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ABSTRACT 
Embedded Cartesian Genetic Programming (ECGP) is a form of 
the graph based Cartesian Genetic Programming (CGP) in which 
modules are automatically acquired and evolved. In this paper we 
compare the efficiencies of the ECGP and CGP techniques on 
three classes of problem: digital adders, digital multipliers and 
digital comparators. We show that in most cases ECGP shows a 
substantial improvement in performance over CGP and that the 
computational speedup is more pronounced on larger problems. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – Program 
Synthesis.  

General Terms 
Algorithms, Design, Performance. 

Keywords 
Cartesian Genetic Programming, Module Acquisition, 
Modularity, Digital Adders, Digital Comparators, Digital 
Multipliers, Computational Effort. 

1. INTRODUCTION 
Since the invention of Genetic Programming (GP) by John Koza 
[3, 4], researchers in the GP community have been constantly 
looking for new ways to make it a more powerful tool, so GP can 
be applied to larger and more complex problems. In the late 
nineties, one such technique called Cartesian Genetic 
Programming (CGP) was proposed [7], which used a directed 
graph representation instead of the standard tree based 
representation of GP. This alternative representation gave the 
technique a number of advantages over the traditional GP 
approach. Even though CGP did not have the equivalent of 
automatically defined functions it was empirically demonstrated 
to be more computationally efficient than GP with Automatically 
Defined Function’s (ADFs) [6] on a number of problems. Since 
then CGP has been developed further by incorporating elements 

taken from a technique known as evolutionary module acquisition 
that allows the dynamic acquisition, evolution and re-use of 
modules [15]. We call the new method Embedded Cartesian 
Genetic Programming (ECGP). Its main feature is that it uses 
CGP to construct modules that can be called from the main CGP 
code. Although at present this technique has not allowed modules 
to have sub modules embedded ECGP has been shown to perform 
better than standard CGP on a series of parity problems (even 4 to 
even 8 parity) [15]. In this paper we are trying to substantiate the 
results found so far using ECGP by applying the technique to 
three more problem classes: digital adders, digital multipliers and 
digital comparators. We also present computational effort figures 
for both techniques on these problems. 

As with even-parity functions evolving digital adders using GP 
with the primitive Boolean operations of AND, OR, NAND and 
NOR is very difficult. In addition, like the even parity problem, 
digital adders are particularly appropriate for testing module 
acquisition techniques as the problem can be more compactly 
represented when the XOR Boolean function is available. It is 
well known that all digital adders can also be constructed using a 
series of 1-bit adders, a technique known as Ripple Carry 
Addition.  

The evolution of digital multipliers is another even more difficult 
problem to solve as the complexity of the problem scales rapidly 
with the number of inputs [14]. It is also an interesting problem to 
solve using a modular technique, as no one knows if a modular 
general solution exists for all digital parallel multipliers, other 
than a cellular array of adders. We also introduce the digital 
comparator problem to the GP community as a new potential 
benchmark. 

The plan for the paper is as follows: Section 2 is an overview of 
related work. In section 3 we describe ECGP and compare it with 
CGP. The details of our experiments are shown in section 4 
followed by the results and comparisons for all three experiments 
in section 5. Section 6 gives conclusions and some suggestions for 
future work. 

2. RELATED WORK ON MODULE 
ACQUISITION, AUTOMATICALLY 
DEFINED FUNCTIONS AND MACROS 
The original idea of Module Acquisition [1] was to try and find a 
way of protecting desirable partial solutions contained in the 
genotype, in the hope that it might be beneficial in finding a 
solution. This is because in practice you may find a desirable 
partial solution in the genotype, but due to the nature of evolution, 
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an operator could modify the partial solution therefore causing the 
program to take longer to find a solution. 

