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ABSTRACT

This paper describes a scalable algorithm for solving mul-
tiobjective decomposable problems by combining the hi-
erarchical Bayesian optimization algorithm (hBOA) with
the nondominated sorting genetic algorithm (NSGA-II) and
clustering in the objective space. It is first argued that for
good scalability, clustering or some other form of niching in
the objective space is necessary and the size of each niche
should be approximately equal. Multiobjective hBOA (mo-
hBOA) is then described that combines hBOA, NSGA-II
and clustering in the objective space. The algorithm mo-
hBOA differs from the multiobjective variants of BOA and
hBOA proposed in the past by including clustering in the ob-
jective space and allocating an approximately equally sized
portion of the population to each cluster. The algorithm
mohBOA is shown to scale up well on a number of problems
on which standard multiobjective evolutionary algorithms
perform poorly.
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1. INTRODUCTION

One of the important strengths of evolutionary algorithms
is that they can deal with multiple objectives and find
Pareto-optimal solutions, which define a tradeoff between
these objectives. The Pareto-optimal front can be exploited
to select solutions appropriate for each particular applica-
tion without having to weigh the objectives in advance or
reduce the multiple objectives in some other way. A number
of multiobjective evolutionary algorithms were proposed in
the past, including the nondominated sorting genetic algo-
rithm IT (NSGA-II) [11], the improved strength Pareto evo-
lutionary algorithm (SPEA2) [33], the Pareto-archived evo-
lution strategy (PAES) [18], the multiobjective genetic al-
gorithm (MOGA) [12], the niched-Pareto genetic algorithm
(NPGA) [15], and the multiobjective Bayesian optimization
algorithm (mBOA) [17, 20].

However, all studies of multiobjective evolutionary algo-
rithms focused either on whether or not an algorithm could
discover a wide and dense Pareto-optimal front or on prac-
tical applications, but they overlook algorithm scalability,
that means, how the time complexity of a multiobjective
evolutionary algorithm grows with problem size. Recent
work [29] has shown that although the proposed multiob-
jective evolutionary algorithms can provide a high-quality
Pareto-optimal front on isolated problem instances of rel-
atively small size, the time complexity of these algorithms
can often grow prohibitively fast and the algorithms thus do
not scale up well.

The purpose of this paper is to present a scalable multiob-
jective evolutionary algorithm that can solve decomposable
multiobjective problems in low-order polynomial time. The
algorithm consists of three main ingredients: (1) Model-
building, model-sampling, and replacement procedures of
hBOA [25, 26, 24], (2) nondominated sorting and crowding-
distance assignment of NSGA-II [11], and (3) clustering in
the objective space (the space of fitness values) [32].

The paper starts with an overview of prior work on multi-
objective estimation of distribution algorithms (EDAs) and
an introduction to basic concepts used in mohBOA. Sec-
tion 3 describes mohBOA. Section 4 describes experiments
and presents experimental results. Finally, Section 5 sum-
marizes and concludes the paper.

2. BACKGROUND

This section starts by summarizing prior work on mul-
tiobjective estimation of distribution algorithms (EDAs).



The section then discusses basic components of the multi-
objective hierarchical Bayesian optimization algorithm (mo-
hBOA): The hierarchical Bayesian optimization algorithm
(hBOA) [27, 24], the nondominated sorting genetic algo-
rithm (NSGA-II) [11], and the k-means clustering algorithm
[21] for clustering in the objective space [32].

2.1 Prior work on multiobjective EDAs

Estimation of distribution algorithms (EDAs) [22, 28, 19],
also called probabilistic model-building genetic algorithms
(PMBGASs) [28] and iterated density estimation algorithms
(IDEAs) [5], replace standard variation operators such as
crossover and mutation by building a probabilistic model of
selected candidate solutions and sampling the built model to
generate new solutions. Several multiobjective EDAs were
proposed in the past for different variants of BOA [17, 16,
20] and for EDAs with mixtures of univariate and tree mod-
els [32].

