
Investigating the Performance of Module Acquisition
in Cartesian Genetic Programming

James Alfred Walker
University of York
Heslington, York,
YO10 5JA, UK.

Jaw500@ohm.york.ac.uk

Julian Francis Miller
University of York
Heslington, York,
YO10 5JA, UK.

jfm@ohm.york.ac.uk

ABSTRACT
Embedded Cartesian Genetic Programming (ECGP) is a form of
the graph based Cartesian Genetic Programming (CGP) in which
modules are automatically acquired and evolved. In this paper we
compare the efficiencies of the ECGP and CGP techniques on
three classes of problem: digital adders, digital multipliers and
digital comparators. We show that in most cases ECGP shows a
substantial improvement in performance over CGP and that the
computational speedup is more pronounced on larger problems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming – Program
Synthesis.

General Terms
Algorithms, Design, Performance.

Keywords
Cartesian Genetic Programming, Module Acquisition,
Modularity, Digital Adders, Digital Comparators, Digital
Multipliers, Computational Effort.

1. INTRODUCTION
Since the invention of Genetic Programming (GP) by John Koza
[3, 4], researchers in the GP community have been constantly
looking for new ways to make it a more powerful tool, so GP can
be applied to larger and more complex problems. In the late
nineties, one such technique called Cartesian Genetic
Programming (CGP) was proposed [7], which used a directed
graph representation instead of the standard tree based
representation of GP. This alternative representation gave the
technique a number of advantages over the traditional GP
approach. Even though CGP did not have the equivalent of
automatically defined functions it was empirically demonstrated
to be more computationally efficient than GP with Automatically
Defined Function’s (ADFs) [6] on a number of problems. Since
then CGP has been developed further by incorporating elements

taken from a technique known as evolutionary module acquisition
that allows the dynamic acquisition, evolution and re-use of
modules [15]. We call the new method Embedded Cartesian
Genetic Programming (ECGP). Its main feature is that it uses
CGP to construct modules that can be called from the main CGP
code. Although at present this technique has not allowed modules
to have sub modules embedded ECGP has been shown to perform
better than standard CGP on a series of parity problems (even 4 to
even 8 parity) [15]. In this paper we are trying to substantiate the
results found so far using ECGP by applying the technique to
three more problem classes: digital adders, digital multipliers and
digital comparators. We also present computational effort figures
for both techniques on these problems.

As with even-parity functions evolving digital adders using GP
with the primitive Boolean operations of AND, OR, NAND and
NOR is very difficult. In addition, like the even parity problem,
digital adders are particularly appropriate for testing module
acquisition techniques as the problem can be more compactly
represented when the XOR Boolean function is available. It is
well known that all digital adders can also be constructed using a
series of 1-bit adders, a technique known as Ripple Carry
Addition.

The evolution of digital multipliers is another even more difficult
problem to solve as the complexity of the problem scales rapidly
with the number of inputs [14]. It is also an interesting problem to
solve using a modular technique, as no one knows if a modular
general solution exists for all digital parallel multipliers, other
than a cellular array of adders. We also introduce the digital
comparator problem to the GP community as a new potential
benchmark.

The plan for the paper is as follows: Section 2 is an overview of
related work. In section 3 we describe ECGP and compare it with
CGP. The details of our experiments are shown in section 4
followed by the results and comparisons for all three experiments
in section 5. Section 6 gives conclusions and some suggestions for
future work.

2. RELATED WORK ON MODULE
ACQUISITION, AUTOMATICALLY
DEFINED FUNCTIONS AND MACROS
The original idea of Module Acquisition [1] was to try and find a
way of protecting desirable partial solutions contained in the
genotype, in the hope that it might be beneficial in finding a
solution. This is because in practice you may find a desirable
partial solution in the genotype, but due to the nature of evolution,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1649

an operator could modify the partial solution therefore causing the
program to take longer to find a solution.