Module acquisition does this by introducing another two 
operators to the evolutionary process, compress that selects a 
section of the genotype to make it immune to manipulation from 
operators (the module) and expand which decompresses a module 
in the genotype therefore allowing this section of the genotype to 
be manipulated once more. The fitness of a genotype is unaffected 
by these operators. However they affect the possible offspring that 
might be generated using evolutionary operators. Atomisation [1] 
not only makes sections of the genotype immune from 
manipulation by operators but also represents the module as a new 
component in the genotype therefore allowing the module to be 
manipulated further by additional compress operators. This allows 
the possibility of having modules within modules therefore 
creating a hierarchy organisation of modules. These techniques 
have been shown to decrease the time taken to find a solution by 
reducing the amount of manipulations that can take place in the 
genotype. Rosca's method of Adaptive Representation through 
Learning (ARL) [9] also extracted program segments that were 
encapsulated and used to augment the GP function set. The 
system employed heuristics that tried to measure good program 
code and also methods to detect when search had reached local 
optima from population fitness statistics. In the latter case the 
extracted functions could be modified. More recently Dessi et al 
[2] showed that random selection of program sub-code for re-use 
is more effective than other heuristics across a range of problems. 
Also they concluded that, in practice, ARL does not produce 
highly modular solutions. Once the contents of modules are 
themselves allowed to evolve (as in ECGP) they become a form of 
Automatically Defined Function (ADF), however in 
contradistinction to Koza's form of ADFs [4] and Spector's 
Automatically Defined Macros [10], there is no explicit 
specification of the number or internal structure of such modules. 
This freedom also exists in Spector's more recent PushGP [11]. 

In addition to decreasing computational effort and making more 
modular code van Belle and Ackley have shown that ADFs can 
increase the evolvability of populations of programs over time 
[12]. They investigated the role of ADFs in evolving programs 
with a time dependent fitness function and found that not only do 
populations recover more quickly from periodic changes in the 
fitness function, but the recovery rate increases in time as the 
solutions become more modular. Woodward [16] showed that the 
size of a solution is independent of the primitive function set used 
when modularity is permitted, thus including modules can remove 
any bias caused by the chosen primitive function set. 

3. EMBEDDED CARTESIAN GENETIC 
PROGRAMMING (ECGP) 
3.1 Representation 
Embedded Cartesian Genetic Programming [15] is an extension of 
Cartesian Genetic Programming [6][7], which was originally 
developed for the automatic evolution of digital circuits [5]. The 
technique is also similar to Parallel Distributed GP, independently 
developed by Poli [8]. Both CGP and ECGP share the same 
structure and represent a program as a directed graph (that for 
feed-forward functions is acyclic). The genotype is a list of 
integers that encode the connections and functions of each node 

of the directed graph. CGP used a program topology defined by a 
rectangular grid of nodes with a user defined number of rows and 
columns. However, later work in CGP always chose the number 
of rows to be one, thus giving a one-dimensional topology. This is 
always used in ECGP.  In CGP, the genotype is a fixed length 
representation (in terms of genes) in which the number of nodes in 
the program (phenotype) can vary but is bounded. In ECGP the 
genotype is a variable length representation (in terms of genes and 
nodes) in which the number of nodes and genes in the graph is 
bounded. The variable number of nodes in the ECGP genotype is 
the result of the compression and expansion of modules and the 
variable number of genes is a result of the re-use of modules and 
the module mutation operators. In Figure 1 an example of the 
differences between a CGP and an ECGP genotype are shown. 
Despite these differences, both CGP and ECGP are initialized 
with a CGP style genotype (i.e. no modules). However, we 
emphasize, both techniques use a genotype-phenotype mapping 
that does not require all nodes to be connected to each other. This 
results in a bounded variable length phenotype. 

 
Figure 1. Examples of evolved CGP and ECGP genotypes for 
the 1-bit adder problem (3 inputs, 2 outputs). Both genotypes 

were initialized with 50 nodes (150 genes). The top or only 
number in the node headers represents the function; the 

remaining number (where present) is the node type. The node 
body represents the node inputs, which in ECGP are split into 
two parts: the node index in the genotype and the points from 

which the node outputs are taken from. The node index is 
shown underneath each node. 

