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ABSTRACT
Code bloat, the excessive increase of code size, is an important is-
sue in Genetic Programming (GP). This paper proposes a theoreti-
cal analysis of code bloat in the framework of symbolic regression
in GP, from the viewpoint of Statistical Learning Theory, a well
grounded mathematical toolbox for Machine Learning. Two kinds
of bloat must be distinguished in that context, depending whether
the target function lies in the search space or not. Then, important
mathematical results are proved using classical results from Sta-
tistical Learning. Namely, the Vapnik-Chervonenkis dimension of
programs is computed, and further results from Statistical Learning
allow to prove that a parsimonious fitness ensures Universal Con-
sistency (the solution minimizing the empirical error does converge
to the best possible error when the number of examples goes to in-
finity). However, it is proved that the standard method consisting
in choosing a maximal program size depending on the number of
examples might still result in programs of infinitely increasing size
with their accuracy; a more complicated modification of the fitness
is proposed that theoretically avoids unnecessary bloat while nev-
ertheless preserving the Universal Consistency.

(full paper available athttp://www.lri.fr/˜teytaud/
longBloat.pdf , [3])

Categories & Subject Descriptors
G.1.6 Global Optimization

General Terms
Algorithms, Reliability, Theory.

Keywords
Code Bloat, Code Growth, Genetic Programming, Statistical
Learning Theory.

1. CODE BLOAT IN GP
There exists several theories that intend to explain code bloat

: the introns theory ([12, 11, 2]), thefitness causes bloattheory
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([8],[6]), theremoval biastheory ([15]). While it is now considered
that each of these theories somewhat captures part of the problem
[1], there has not been any definitive global explanation of the bloat
phenomenon. At the same time, no definitive practical solution has
been proposed that would avoid the drawbacks of bloat (increasing
evaluation time of large trees) while maintaining the good perfor-
mances of GP on difficult problems. Some common solutions rely
either on specific operators (e.g. size-fair crossover [7], or differ-
ent Fair Mutation [9]), on some parsimony-based penalization of
the fitness [16] or on abrupt limitation of the program size such as
the one originally used by Koza [5]. Some other more particular
solutions have been proposed but are not widely used yet [13, 14,
10].

2. OVERVIEW OF RESULTS
The detailed results are available in [4]. We shall investigate

the Universal Consistency of Genetic Programming algorithm, and
study in detail structural and functional bloat that might take place
when searching program spaces using GP.
A formal and detailed definition of the program space that will be
assumed for GP is given in Lemma 1 ([4]), and two types of results
will then be derived:

• Universal Consistencyresults, i.e. does the probability of
misclassification of the solution given by GP converges to
the optimal probability of misclassification when the number
of examples goes to infinity?

• Bloat-related results, first regarding structural bloat, that will
be proved to be incompatible with accuracy, and second with
respect to functional bloat, for which the consequences of in-
troducing various types of fitness penalization and/or bound
on the complexity of the programs on the behavior of the
complexity of the solution will be thoroughly studied.

Let us now state precisely, yet informally, our main results:

• First, we will precisely define the set of programs under ex-
amination, and prove that such a search space fulfills the con-
ditions of the standard theorems of Statistical Learning The-
ory.

• Applying those theorems will immediately lead to a first Uni-
versal Consistency result for GP, provided that some penal-
ization for complexity is added to the fitness (Theorem 3)

• The first bloat-related result, Proposition 4, unsurprisingly
proves that if the optimal function does not belong to the
search space, then converging to the optimal error implies
that the complexity of the empirical optimal solution goes to
infinity (unavoidable structural bloat).
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• Theorem 5 is also a negative result about bloat, as it proves
that even if the optimal function belongs to the search space,
minimizing the LSE alone might lead to (structural) bloat
(i.e. the complexity of the empirical solutions goes to infinity
with the sample size).

• But the last two theorems (5’ and 6) are the best positive
results one could expect considering the previous findings:
it is possible to carefully adjust the parsimony pressure so
as to obtain both Universal Consistency and bounds on the
complexity of the empirical solution (i.e. no bloat).

Note that, though all proofs in [4] will be stated and proved in the
context of classification (i.e. find a function fromRd into {0, 1}),
their generalization to regression (i.e. find a function fromRd into
R) is straightforward.

3. CONCLUSION
In this paper, we have proposed a theoretical study of an impor-

tant issue in Genetic Programming known as code bloat. We have
shown that GP trees used in symbolic regression (involving the
four arithmetic operations, the exponential function, and ephemeral
constants, as well as test and jump instructions) could be studied us-
ing some classical tools from Statistical Learning Theory. This has
lead to two kinds of original outcomes: some results about Univer-
sal Consistency of GP, i.e. some guarantee that if GP converges to
some (empirical) function, this function will be close to the opti-
mal one if sufficiently many examples are used; and results about
the bloat, both the unavoidable structural bloat in case the target
ideal function is not included in the search space, and the func-
tional bloat, for which we proved that it can – theoretically – be
avoided by simultaneously bounding the length of the programs
with somead hocbound and using some parsimony pressure in the
fitness function. Some negative results have been obtained, too,
such as the fact though structural bloat was know to be unavoid-
able, functional bloat might indeed happen even when the target
function does lie in the search space, but no parsimony pressure is
used.

Interestingly, all those results (both positive and negative) about
bloat are also valid in different contexts, such as for instance that of
Neural Networks (the number of neurons replaces the complexity
of GP programs). Moreover, results presented here are not limited
to the scope of regression problems, but may be applied to vari-
able length representation algorithms in different contexts such as
control or identification tasks.

Finally, going back to the debate about the causes of bloat in
practice, it is clear that our results can only partly explain the ac-
tual cause of bloat in a real GP run – and tends to give arguments
to the “fitness causes bloat” explanation [8]. It might be possible to
study the impact of size-preserving mechanisms (e.g. specific vari-
ation operators, like size-fair crossover [7] or fair mutations [9]) as
somehow contributing to the regularization term in our final result
ensuring both Universal Consistency and no-bloat.
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