Khan [17, 16] proposed multiobjective BOA (mBOA) and
multiobjective hBOA (mhBOA) by combining BOA and
hBOA with the selection and replacement mechanisms of
NSGA-II [11]. Tests on challenging decomposable multiob-
jective problems indicated that without identifying and ex-
ploiting interactions between different string positions, some
decomposable problems become intractable using standard
variation operators (crossover and mutation). On the other
hand, mBOA and mhBOA could solve decomposable and
hierarchical problems relatively efficiently.

Laumanns [20] combined mixed BOA [23] with the se-
lection and replacement mechanisms of SPEA2 [33]. Since
mixed BOA can be applied to problems with both discrete
and continuous variables, the resulting algorithm can also
be applied to vectors over both types of variables. The
algorithm was tested on knapsack where it was shown to
dominate NSGA-II, SPEA, and SPEA2 in most instances.

Ahn [2] combined real-coded BOA [3] with the selection
procedure of NSGA-II with a sharing intensity measure and
modified NSGA-II crowding mechanism.

Incorporating learning and sampling of multivariate prob-
abilistic models was an important step toward competent
multiobjective solvers, because it allowed standard multiob-
jective genetic algorithms, such as NSGA-II and SPEA2, to
solve problems that necessitate some form of linkage learn-
ing. However, the primary purpose of all presented tests
was to examine good coverage of the Pareto-optimal front
but they overlooked scalability. It was later indicated [29]
that the proposed multiobjective EDAs do not scale up well
on some decomposable problems without some form of clus-
tering as is discussed in this paper and neither do standard
multiobjective GAs, such as NSGA-II.

Thierens [32] combined simple EDAs with univariate and
tree models with nondominated tournament selection and
clustering. Clustering was used to split the population into
subpopulations where a separate model is built for each sub-
population. The use of clustering was yet another important
step toward scalable EDAs and other multiobjective evolu-
tionary algorithms. The number of samples generated from
the model of each cluster was set to encourage the sampling
of extreme solutions and that is why the methods described
in [32] use clustering in a similar way as we use it in this
paper. However, here we use clustering to explicitly ensure
that each part of the Pareto-optimal front will have suffi-
ciently many candidates in the population.
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Figure 1: Pareto-optimal front in two-objective en-
gine design.

The following section describes the hierarchical BOA.
Next, multiobjective optimization is discussed. Finally,
NSGA-IT and the k-means clustering algorithm are de-
scribed.

2.2 Hierarchical BOA (hBOA)

The hierarchical Bayesian optimization algorithm
(hBOA) [24, 27] evolves a population of candidate solutions
to the given problem. The first population is usually
generated at random. The population is updated for a
number of iterations using two basic operators: (1) selection
and (2) variation. The selection operator selects better
solutions at the expense of the worse ones from the current
population, yielding a population of promising candidates.
The variation operator starts by learning a probabilistic
model of the selected solutions that encodes features of
these promising solutions and the inherent regularities.
hBOA uses Bayesian networks with local structures [7, 13]
to model promising solutions. The variation operator then
proceeds by sampling the probabilistic model to generate
new candidate solutions. The new solutions are incor-
porated into the original population using the restricted
tournament replacement (RTR) [14], which ensures that
useful diversity in the population is maintained for long
periods of time. A more detailed description of hBOA can
be found in [24, 27].