Each of the nodes consists of two parts: a node header and a node 
body. The node header encodes the function (primitive or module) 
of the node and the type of the node (type I or type II) if the node 
represents a module (the concept of module type is explained in 
section 3.4). The node body encodes the inputs of the node. Each 
input is encoded by two integers: one represents the index of the 
node or program input (terminal) in the genotype and the other 
represents the output of the node (note nodes can have multiple 
outputs). The number of inputs and outputs that each node has is 
dictated by the arity of its function. To clarify still further, 
consider the genotype fragment of ECGP from Figure 1 which we 
have extracted (Figure 2): 
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Figure 2. A fragment of the ECGP genotype shown in Figure 

1. Node 47 with function 10 is of type II (see later) and is a 
module with 6 inputs connected to node  indexes 12(0), 4(1), 

23(0), 46(0), 4(2), 0(0). The numbers in brackets are the 
particular outputs of the nodes. Node 48 with function 2 is a 

primitive function whose inputs are both taken from node 47. 
The first input comes from output 3 and the second comes 

from output 1. 

The nodes take their inputs in a feed forward manner from either 
the output of a previous node or from one of the program inputs 
(terminals). The program inputs are numbered from 0 to n-1 
where n is the number of program inputs. The nodes in the 
genotype are then also numbered sequentially starting from n to 
n+m-1 where m is the user-determined upper bound of the 
number of nodes. These numbers are used for referencing the 
outputs of the nodes and the program inputs. If the problem 
requires k program outputs then k integers are added to the end of 
the genotype, each one representing a pointer to the output of a 
node in the graph where the program output is taken from. These 
k integers are initially set as pointers to the outputs of the last k 
nodes in the genotype and can be altered by point mutation. In 
Figure 3 an ECGP genotype is shown and how it is decoded (a 1-
bit digital adder circuit).  

Although each node must have a function and a set of inputs for 
that function, the outputs of a node do not have to be connected. 
This is shown in Figure 3, where the output of nodes 6 and 8 are 
not used (shown in grey dashed lines). This causes areas of the 
genotype to remain dormant, leading to a neutral effect on 
genotype fitness (neutrality). When point mutations are carried 
out on genes representing connections (the mutation is 
constrained to respect the directed and acyclic nature of the 
graphs) these dormant genes can be activated or active genes can 
be made dormant. This unique type of neutrality has been 
investigated in detail [7, 13, 17] and in the problems studied, 
found to be extremely beneficial to the evolutionary algorithm. 

3.2 Evolutionary Strategy 
The evolutionary algorithm used for the experiments is a form of 
1+λ evolutionary strategy, where λ=4, i.e. one parent with 4 
offspring (population size 5). The algorithm is as follows: 
 

 
Figure3. An ECGP genotype and the corresponding phenotype 
for a 1-bit digital adder circuit. The module occurring twice in 

the genotype represents a possible structure for an XOR 
Boolean function constructed from the function set. The 

dormant areas of the genotype and phenotype are shown in 
grey dashes. Note also that node functions 1, 4 and 5 are not 

used in this example. 

1. Randomly generate an initial population of 5 genotypes and 
select the fittest. 

2. Carry out point-wise mutation on the winning parent to 
generate 4 offspring. 

3. Construct a new generation with the winner and its 
offspring. 

4. Select a winner from the current population using the 
following rules: 
- If any offspring has a better fitness; the best becomes the 

winner. 
- Otherwise, an offspring with the same fitness as the best 

is randomly selected. 
- Otherwise, the parent remains as the winner. 

5. Go to step 2 unless the maximum number of generations is 
reached or a solution is found. 

3.3 Module Representation 
A module is represented as a bounded variable length genotype 
that has the same characteristics of a standard CGP genotype and 
has the same genotype-phenotype mapping, resulting in a 
bounded variable length phenotype. The genotype consists of a 
list of integers and is split into two parts: the module header and 
the module body. The first part contains four integers and 
represents the module header which stores information about the 
module such as the module identifier number, the number of 
module inputs, the number of nodes contained in the module and 
the number of module outputs. The second part of the module 
genotype is the module body, which encodes the connections and 
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functions of the nodes contained in the module and the module 
outputs (similar to program outputs) in the same way as any 
standard CGP genotype. An example of a module genotype 
showing the separate components is shown in Figure 4. 