Module acquisition does this by introducing another two
operators to the evolutionary process, compress that selects a
section of the genotype to make it immune to manipulation from
operators (the module) and expand which decompresses a module
in the genotype therefore allowing this section of the genotype to
be manipulated once more. The fitness of a genotype is unaffected
by these operators. However they affect the possible offspring that
might be generated using evolutionary operators. Atomisation [1]
not only makes sections of the genotype immune from
manipulation by operators but also represents the module as a new
component in the genotype therefore allowing the module to be
manipulated further by additional compress operators. This allows
the possibility of having modules within modules therefore
creating a hierarchy organisation of modules. These techniques
have been shown to decrease the time taken to find a solution by
reducing the amount of manipulations that can take place in the
genotype. Rosca's method of Adaptive Representation through
Learning (ARL) [9] also extracted program segments that were
encapsulated and used to augment the GP function set. The
system employed heuristics that tried to measure good program
code and also methods to detect when search had reached local
optima from population fitness statistics. In the latter case the
extracted functions could be modified. More recently Dessi et al
[2] showed that random selection of program sub-code for re-use
is more effective than other heuristics across a range of problems.
Also they concluded that, in practice, ARL does not produce
highly modular solutions. Once the contents of modules are
themselves allowed to evolve (as in ECGP) they become a form of
Automatically Defined Function (ADF), however in
contradistinction to Koza's form of ADFs [4] and Spector's
Automatically Defined Macros [10], there is no explicit
specification of the number or internal structure of such modules.
This freedom also exists in Spector's more recent PushGP [11].

In addition to decreasing computational effort and making more
modular code van Belle and Ackley have shown that ADFs can
increase the evolvability of populations of programs over time
[12]. They investigated the role of ADFs in evolving programs
with a time dependent fitness function and found that not only do
populations recover more quickly from periodic changes in the
fitness function, but the recovery rate increases in time as the
solutions become more modular. Woodward [16] showed that the
size of a solution is independent of the primitive function set used
when modularity is permitted, thus including modules can remove
any bias caused by the chosen primitive function set.

3. EMBEDDED CARTESIAN GENETIC
PROGRAMMING (ECGP)
3.1 Representation
Embedded Cartesian Genetic Programming [15] is an extension of
Cartesian Genetic Programming [6][7], which was originally
developed for the automatic evolution of digital circuits [5]. The
technique is also similar to Parallel Distributed GP, independently
developed by Poli [8]. Both CGP and ECGP share the same
structure and represent a program as a directed graph (that for
feed-forward functions is acyclic). The genotype is a list of
integers that encode the connections and functions of each node

of the directed graph. CGP used a program topology defined by a
rectangular grid of nodes with a user defined number of rows and
columns. However, later work in CGP always chose the number
of rows to be one, thus giving a one-dimensional topology. This is
always used in ECGP. In CGP, the genotype is a fixed length
representation (in terms of genes) in which the number of nodes in
the program (phenotype) can vary but is bounded. In ECGP the
genotype is a variable length representation (in terms of genes and
nodes) in which the number of nodes and genes in the graph is
bounded. The variable number of nodes in the ECGP genotype is
the result of the compression and expansion of modules and the
variable number of genes is a result of the re-use of modules and
the module mutation operators. In Figure 1 an example of the
differences between a CGP and an ECGP genotype are shown.
Despite these differences, both CGP and ECGP are initialized
with a CGP style genotype (i.e. no modules). However, we
emphasize, both techniques use a genotype-phenotype mapping
that does not require all nodes to be connected to each other. This
results in a bounded variable length phenotype.

Figure 1. Examples of evolved CGP and ECGP genotypes for
the 1-bit adder problem (3 inputs, 2 outputs). Both genotypes

were initialized with 50 nodes (150 genes). The top or only
number in the node headers represents the function; the

remaining number (where present) is the node type. The node
body represents the node inputs, which in ECGP are split into
two parts: the node index in the genotype and the points from

which the node outputs are taken from. The node index is
shown underneath each node.

Each of the nodes consists of two parts: a node header and a node
body. The node header encodes the function (primitive or module)
of the node and the type of the node (type I or type II) if the node
represents a module (the concept of module type is explained in
section 3.4). The node body encodes the inputs of the node. Each
input is encoded by two integers: one represents the index of the
node or program input (terminal) in the genotype and the other
represents the output of the node (note nodes can have multiple
outputs). The number of inputs and outputs that each node has is
dictated by the arity of its function. To clarify still further,
consider the genotype fragment of ECGP from Figure 1 which we
have extracted (Figure 2):

1650

Figure 2. A fragment of the ECGP genotype shown in Figure

1. Node 47 with function 10 is of type II (see later) and is a
module with 6 inputs connected to node indexes 12(0), 4(1),

23(0), 46(0), 4(2), 0(0). The numbers in brackets are the
particular outputs of the nodes. Node 48 with function 2 is a

primitive function whose inputs are both taken from node 47.
The first input comes from output 3 and the second comes

from output 1.