2.3 Multiobjective optimization

In multiobjective optimization, the task is to find a so-
lution or solutions that are optimal with respect to multi-
ple objectives. For example, one may want optimize the
design of an engine to both maximize its performance as
well as minimize its fuel consumption. There are two ba-
sic approaches to solving multiobjective optimization prob-
lems: (1) weigh the objectives in some way, yielding a single-
objective problem where the objective consists of a weighted
sum of all objectives, and (2) find the Pareto-optimal front,
which is defined as the set of solutions that can be improved
with respect to any objective only at the expense of their
quality with respect to at least one other objective; for ex-
ample, the performance of an engine design on the Pareto-
optimal front could be improved only at the expense of its
fuel consumption and the other way around (see Figure 1).



crowding-distance-assignment (P)
for each rank r (nondominated sorting)

P’ = select solutions with rank r from P;
N = size(P’);
for each solution X in P’

d(X)=0;

for each objective m
Q = sort P’ using m-th objective;
d(Q(1))=infinity;
d(Q(N))=infinity;
for i=2 to N-1
d(Q(1))=d(Q(i))+Q(i+1) .m-Q(i-1) .m;

return d;

Figure 2: Crowding distance assignment in NSGA-
II. For a solution X, X.m denotes the value of mth
objective for X. Q(i) denotes ith candidate solution
in population Q.

Pareto optimality can be easily explained using the con-
cept of dominance. We say that a candidate solution A
dominates a candidate solution B if A is better than B with
respect to at least one objective but A is not worse than B
with respect to all other objectives. For example, engine A
dominates engine B if A is better than B with respect to
both performance as well as fuel consumption. The Pareto-
optimal front is then a subset of all candidate solutions that
are not dominated by any other candidate solution.

The primary advantage of finding the Pareto-optimal
front as opposed to finding the optimum to a single-objective
problem created by weighing the objectives is that some-
times it is difficult or impossible to weigh the objectives ap-
propriately to find satisfactory solutions. Furthermore, find-
ing the Pareto-optimal front reveals the relationship among
the objectives, which can be used to decide which of the so-
lutions on this front is best for each particular problem in-
stance. In this paper we focus on the discovery of the Pareto-
optimal front because the application of hBOA or other ad-
vanced evolutionary algorithms to any single-objective prob-
lem is straightforward. The task is to find solutions across
the entire Pareto-optimal front and cover the front as well
as possible.

An overview of multiobjective genetic and evolutionary
algorithms and their comparison can be found in Deb [9]
and Coello Coello [8].

2.4 Nondominated sorting GA (NSGA-I1)

The nondominated sorting genetic algorithm (NSGA-II)
[11] modifies selection and replacement of standard genetic
algorithms to enable the discovery of a wide-spread, dense
Pareto-optimal front. Here we describe the basic principle
of the selection and replacement operators of NSGA-II.

The selection operator in NSGA-II starts by partially sort-
ing the population using dominance. First, rank 1 is as-
signed to the subset of the current population that consists
of solutions that are not dominated by any solution in the
population. Next, solutions that are not dominated by any
of the remaining, unranked solutions are selected and given
rank 2. The process of ranking solutions continues by al-
ways considering solutions that are not dominated by the
remaining solutions and assigning increasing ranks to these
solutions. In this manner, the solutions that are dominated
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compare (A,B)
if (rank(A)<rank(B)) then better(A,B)=A;
if (rank(A)>rank(B)) then better(A,B)=B;
if (rank(A)=rank(B))
then if (crowding(A)>crowding(B))
then better(A,B)=A;
if (crowding(A)<crowding(B))
then better(A,B)=B;
if (crowding(A)=crowding(B))
then better(A,B)=random(A,B);

Figure 3:
NSGA-II.

Nondominated crowding selection in

by least solutions are given lower ranks than the solutions
that are dominated by most solutions. With respect to Pa-
reto optimality, solutions with lower ranks should be given
priority.

In addition to the ranking, each candidate solution is as-
signed a crowding distance, which estimates how dense the
current Pareto-optimal front is in the vicinity of this solu-
tion. The higher the crowding distance of a solution, the
more isolated the solution. The crowding distance is com-
puted for each rank separately. The candidate solutions are
first sorted according to each objective and the crowding
distance of each solution is computed by considering the
distance of its nearest neighbors in this ordering [11]. See
Figure 2 for the pseudocode of the crowding distance assign-
ment algorithm.