 
Figure 4. An example of a module genotype. The four numbers 
in the module header represent the module identifier number, 
the number of inputs, the number of nodes and the number of 
outputs of the module respectively. The nodes are represented 
the same as in ECGP.  The module output represents which 

node the module takes its output from. 

The size of a module genotype is determined by the number of 
nodes and module outputs that it encodes. The number of nodes 
encoded in the module genotype is bounded between a minimum 
limit of two nodes (any fewer and it would either be an empty 
module or a primitive function) and a predefined maximum limit 
that is set by the user. Likewise the number of module outputs 
encoded in the module genotype is also bounded between a 
minimum limit of one (otherwise there would be no way to access 
the module) and a maximum of n module outputs, where n is 
equal to the number of nodes contained in the module (one 
module output per node). The number of module inputs that a 
module is allowed to have is also restricted between a minimum 
of two and a maximum of 2n module inputs, where n is equal to 
the number of nodes contained in the module. However, the 
number of module inputs allowed does not affect the size of the 
module genotype, as they are not encoded in the module 
genotype. In its current form, ECGP only allows modules to 
contain nodes representing primitive functions rather than nodes 
representing other modules. We aim to remove this restriction in 
future work. 

An Example of the genotype and corresponding phenotype of a 
module can be seen in Figure 5.  

Once a module is created, the module genotype is stored in the 
module list, which is an extension of the primitive function list. 
This allows any node in the genotype of an individual to be 
mutated into any module or primitive function present in either of 
these lists for that generation. An example of the module list can 
be seen in Figure 6. The module list is dynamic and has no 
restrictions on its maximum size and is updated every generation 
when the fittest individual in the generation is promoted to the 
next generation (i.e. the next generation inherits the module list of 
the fittest individual in the previous generation). This creates a 
regulatory control of the module list so that bloat never occurs.  

The nodes contained inside the module are not necessarily 
connected and are immune from the main genotype point 
mutation operator. However, the module itself is allowed to be 
mutated by the module mutation operators (including a module 
point operator – see section 3.4). 

 
Figure 5. The genotype and corresponding phenotype of a 

module representing an XOR Boolean function. The dormant 
areas of the genotype and phenotype are shown in grey dashes.  

 

 
Figure 6. An example of a possible module list currently 

containing eight module genotypes.    
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3.4 Operators 
ECGP extends CGP by allowing the use of dynamic acquisition, 
evolution and the re-use of modules. This is achieved through 
extra mutation operators, which are used in conjunction with the 
point mutation of CGP. 

The compress operator constructs modules by selecting two 
random points in the genotype (in accordance with the rules for 
the module size restrictions) and encapsulates all the nodes 
between these two points into a new module, which is encoded 
into a module genotype as described earlier. Note, that if there any 
modules between the two selected points the compress operator 
does not take place (this is because at present we do not allow 
modules within modules). The number of module inputs that a 
module is initialized with is determined by the number of 
connections between the inputs of the nodes that are going to be 
encapsulated into a module and the outputs of any previous nodes 
or program inputs (terminals) in the genotype when the module is 
created. Likewise, the number of module outputs possessed by a 
module is determined by the number of connections between the 
inputs of the latter nodes in the genotype and the outputs of the 
nodes that are going to be encapsulated in the module, when it is 
created. Any module created by the compress operator is 
represented in the genotype of an individual as a type I node. Any 
type I node is immune from the point mutation operator and 
remains in the genotype of an individual until it is removed by the 
expand operator (see Table 1). 
The expand operator destroys a type I node by replacing it in the 
genotype of an individual with the nodes contained in the module 
that the type I node represented. The inputs of all of the latter 
nodes in the genotype of the individual are updated after the 
compress or expand operator has been applied so that all the 
connections remain intact. The reason for this is that the compress 
and expand operators only make a structural change to the 
genotype of an individual and have no affect on genotype fitness, 
as the genotypes before and after the action of these operators 
represent the same directed graph. The expand operator has twice 
the probability of being applied to the genotype than the compress 
operator. We found that this introduces a pressure for good 
modules to replicate quickly in the genotype of an individual in 
order to survive. This can be seen as survival-of-the-fittest 
modules within the genotype itself. 