The nodes take their inputs in a feed forward manner from either
the output of a previous node or from one of the program inputs
(terminals). The program inputs are numbered from 0 to n-1
where n is the number of program inputs. The nodes in the
genotype are then also numbered sequentially starting from n to
n+m-1 where m is the user-determined upper bound of the
number of nodes. These numbers are used for referencing the
outputs of the nodes and the program inputs. If the problem
requires k program outputs then k integers are added to the end of
the genotype, each one representing a pointer to the output of a
node in the graph where the program output is taken from. These
k integers are initially set as pointers to the outputs of the last k
nodes in the genotype and can be altered by point mutation. In
Figure 3 an ECGP genotype is shown and how it is decoded (a 1-
bit digital adder circuit).

Although each node must have a function and a set of inputs for
that function, the outputs of a node do not have to be connected.
This is shown in Figure 3, where the output of nodes 6 and 8 are
not used (shown in grey dashed lines). This causes areas of the
genotype to remain dormant, leading to a neutral effect on
genotype fitness (neutrality). When point mutations are carried
out on genes representing connections (the mutation is
constrained to respect the directed and acyclic nature of the
graphs) these dormant genes can be activated or active genes can
be made dormant. This unique type of neutrality has been
investigated in detail [7, 13, 17] and in the problems studied,
found to be extremely beneficial to the evolutionary algorithm.

3.2 Evolutionary Strategy
The evolutionary algorithm used for the experiments is a form of
1+λ evolutionary strategy, where λ=4, i.e. one parent with 4
offspring (population size 5). The algorithm is as follows:

Figure3. An ECGP genotype and the corresponding phenotype
for a 1-bit digital adder circuit. The module occurring twice in

the genotype represents a possible structure for an XOR
Boolean function constructed from the function set. The

dormant areas of the genotype and phenotype are shown in
grey dashes. Note also that node functions 1, 4 and 5 are not

used in this example.

1. Randomly generate an initial population of 5 genotypes and
select the fittest.

2. Carry out point-wise mutation on the winning parent to
generate 4 offspring.

3. Construct a new generation with the winner and its
offspring.

4. Select a winner from the current population using the
following rules:
- If any offspring has a better fitness; the best becomes the

winner.
- Otherwise, an offspring with the same fitness as the best

is randomly selected.
- Otherwise, the parent remains as the winner.

5. Go to step 2 unless the maximum number of generations is
reached or a solution is found.

3.3 Module Representation
A module is represented as a bounded variable length genotype
that has the same characteristics of a standard CGP genotype and
has the same genotype-phenotype mapping, resulting in a
bounded variable length phenotype. The genotype consists of a
list of integers and is split into two parts: the module header and
the module body. The first part contains four integers and
represents the module header which stores information about the
module such as the module identifier number, the number of
module inputs, the number of nodes contained in the module and
the number of module outputs. The second part of the module
genotype is the module body, which encodes the connections and

1651

functions of the nodes contained in the module and the module
outputs (similar to program outputs) in the same way as any
standard CGP genotype. An example of a module genotype
showing the separate components is shown in Figure 4.

Figure 4. An example of a module genotype. The four numbers
in the module header represent the module identifier number,
the number of inputs, the number of nodes and the number of
outputs of the module respectively. The nodes are represented
the same as in ECGP. The module output represents which

node the module takes its output from.

The size of a module genotype is determined by the number of
nodes and module outputs that it encodes. The number of nodes
encoded in the module genotype is bounded between a minimum
limit of two nodes (any fewer and it would either be an empty
module or a primitive function) and a predefined maximum limit
that is set by the user. Likewise the number of module outputs
encoded in the module genotype is also bounded between a
minimum limit of one (otherwise there would be no way to access
the module) and a maximum of n module outputs, where n is
equal to the number of nodes contained in the module (one
module output per node). The number of module inputs that a
module is allowed to have is also restricted between a minimum
of two and a maximum of 2n module inputs, where n is equal to
the number of nodes contained in the module. However, the
number of module inputs allowed does not affect the size of the
module genotype, as they are not encoded in the module
genotype. In its current form, ECGP only allows modules to
contain nodes representing primitive functions rather than nodes
representing other modules. We aim to remove this restriction in
future work.