To compare quality of two solutions, their ranks are com-
pared first. If the ranks of the solutions differ, the solution
with the lower rank is better. If the ranks of both the solu-
tions are equal, the solution with a greater crowding distance
wins. If both the ranks as well as the crowding distances are
equal, the winner is determined randomly. A pseudocode for
the comparison of two solutions is shown in Figure 3. This
comparison procedure can be used in any standard selection
operator, such as tournament or truncation selection. In
both the original NSGA-II as well as mohBOA, tournament
selection is used.

The selected population of solutions undergoes mutation
and crossover and is combined with the original population
to form the new population of candidate solutions. NSGA-II
uses an elitist replacement mechanism to combine the parent
population P(t) and the offspring population O(t) to form
the new population P(t + 1). The replacement operator in
NSGA-II starts by merging the two populations P(t) and
O(t) into one population. Ranks and crowding distances
are then computed for all solutions in the merged popula-
tion, and the nondominated crowding comparison operator
is used to select best solutions from the merged population.
The best solutions are then transferred to the new popula-
tion P(¢t+ 1). For more details about NSGA-II, see [11].

2.5 K-meansclusteringin the objective space

Given a set X of N points, k-means clustering [21] splits X
into k clusters or subsets with approximately same variance.
The algorithm proceeds by updating a set of k cluster centers
where each center defines one cluster. The cluster centers
can be initialized randomly but more advanced algorithms
can also be used to initialize the centers.

Each iteration consists of two steps. In the first step, each



point in X is attached to the closest center (ties can be re-
solved arbitrarily). In the second step, cluster centers are
recomputed so that each center is the center of mass of the
points attached to it. The algorithm terminates when all
points in X remain in the same cluster after recomputing
cluster centers and reassigning the points to the newly com-
puted centers. Points attached to each cluster center define
one cluster. The numbers of points in different clusters can
differ significantly if points in X are not distributed uni-
formly and some clusters may even become empty. Some-
times it is necessary to rerun k-means several times and use
the result of the best run.

In decomposable multiobjective problems where the ob-
jectives compete in a number of problem partitions, using
traditional selection and replacement mechanisms necessi-
tates exponentially scaled populations to discover the entire
Pareto-optimal front [29]. The reason for this behavior is
that the niches on the extremes of the Pareto-optimal front
(maximizing most partitions with respect to one particular
objective) can be expected to be exponentially smaller than
the niches in the middle [29]. To alleviate this problem, it
is necessary to process different parts of the Pareto-optimal
front separately and allocate a sufficiently large portion of
the population to each part of the Pareto-optimal front.

It is important to note that other algorithms, such as
NSGA-IT and SPEA2, also include mechanisms that at-
tempt to deal with a good coverage of a wide Pareto-optimal
front. However, these mechanisms are insufficient for some
decomposable multiobjective problems because they result
in creating exponentially large niches in the middle of the
Pareto-optimal front while eliminating extremes. This leads
to poor scalability, which is supported with experimental
results shown in Section 4.

Allocating comparable space to each part of the Pareto-
optimal front can be ensured by using clustering in the ob-
jective space as suggested in [32]. X thus consists of m-
dimensional vectors where m is the number of objectives.
To reduce the number of iterations until the creation of rea-
sonable clusters, the cluster centers can be initialized by
ordering points according to one objective and assigning the
ith center to (N/(2k) + ¢[N/k])th point in this ordering.
Since k-means clustering divides the points into clusters of
approximately same variance, by forcing each cluster to pro-
duce an equal number of new candidate solutions, regular
coverage of the Pareto-optimal front can be ensured even for
difficult decomposable multiobjective problems.

3. MULTIOBJECTIVE HBOA (MOHBOA)

This section describes the multiobjective hierarchical
BOA (mohBOA), which combines hBOA, NSGA-II, and
clustering in the objective space.