Modules can replicate within the genotype of an individual 
through the action of the point mutation operator. This is identical 
to that used in CGP with the exception that it can mutate the 
function of a node to any of the primitive functions or any 
available modules in the module list. If a node is mutated to 
represent a module it is classed as a type II node and is treated 
like a standard node. This means the point mutation operator can 
also mutate the function of a type II node to any of the pre-defined 
functions or any available modules in the module list. It can also 
mutate any of the inputs of the type II node in the same way it 
would mutate the inputs of a standard node. If the function of a 
standard node or type II node is mutated, the new node keeps 
however many of the original node’s inputs it needs and randomly 
generates any extra inputs it may require. Type II nodes are also 
immune from the expand operator as this could cause excessive 
growth of the genotype that could possibly lead to bloat. 

To summarize the properties of node types I and II are as follows: 

Table 1. Node types and their properties 

Node 
Type 

Action of 
Compress 

Action of 
Expand 

Action of Genotype 
Point Mutation 

I Creation Destruction Changes node inputs 

II Immune Immune Creation or 
destruction or changes 

node inputs 

 

The module genotypes contained in the module list can also be 
evolved through the action of five different operators: point 
mutation, add-input, add-output, remove-input and remove-
output. The point mutation operator is the same as the CGP point 
mutation operator, as it can mutate the inputs and function of any 
node contained in the module genotype but it is not allowed to 
introduce any type II nodes into the module genotype. It can also 
mutate which node output each of the module outputs are 
connected to.  

The add-input and add-output operators allow greater connectivity 
to and from the contents of a module by increasing the number of 
module inputs or module outputs by one respectively each time 
either operator is applied, making a more generalized module. 
When the add-input operator is applied to a module, the gene 
representing the number of module inputs in the module header 
part of the module genotype is incremented by one and an extra 
gene is inserted into all nodes (type I and type II) representing the 
module in the genotype of the individual, as a randomly chosen 
value for the new module input. Likewise, when the add-output 
operator is applied to a module, the gene representing the number 
of module outputs in the module header part of the module 
genotype is incremented by one and two extra genes are added to 
the module output section of the module genotype, as randomly 
chosen values for the node index and node output that the new 
module output is connected to.  

Alternatively, the remove-input and remove-output operators 
reduce the connectivity to and from the contents of a module, by 
decreasing the number of module inputs or module outputs by one 
respectively each time either operator is applied, therefore making 
a more specialized module. When the remove-output operator is 
applied to a module, the gene representing the number of module 
inputs in the module header part of the module genotype is 
decremented by one and the gene corresponding to the module 
input randomly chosen is removed from all nodes (type I and type 
II) representing the module in the genotype of an individual. 
Likewise, when the remove-output operator is applied to a 
module, the gene representing the number of module outputs in 
the module header part of the module genotype is decremented by 
one and the two genes corresponding to the randomly chosen 
module output are removed from the module output section of the 
module genotype. 

All of the operators: add-input, add-output, remove-input, and 
remove-output must comply with the restrictions on the number of 
module inputs and module outputs at all times. 