An Example of the genotype and corresponding phenotype of a
module can be seen in Figure 5.

Once a module is created, the module genotype is stored in the
module list, which is an extension of the primitive function list.
This allows any node in the genotype of an individual to be
mutated into any module or primitive function present in either of
these lists for that generation. An example of the module list can
be seen in Figure 6. The module list is dynamic and has no
restrictions on its maximum size and is updated every generation
when the fittest individual in the generation is promoted to the
next generation (i.e. the next generation inherits the module list of
the fittest individual in the previous generation). This creates a
regulatory control of the module list so that bloat never occurs.

The nodes contained inside the module are not necessarily
connected and are immune from the main genotype point
mutation operator. However, the module itself is allowed to be
mutated by the module mutation operators (including a module
point operator – see section 3.4).

Figure 5. The genotype and corresponding phenotype of a

module representing an XOR Boolean function. The dormant
areas of the genotype and phenotype are shown in grey dashes.

Figure 6. An example of a possible module list currently

containing eight module genotypes.

1652

3.4 Operators
ECGP extends CGP by allowing the use of dynamic acquisition,
evolution and the re-use of modules. This is achieved through
extra mutation operators, which are used in conjunction with the
point mutation of CGP.

The compress operator constructs modules by selecting two
random points in the genotype (in accordance with the rules for
the module size restrictions) and encapsulates all the nodes
between these two points into a new module, which is encoded
into a module genotype as described earlier. Note, that if there any
modules between the two selected points the compress operator
does not take place (this is because at present we do not allow
modules within modules). The number of module inputs that a
module is initialized with is determined by the number of
connections between the inputs of the nodes that are going to be
encapsulated into a module and the outputs of any previous nodes
or program inputs (terminals) in the genotype when the module is
created. Likewise, the number of module outputs possessed by a
module is determined by the number of connections between the
inputs of the latter nodes in the genotype and the outputs of the
nodes that are going to be encapsulated in the module, when it is
created. Any module created by the compress operator is
represented in the genotype of an individual as a type I node. Any
type I node is immune from the point mutation operator and
remains in the genotype of an individual until it is removed by the
expand operator (see Table 1).
The expand operator destroys a type I node by replacing it in the
genotype of an individual with the nodes contained in the module
that the type I node represented. The inputs of all of the latter
nodes in the genotype of the individual are updated after the
compress or expand operator has been applied so that all the
connections remain intact. The reason for this is that the compress
and expand operators only make a structural change to the
genotype of an individual and have no affect on genotype fitness,
as the genotypes before and after the action of these operators
represent the same directed graph. The expand operator has twice
the probability of being applied to the genotype than the compress
operator. We found that this introduces a pressure for good
modules to replicate quickly in the genotype of an individual in
order to survive. This can be seen as survival-of-the-fittest
modules within the genotype itself.

Modules can replicate within the genotype of an individual
through the action of the point mutation operator. This is identical
to that used in CGP with the exception that it can mutate the
function of a node to any of the primitive functions or any
available modules in the module list. If a node is mutated to
represent a module it is classed as a type II node and is treated
like a standard node. This means the point mutation operator can
also mutate the function of a type II node to any of the pre-defined
functions or any available modules in the module list. It can also
mutate any of the inputs of the type II node in the same way it
would mutate the inputs of a standard node. If the function of a
standard node or type II node is mutated, the new node keeps
however many of the original node’s inputs it needs and randomly
generates any extra inputs it may require. Type II nodes are also
immune from the expand operator as this could cause excessive
growth of the genotype that could possibly lead to bloat.

To summarize the properties of node types I and II are as follows:

Table 1. Node types and their properties

Node
Type

Action of
Compress

Action of
Expand

Action of Genotype
Point Mutation

I Creation Destruction Changes node inputs

II Immune Immune Creation or
destruction or changes

node inputs

The module genotypes contained in the module list can also be
evolved through the action of five different operators: point
mutation, add-input, add-output, remove-input and remove-
output. The point mutation operator is the same as the CGP point
mutation operator, as it can mutate the inputs and function of any
node contained in the module genotype but it is not allowed to
introduce any type II nodes into the module genotype. It can also
mutate which node output each of the module outputs are
connected to.