Like hBOA, mohBOA generates the initial population of
candidate solutions at random. The population is first eval-
uated. Similarly as in other evolutionary algorithms, each
iteration starts with selection. However, instead of using
standard selection methods, mohBOA first uses the non-
dominated crowding of NSGA-II to rank candidate solutions
and assign their crowding distances. The ranks and crowd-
ing distances then serve as the basis for applying standard
selection operators. For example, binary tournament selec-
tion can then be used where the winner of each tournament
is determined by the ranks and crowding distances obtained
from the nondominated crowding.
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multiobjective-hBOA(N, k, objectives)
t = 0;
generate initial population P(0) of size N;
evaluate P(0);
while (not done) {
rank members of P(t) using nondom. crowding;
select S(t) from P(t) based on the ranking;
cluster S(t) into k clusters;
build Bayesian network with local structures
for each cluster;
create 0(t) of size N by sampling the model
for each cluster to generate N/k solutions;
evaluate 0(t);
combine 0(t) and P(t) to create P(t+1);
t:=t+1;

Figure 4: Pseudocode of the multiobjective hBOA.

After selecting the population of promising solutions, k-
means clustering is applied to this population to obtain a
specified number of clusters. Usually, some clusters remain
empty and are thus not considered in the recombination
phase. A separate probabilistic model is built for each clus-
ter and used to generate a part of the offspring population.
To encourage an equal coverage of the entire Pareto-optimal
front, the model for each cluster is used to generate the same
number of new candidate solutions.

The population consisting of all newly generated solutions
is then combined with the original population to create the
new population of candidate solutions. We use two methods
to combine the two populations: (1) the elitist replacement
based on the nondominated crowding of NSGA-II, and (2)
the restricted tournament replacement (RTR) [14] based on
the nondominated crowding.

RTR incorporates the offspring population into the orig-
inal population one solution at a time. For each offspring
solution X, a random subset of candidate solutions in the
original population is first selected. The solution that is
closest to X is then selected from this subset. Here we mea-
sure the distance of two solutions by counting the number
of bits where solutions differ but it might be advantageous
to consider a distance metric defined in the objective space
similarly as in k-means clustering; however, using the ob-
jective function values to compute distance does not seem
to improve results significantly as is shortly verified with
experiments. X replaces the selected solution if it is better
according to the NSGA-II comparison procedure (Figure 3).
The pseudocode of mohBOA is shown in Figure 4.

4. EXPERIMENTS

This section describes test problems used in the experi-
ments and presents experimental results.

4.1 Test problems

There were five primary objectives in the design of test
problems used in this paper:

(i) Scalability. Test problems should be scalable, that is,
it should be possible to increase problem size without
affecting the inherent problem difficulty severely.
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Figure 5: Onemax and zeromax for a 5-bit string.

(i) Decomposability. Objective functions should be de-
composable.

(iii) Known solution. Test problems should have a known

Pareto-optimal front in order to be able to verify the

results.

Much competition. The objectives should compete
in all or most partitions of an appropriate problem
decomposition.

Linkage learning. Some test problems should require
the optimizer to be capable of linkage learning, that
is, of identifying and exploiting interactions between
decision variables.

Two two-objective test problems were used: onemax vs.
zeromax and trap-5 vs. inverse trap-5 problem. Both func-
tions assume binary-string representation. This section de-
scribes these problems and discusses their difficulty.

4.1.1 Problem1: Onemax-zeromax
The first test problem is inspired by [6]. It consists of
two objectives: (1) onemax and (2) zeromax. Onemax is
defined as the sum of bits in the input binary string X =
()(1,)(27 ey Xn)
n
onemaz(X) = ZXi (1)
i=1
The task is to maximize the function and thus the optimum
of onemax is in the string of all ones. See Figure 5 to vi-

sualize onemax for 5-bit strings. Zeromax is defined as the
number of positions containing a 0:

()

The task is to maximize the function and thus the optimum
of zeromax is in the string of all zeros. See Figure 5 to
visualize zeromax for 5-bit strings.

