
sectors, and there is no close wall straight ahead, that the robot should move both



motors ahead by 8 steps. Note that the "111" sequence for the left, right, and back IR
sensors is very vague – as a result, the whole classifier is very general.

Feedback. The feedback is applied after a match is over, with the positive feedback
given to the classifiers of predators that catch their prey quickly as well as prey that
evade the predator for a long period of time, while negative feedback is applied to
classifiers  of  predators  that  fail  to  catch the prey as  well  as  prey that  are  caught
quickly.  The  degree  of  success  is  taken  into  consideration  when  selecting  which
classifier populations to evolve into the next generation. For example, a predator that
caught its prey in a short amount of time is more likely to be selected as a parent for
the next generation of predators than one which failed to catch the prey, or one which
took a very long time.

4 Expected Results

While we have not yet completed our experiments, the following results are expected.
Specific actions expected for the predator to learn include centering the opponent in
its field of vision so as to face it directly, moving quickly once facing it, and trying to
maximize the width of the band. Similarly, the prey would try to minimize the width
of the band, while perhaps keeping it off to one side so as to turn away from it. We
hope that  both will  develop  fully reactive  strategies  relying strongly upon camera
input. To encourage this, perhaps penalizing prey strategies which rely on staying out
of sight of the predator will be necessary.

5 Future Work

An interesting modification to the environment would be to allow obstacles inside the
arena, either blocking vision, IR, or both. This would greatly increase the learning
space, and increase the relative real-world applications of the problem as well. In the
same vein, allowing more than black and white vision in a world with shadows or
objects of varying shades of color would add to the realism of the experiment. 
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