The add-input and add-output operators allow greater connectivity
to and from the contents of a module by increasing the number of
module inputs or module outputs by one respectively each time
either operator is applied, making a more generalized module.
When the add-input operator is applied to a module, the gene
representing the number of module inputs in the module header
part of the module genotype is incremented by one and an extra
gene is inserted into all nodes (type I and type II) representing the
module in the genotype of the individual, as a randomly chosen
value for the new module input. Likewise, when the add-output
operator is applied to a module, the gene representing the number
of module outputs in the module header part of the module
genotype is incremented by one and two extra genes are added to
the module output section of the module genotype, as randomly
chosen values for the node index and node output that the new
module output is connected to.

Alternatively, the remove-input and remove-output operators
reduce the connectivity to and from the contents of a module, by
decreasing the number of module inputs or module outputs by one
respectively each time either operator is applied, therefore making
a more specialized module. When the remove-output operator is
applied to a module, the gene representing the number of module
inputs in the module header part of the module genotype is
decremented by one and the gene corresponding to the module
input randomly chosen is removed from all nodes (type I and type
II) representing the module in the genotype of an individual.
Likewise, when the remove-output operator is applied to a
module, the gene representing the number of module outputs in
the module header part of the module genotype is decremented by
one and the two genes corresponding to the randomly chosen
module output are removed from the module output section of the
module genotype.

All of the operators: add-input, add-output, remove-input, and
remove-output must comply with the restrictions on the number of
module inputs and module outputs at all times.

4. EXPERIMENT DETAILS
The performance of CGP and ECGP was tested on three different
classes of problem: digital adder, digital multiplier and digital

1653

comparator. The n-bit digital adder problem takes two n-bit
numbers and a 1-bit carry-in (2n + 1 program inputs) and adds
them together to produce an n-bit number and a 1-bit carry-out (n
+ 1 program outputs). In this experiment we used the 1-bit, 2-bit
and 3-bit digital adders. The n-bit digital multiplier problem is of
a similar nature to the digital adder problem as it takes two n-bit
numbers (2n program inputs) and multiplies them together to
produce a 2n-bit number (2n program outputs). Here we tested
only the 2-bit and 3-bit digital multipliers (the 1-bit digital
multiplier is just the AND Boolean function). The n-bit digital
comparator problem is a new problem to the GP community but
not unfamiliar to programmers. It takes two n-bit numbers (2n
program inputs) and compares them to produce a value of “1” at
one of its three outputs and “0” at the other two outputs,
depending on whether the first n-bit number is less than, equal to
or greater than the second n-bit number. For this experiment we
looked at the 1-bit, 2-bit and 3-bit digital comparators.

Table 2. The parameters settings used for CGP and ECGP in
all of the experiments. The operator rate is expressed as a

percentage of the genotype length. Both the operator rates and
probabilities are per generation.

Parameter Value

Population size 5

Initial genotype size 100 nodes (300
genes)

Function set for digital adder and
digital comparator

{AND, NAND, OR,
NOR}

Digital multiplier function set {AND, AND with one
input inverted, XOR}

Genotype point mutation rate 2% (6 genes)

Genotype point mutation probability 1

Compress probability 0.1

Expand probability 0.2

Module point mutation probability 0.04

Add-input probability 0.01

Add-output probability 0.01

Remove-input probability 0.02

Remove-output probability 0.02

Maximum module size (ECGP) 5 nodes

Initial module list contents Empty

Number of independent runs 50

The fitness is defined as the number of phenotype output bits that
differ from the perfect n-bit digital adder, n-bit digital multiplier
or n-bit digital comparator function. A perfect solution has score
zero.

The parameter settings used for CGP and ECGP in all of the
experiments are shown in Table 2. The probability values chosen

for the ECGP operators were found to be optimal by a trial and
error process in previous ECGP experiments. The results for all
CGP and ECGP experiments were averaged over fifty
independent runs.

5. RESULTS
For all experiments, the Computational Effort (CE) was calculated
using the formula found in [3] with z=99%. The number of hits
was recorded every 40 generations to calculate the probability.
The CE figures for the results of CGP and ECGP applied to all of
the classes of problem chosen is shown in Table 3 below. These
CE figures are only relevant when comparing CGP and ECGP
with the same number of nodes in their genotypes and the same
rate for the default point mutation. This is because CE figures for
CGP and ECGP vary significantly depending on these values,
therefore potentially causing an unfair comparison. We have only
compared the CE figures of ECGP with CGP because no other
researchers have provided CE figures for their GP techniques on
these three classes of problem.