Onemax and zeromax are conflicting objectives; in fact,
any modification that increases one objective decreases the
other objective. In onemax-zeromax, any binary string is
located on the Pareto-optimal front.

4.1.2 Problem2: Trap5-invtrap5

The second test problem is inspired by [16]. It consists of
two objectives: (1) trap-5 and (2) inverse trap-5. String po-
sitions are first (before running the optimizer) divided into

zeromaz(X) = n — onemaz(X)
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Figure 6: Trap-5 and inverse trap-5 for one 5-bit
block.

disjoint subsets or partitions of 5 bits each. The partitioning
is fixed during the entire optimization run, but the algorithm
is not given information about the partitioning in advance.
Bits in each partition contribute to trap-5 using a 5-bit fully
deceptive trap function [1, 10] defined as

5
4—u

where u is the number of ones in the input string of 5 bits.
The task is to maximize the function and thus the optimum
of trap-5 is in the string of all ones. See Figure 6 to visualize
trap-5 for one block of 5 bits.

Trap-5 deceives the algorithm away from the optimum if
interactions between the bits in each partition are not con-
sidered [31, 4, 27]. That is why standard crossover opera-
tors of genetic algorithms—such as uniform, one-point, and
two-point crossover—fail to solve trap-5 unless the bits in
each partition are located close to each other in the chosen
representation; in fact, standard crossover operators require
exponentially scaled population sizes to solve trap-5 [31].
Mutation operators require O(n° logn) evaluations to solve
trap-5 and, therefore, are also highly inefficient in solving
trap-5.

Inverse trap-5 is defined using the same partitions as trap-
5, but the basis function, which is applied to each partition,
is modified as follows:

ifu=5
ifu<b

traps(u) 3)

nvtraps(u) = { i_ 1 i:j N 8 (4)

The task is to maximize the function and thus the opti-
mum of inverse trap-5 is located in the string of all zeros. See
Figure 6 to visualize trap-5 for one block of 5 bits. Inverse
trap-5 also deceives the algorithm away from the optimum
if the interactions between the bits in each partition are not
considered.

Trap-5 and inverse trap-5 are conflicting objectives. Any
solution that sets the bits in each partition either to Os or to
1s is Pareto-optimal and thus there are 2*/° Pareto-optimal
solutions.

4.2 Experimental methodology

Three recombination operators were tested:

(i) UMDA recombination [22] where a probabilistic model
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clustering in the objective space leads to a

dramatic improvement in performance for both UMDA and GA. Furthermore, they indicate that RTR
performs better than the elitist replacement of NSGA-II and that multiobjective UMDA with RTR is capable
of solving onemax-zeromax in low-order polynomial time.

with no interactions is used to model and sample solu-
tions,

(ii) two-point crossover and bit-flip mutation, and

(iii) mohBOA recombination based on Bayesian networks
with local structures.

For each recombination operator, both aforementioned re-
placement mechanisms were used (elitist replacement and
RTR).

For all test problems and all algorithms, different prob-
lem sizes were examined to study scalability. For each prob-
lem type, problem size and algorithm, bisection was used to
determine a minimum population size to find one represen-
tative solution for each point on the Pareto-optimal front
(solutions with the same values of both objectives are con-
sidered equivalent) in 10 out of 10 independent runs. The
Pareto-optimal front for an n-bit onemax-zeromax consists
of (n+ 1) solutions with unique values of the two objectives
whereas the Pareto-optimal front for an n-bit trap5-invtrap5
consists of (n/5 + 1) solutions with unique objective func-
tion values. To reduce noise, the bisection method was ran
10 times. Thus, the results for each problem type, problem
size, and algorithm correspond to 100 successful runs. Algo-
rithm performance was measured by the number of evalua-
tions until the Pareto-optimal front was completely covered.
The results are displayed in log-log scale so that it is easy to
distinguish between polynomial scalability (a straight line)
and worse than polynomial scalability (worse than a straight
line).