4. EXPERIMENT DETAILS 
The performance of CGP and ECGP was tested on three different 
classes of problem: digital adder, digital multiplier and digital 
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comparator. The n-bit digital adder problem takes two n-bit 
numbers and a 1-bit carry-in (2n + 1 program inputs) and adds 
them together to produce an n-bit number and a 1-bit carry-out (n 
+ 1 program outputs). In this experiment we used the 1-bit, 2-bit 
and 3-bit digital adders. The n-bit digital multiplier problem is of 
a similar nature to the digital adder problem as it takes two n-bit 
numbers (2n program inputs) and multiplies them together to 
produce a 2n-bit number (2n program outputs). Here we tested 
only the 2-bit and 3-bit digital multipliers (the 1-bit digital 
multiplier is just the AND Boolean function). The n-bit digital 
comparator problem is a new problem to the GP community but 
not unfamiliar to programmers. It takes two n-bit numbers (2n 
program inputs) and compares them to produce a value of “1” at 
one of its three outputs and “0” at the other two outputs, 
depending on whether the first n-bit number is less than, equal to 
or greater than the second n-bit number. For this experiment we 
looked at the 1-bit, 2-bit and 3-bit digital comparators. 

Table 2. The parameters settings used for CGP and ECGP in 
all of the experiments. The operator rate is expressed as a 

percentage of the genotype length. Both the operator rates and 
probabilities are per generation. 

Parameter Value 

Population size 5 

Initial genotype size 100 nodes (300 
genes) 

Function set for digital adder and 
digital comparator 

{AND, NAND, OR, 
NOR} 

Digital multiplier function set {AND, AND with one 
input inverted, XOR} 

Genotype point mutation rate 2% (6 genes) 

Genotype point mutation probability 1 

Compress probability 0.1 

Expand probability 0.2 

Module point mutation probability 0.04 

Add-input probability 0.01 

Add-output probability 0.01 

Remove-input probability 0.02 

Remove-output probability 0.02 

Maximum module size (ECGP) 5 nodes 

Initial module list contents Empty 

Number of independent runs 50 

 

The fitness is defined as the number of phenotype output bits that 
differ from the perfect n-bit digital adder, n-bit digital multiplier 
or n-bit digital comparator function. A perfect solution has score 
zero. 

The parameter settings used for CGP and ECGP in all of the 
experiments are shown in Table 2. The probability values chosen 

for the ECGP operators were found to be optimal by a trial and 
error process in previous ECGP experiments. The results for all 
CGP and ECGP experiments were averaged over fifty 
independent runs. 

5. RESULTS 
For all experiments, the Computational Effort (CE) was calculated 
using the formula found in [3] with z=99%. The number of hits 
was recorded every 40 generations to calculate the probability. 
The CE figures for the results of CGP and ECGP applied to all of 
the classes of problem chosen is shown in Table 3 below. These 
CE figures are only relevant when comparing CGP and ECGP 
with the same number of nodes in their genotypes and the same 
rate for the default point mutation. This is because CE figures for 
CGP and ECGP vary significantly depending on these values, 
therefore potentially causing an unfair comparison. We have only 
compared the CE figures of ECGP with CGP because no other 
researchers have provided CE figures for their GP techniques on 
these three classes of problem. 

Table 3. The computational effort figures for CGP and ECGP 
for the digital adder, digital multiplier and digital comparator 

problems. 

 CGP ECGP Speedup 

1-Bit Adder 26,720 35,840 0.75 

2-Bit Adder 493,760 203,520 2.43 

3-Bit Adder 2,599,360 1,530,880 1.70 

2-Bit Multiplier 35,840 35,520 1.01 

3-Bit Multiplier 8,659,840 1,917,760 4.52 

1-Bit Comparator 2,880 3,200 0.90 

2-Bit Comparator 78,880 87,360 0.90 

3-Bit Comparator 466,880 520,320 0.90 

 
Over all eight problems tested, both CGP and ECGP produced 
100% successful solutions over all runs. For the digital adder 
problem, the results show that ECGP performs between 1.48 and 
2.43 times faster than CGP for the larger, more complex digital 
adder problems but on the simpler 1-bit digital adder CGP 
performs better, which could be attributed to the overhead of 
dynamic acquisition, evolution and re-use of modules in ECGP. 
The speedup by ECGP on the 2-bit and 3-bit digital adder 
problems can be accounted to the modules finding and re-using 
functions that are not defined in the primitive function set and 
make the problem a lot easier to solve. Two such functions are the 
XOR Boolean function and the half adder circuit, which consists 
of the XOR and AND Boolean functions. Both of these can be 
seen as partial solutions. 