Table 3. The computational effort figures for CGP and ECGP
for the digital adder, digital multiplier and digital comparator

problems.

 CGP ECGP Speedup

1-Bit Adder 26,720 35,840 0.75

2-Bit Adder 493,760 203,520 2.43

3-Bit Adder 2,599,360 1,530,880 1.70

2-Bit Multiplier 35,840 35,520 1.01

3-Bit Multiplier 8,659,840 1,917,760 4.52

1-Bit Comparator 2,880 3,200 0.90

2-Bit Comparator 78,880 87,360 0.90

3-Bit Comparator 466,880 520,320 0.90

Over all eight problems tested, both CGP and ECGP produced
100% successful solutions over all runs. For the digital adder
problem, the results show that ECGP performs between 1.48 and
2.43 times faster than CGP for the larger, more complex digital
adder problems but on the simpler 1-bit digital adder CGP
performs better, which could be attributed to the overhead of
dynamic acquisition, evolution and re-use of modules in ECGP.
The speedup by ECGP on the 2-bit and 3-bit digital adder
problems can be accounted to the modules finding and re-using
functions that are not defined in the primitive function set and
make the problem a lot easier to solve. Two such functions are the
XOR Boolean function and the half adder circuit, which consists
of the XOR and AND Boolean functions. Both of these can be
seen as partial solutions.

The results for the digital multiplier show that ECGP performs
between 1.01 (which is negligible) and 4.52 times faster than
CGP. The speedup factor also increases with problem size,
indicating that ECGP may perform substantially better on even
larger problems. This difference in performance between ECGP
and CGP may also indicate that there exists some form of
modularity in the digital multiplier problem that the modular
nature of ECGP exploits. We do not believe that any

1654

undiscovered modular way of building multipliers from
multipliers was found but that ECGP simply found and re-used
functions that can be constructed from the primitive function set
and conform to the conventional way of building multipliers.
Three such functions are the half adder (as found also in the
digital adders), the 1-bit adder, which is constructed from two half
adders and an OR Boolean function (as shown in Figure 2) and
the 2-bit x 1-bit multiplier, which is simply constructed from two
AND Boolean functions. All three of these functions are
considered as partial solutions.

CGP outperforms ECGP on each of the digital comparator
problems by a constant speedup value each time. This could have
happened because any modularity that may exist in the
comparator circuit is not being exploited, possibly due to the
maximum module size being set too small. Another possibility is
that there may not be any modularity in the comparator circuit and
the difference in performance is also due to the dynamic
acquisition, evolution and re-use of modules. If this is the case
then it could show that using the added features of ECGP when
they are not beneficial to solving the given problem only slows
performance down by 10% when compared with CGP. Therefore
it may be possible to say that if you apply ECGP to a problem that
may or may not contain any form of modularity, ECGP could
perform anywhere between 10% slower and a number of times
faster than CGP. This is an interesting theorem and will be
investigated further in future work.

All of the experiments were run on a single processor desktop PC
with 512MB of memory. The time taken to complete 50 runs of
each problem varied between a few minutes to a few hours
depending on the difficulty of the problem. ECGP only took
fractionally longer to complete one thousand generations on any
problem than CGP showing that the computational time required
for the overhead of module acquisition is quite small and the
computational time taken for fitness evaluation (both CGP and
ECGP) is by far the dominant factor.

6. CONCLUSION
We have presented for the first time the application of ECGP to
three classes of difficult problems: digital adders, digital
multipliers and digital comparators. ECGP shows a significant
speedup when compared with non-modular CGP on the digital
adder and digital multiplier problems but did not perform as well
as CGP on the digital comparator problem by a constant amount
each time. This phenomenon found in the comparator problem
will be investigated further in future work to see if an explanation
can be found to account for this behavior. The results from the
digital multiplier problem also indicate that ECGP may perform
substantially better than non-modular CGP on even larger
problems.