The results for the digital multiplier show that ECGP performs 
between 1.01 (which is negligible) and 4.52 times faster than 
CGP. The speedup factor also increases with problem size, 
indicating that ECGP may perform substantially better on even 
larger problems. This difference in performance between ECGP 
and CGP may also indicate that there exists some form of 
modularity in the digital multiplier problem that the modular 
nature of ECGP exploits. We do not believe that any 
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undiscovered modular way of building multipliers from 
multipliers was found but that ECGP simply found and re-used 
functions that can be constructed from the primitive function set 
and conform to the conventional way of building multipliers. 
Three such functions are the half adder (as found also in the 
digital adders), the 1-bit adder, which is constructed from two half 
adders and an OR Boolean function (as shown in Figure 2) and 
the 2-bit x 1-bit multiplier, which is simply constructed from two 
AND Boolean functions. All three of these functions are 
considered as partial solutions. 

CGP outperforms ECGP on each of the digital comparator 
problems by a constant speedup value each time. This could have 
happened because any modularity that may exist in the 
comparator circuit is not being exploited, possibly due to the 
maximum module size being set too small. Another possibility is 
that there may not be any modularity in the comparator circuit and 
the difference in performance is also due to the dynamic 
acquisition, evolution and re-use of modules. If this is the case 
then it could show that using the added features of ECGP when 
they are not beneficial to solving the given problem only slows 
performance down by 10% when compared with CGP. Therefore 
it may be possible to say that if you apply ECGP to a problem that 
may or may not contain any form of modularity, ECGP could 
perform anywhere between 10% slower and a number of times 
faster than CGP. This is an interesting theorem and will be 
investigated further in future work.  

All of the experiments were run on a single processor desktop PC 
with 512MB of memory. The time taken to complete 50 runs of 
each problem varied between a few minutes to a few hours 
depending on the difficulty of the problem. ECGP only took 
fractionally longer to complete one thousand generations on any 
problem than CGP showing that the computational time required 
for the overhead of module acquisition is quite small and the 
computational time taken for fitness evaluation (both CGP and 
ECGP) is by far the dominant factor.  

6. CONCLUSION 
We have presented for the first time the application of ECGP to 
three classes of difficult problems: digital adders, digital 
multipliers and digital comparators. ECGP shows a significant 
speedup when compared with non-modular CGP on the digital 
adder and digital multiplier problems but did not perform as well 
as CGP on the digital comparator problem by a constant amount 
each time. This phenomenon found in the comparator problem 
will be investigated further in future work to see if an explanation 
can be found to account for this behavior. The results from the 
digital multiplier problem also indicate that ECGP may perform 
substantially better than non-modular CGP on even larger 
problems. 

Currently ECGP does not allow modules within modules. 
However, we do have a working ECGP prototype program that 
does allow embedded sub-modules but we are currently 
investigating the problem of bloat found within the unused areas 
of the module genotype that contain embedded sub-modules. 
When a solution is found to this problem, we intend to allow 
embedded sub-modules in future work as this could lead to an 
even greater boost in performance. 

7. REFERENCES 
[1] Angeline, P. J. Pollack, J. (1993) Evolutionary Module 

Acquisition, Proceedings of the 2nd Annual Conference on 
Evolutionary Programming, pp. 154-163, MIT Press, 
Cambridge. 

[2] Dessi, A. Giani, A. Starita, A. (1999) An Analysis of 
Automatic Subroutine Discovery in Genetic Programming, 
GECCO 1999: Proceedings of the Genetic and Evolutionary 
Computation Conference, pp. 996-1001, Morgan-Kaufmann, 
San Francisco. 