Currently ECGP does not allow modules within modules.
However, we do have a working ECGP prototype program that
does allow embedded sub-modules but we are currently
investigating the problem of bloat found within the unused areas
of the module genotype that contain embedded sub-modules.
When a solution is found to this problem, we intend to allow
embedded sub-modules in future work as this could lead to an
even greater boost in performance.

7. REFERENCES
[1] Angeline, P. J. Pollack, J. (1993) Evolutionary Module

Acquisition, Proceedings of the 2nd Annual Conference on
Evolutionary Programming, pp. 154-163, MIT Press,
Cambridge.

[2] Dessi, A. Giani, A. Starita, A. (1999) An Analysis of
Automatic Subroutine Discovery in Genetic Programming,
GECCO 1999: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 996-1001, Morgan-Kaufmann,
San Francisco.

[3] Koza, J. R. (1993) Genetic Programming: On the
Programming of Computers by Means of Natural Selection,
MIT Press, London.

[4] Koza, J. R. (1994) Genetic Programming II: Automatic
Discovery of Reusable Programs, MIT Press, London.

[5] Miller, J. F. , Thomson, P., and Fogarty T. C. (1997)
Designing Electronic Circuits Using Evolutionary
Algorithms. Arithmetic Circuits: A Case Study, Genetic
Algorithms and Evolution Strategies in Engineering and
Computer Science: Recent Advancements and Industrial
Applications. Editors: D. Quagliarella, J. Periaux, C. Poloni
and G. Winter, Wiley.

[6] Miller, J. F. (1999) An Empirical Study of the Efficiency of
Learning Boolean Functions using a Cartesian Genetic
Programming Approach, GECCO 1999: Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando,
Florida, pp 1135-1142, Morgan Kaufmann, San Francisco.

[7] Miller, J. F. Thomson, P. (2000) Cartesian Genetic
Programming, Proceedings of the 3rd European Conference
on Genetic Programming, Edinburgh, Lecture Notes in
Computer Science, Vol. 1802, pp 121-132, Springer-Verlag,
Berlin.

[8] Poli, R. (1996), Parallel Distributed Genetic Programming,
Technical Report, CSRP-96-15, University of Birmingham,
UK.

[9] Rosca, J. P. (1995) Genetic Programming Exploratory Power
and the Discovery of Functions, Proceedings of the 4th
Annual Conference of Evolutionary Programming, San
Diego, pp 719-736, MIT Press, Cambridge.

[10] Spector, L. (1996) Simultaneous evolution of programs and
their control structures, Advances in Genetic Programming
II, pp. 137-154, MIT Press, Cambridge.

[11] Spector, L. (2001) Autoconstructive Evolution: Push,
PushGP, and Pushpop, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2001, pp.
137-146. San Francisco, CA: Morgan Kaufmann Publishers

[12] Van Belle, T, and Ackley, D.H. (2001) Code Factoring and
the Evolution of Evolvability, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2001,
pp. 1383--1390. San Francisco, CA: Morgan Kaufmann
Publishers

[13] Vassilev, V. K. and Miller J. F. (2000) The Advantages of
Landscape Neutrality in Digital Circuit Evolution,
Proceedings of the 3rd International Conference on
Evolvable Systems: From Biology to Hardware (ICES2000),

1655

Lecture Notes in Computer Science, Vol. 1801, 252-263.
Springer, Berlin.

[14] Vassilev, V. K. and Miller J. F. (2000) Scalability Problems
of Digital Circuit Evolution, 2nd NASA/DOD Workshop on
Evolvable Hardware, IEEE Computer Society Press, pp. 55-
64.

[15] Walker, J. A. Miller, J. F. (2004) Evolution and Acquisition
of Modules in Cartesian Genetic Programming, Proc. of the
7th European Conference on Genetic Programming, Lecture
Notes in Computer Science, Vol. 3003, pp 187-197,
Springer-Verlag, Berlin.

[16] Woodward, J. R. (2003) Modularity in Genetic
Programming, Proceedings of the Fifth European Conference
on Genetic Programming, Lecture Notes in Computer
Science, Vol. 2610, pp. 258--267, Springer-Verlag, Berlin.

[17] Yu, T. and Miller, J. F. (2001) Neutrality and the
Evolvability of Boolean Function Landscape, Proceedings of
the 4th European Conference on Genetic Programming,
Lecture Notes in Computer Science, Vol. 2038, pp. 204-217,
Springer-Verlag, Berlin.

1656