[3] Koza, J. R. (1993) Genetic Programming: On the 
Programming of Computers by Means of Natural Selection, 
MIT Press, London. 

[4] Koza, J. R. (1994) Genetic Programming II: Automatic 
Discovery of Reusable Programs, MIT Press, London. 

[5] Miller, J. F. , Thomson, P., and Fogarty T. C. (1997) 
Designing Electronic Circuits Using Evolutionary 
Algorithms. Arithmetic Circuits: A Case Study, Genetic 
Algorithms and Evolution Strategies in Engineering and 
Computer Science: Recent Advancements and Industrial 
Applications. Editors: D. Quagliarella, J. Periaux, C. Poloni 
and G. Winter, Wiley. 

[6] Miller, J. F. (1999) An Empirical Study of the Efficiency of 
Learning Boolean Functions using a Cartesian Genetic 
Programming Approach, GECCO 1999: Proceedings of the 
Genetic and Evolutionary Computation Conference, Orlando, 
Florida, pp 1135-1142, Morgan Kaufmann, San Francisco. 

[7] Miller, J. F. Thomson, P. (2000) Cartesian Genetic 
Programming, Proceedings of the 3rd European Conference 
on Genetic Programming, Edinburgh, Lecture Notes in 
Computer Science, Vol. 1802, pp 121-132, Springer-Verlag, 
Berlin. 

[8] Poli, R. (1996), Parallel Distributed Genetic Programming, 
Technical Report, CSRP-96-15, University of Birmingham, 
UK. 

[9] Rosca, J. P. (1995) Genetic Programming Exploratory Power 
and the Discovery of Functions, Proceedings of the 4th 
Annual Conference of Evolutionary Programming, San 
Diego, pp 719-736, MIT Press, Cambridge. 

[10] Spector, L. (1996) Simultaneous evolution of programs and 
their control structures, Advances in Genetic Programming 
II, pp. 137-154, MIT Press, Cambridge. 

[11] Spector, L. (2001) Autoconstructive Evolution: Push, 
PushGP, and Pushpop, Proceedings of the Genetic and 
Evolutionary Computation Conference, GECCO-2001, pp. 
137-146. San Francisco, CA: Morgan Kaufmann Publishers 

[12] Van Belle, T, and Ackley, D.H. (2001) Code Factoring and 
the Evolution of Evolvability, Proceedings of the Genetic 
and Evolutionary Computation Conference, GECCO-2001, 
pp. 1383--1390. San Francisco, CA: Morgan Kaufmann 
Publishers 

[13] Vassilev, V. K. and Miller J. F. (2000) The Advantages of 
Landscape Neutrality in Digital Circuit Evolution, 
Proceedings of the 3rd International Conference on 
Evolvable Systems: From Biology to Hardware (ICES2000), 

1655



Lecture Notes in Computer Science, Vol. 1801, 252-263. 
Springer, Berlin. 

[14] Vassilev, V. K. and Miller J. F. (2000) Scalability Problems 
of Digital Circuit Evolution, 2nd NASA/DOD Workshop on 
Evolvable Hardware, IEEE Computer Society Press, pp. 55-
64. 

[15] Walker, J. A. Miller, J. F. (2004) Evolution and Acquisition 
of Modules in Cartesian Genetic Programming, Proc. of the 
7th European Conference on Genetic Programming, Lecture 
Notes in Computer Science, Vol. 3003, pp 187-197, 
Springer-Verlag, Berlin. 

[16] Woodward, J. R. (2003) Modularity in Genetic 
Programming, Proceedings of the Fifth European Conference 
on Genetic Programming, Lecture Notes in Computer 
Science, Vol. 2610, pp. 258--267, Springer-Verlag, Berlin. 

[17] Yu, T. and Miller, J. F. (2001) Neutrality and the 
Evolvability of Boolean Function Landscape, Proceedings of 
the 4th European Conference on Genetic Programming, 
Lecture Notes in Computer Science, Vol. 2038, pp. 204-217, 
Springer-Verlag, Berlin.

 

1656