The number of generations for UMDA and mohBOA re-
combination was upper-bounded by 5n where n is the prob-
lem size (the number of bits), whereas the runs with stan-
dard crossover and mutation were given at most 10n or
20n generations (depending on the test) because of their
slower convergence. For GAs, the probability of crossover
was p. = 0.6, whereas the probability of flipping each bit by
mutation was p, = 1/n.

To focus only on the effects of different recombination and
replacement strategies, the number of clusters in k-means
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clustering was set to the number of unique solutions on the
final Pareto-optimal front (again, solutions with equal objec-
tive values are considered equivalent). If the number of clus-
ters cannot be approximated in advance, it can be obtained
automatically using for example the Bayesian information
criterion (BIC) [30].

4.3 Resaults

Figure 7 shows the growth of the number of evaluations
with problem size for onemax-zeromax. The results indicate
that clustering in the objective space is necessary for scalable
solution of onemax-zeromax. Furthermore, the results show
that here RTR based on nondominated crowding performs
better than the elitist replacement of NSGA-II. Finally, the
results indicate that UMDA with RTR provides low-order
polynomial solution to onemax-zeromax.

Figure 8 shows the results on trap5-invtrap5. The re-
sults show that as expected, trapb-invtrapb necessitates not
only clustering in the objective space like onemax-zeromax
but also effective identification and exploitation of interac-
tions between different problem variables also called linkage
learning. That is why standard crossover and UMDA fail
to solve this problem efficiently and become intractable al-
ready for relatively small problems. The algorithm mohBOA
with RTR and clustering in the objective space provides best
performance and scales up polynomially with problem size.
Again, RTR leads to better performance than elitism.

Figure 9 shows that the UMDA performance on onemax-
zeromax does not change much if the objective space is used
to compute the distance of solutions in RTR (as opposed to
using standard distance metrics for binary strings). How-
ever, using RTR in the objective space is still not capable of
ensuring scalable performance if clustering in the objective
space is not used indicating that it is insufficient to incor-
porate niching via replacement based on the distribution of
solutions no matter whether the niching method is based on
the candidate solutions themselves or their objective values.
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Figure 8: Results on trap5-invtrap5 indicate that
for some decomposable problems it is necessary to
both include clustering as well as identify and ex-
ploit interactions between interacting string posi-
tions or decision variables. Furthermore, they show
that RTR performs better than the elitist replace-
ment of NSGA-II and that mohBOA with RTR is
capable of solving trap5-invtrap5 in low-order poly-
nomial time.
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Figure 9: The results of multiobjective UMDA with
RTR using a distance metric in the objective space
on onemax-zeromax indicate that clustering in the
objective space cannot be replaced with this variant
of RTR and that the choice of metric in RTR does
not significantly affect performance.
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5. SUMMARY AND CONCLUSIONS

This paper discussed scalable optimization of multiobjec-
tive decomposable problems where the objectives compete
in different partitions of the problem decomposition. The
multiobjective hierarchical BOA (mohBOA) was proposed
that combines the hierarchical BOA with the nondominated
crowding of NSGA-II and clustering in the objective space.
By combining one of the most powerful genetic and evo-
lutionary algorithms with NSGA-II and clustering, a scal-
able multiobjective optimization algorithm for decompos-
able problems was created. Only problems with two objec-
tives were used in the experiments but the conclusions drawn
should apply to problems with more than two objectives.

Experimental results indicate that clustering in the objec-
tive space is necessary for scalable optimization of decom-
posable multiobjective problems. Restricted tournament
replacement (RTR) based on nondominated crowding ap-
pears to perform better than the elitist replacement used
in NSGA-II. Furthermore, to solve arbitrary multiobjective
decomposable problems, linkage learning must be consid-
ered to effectively identify and process different subprob-
lems. The experiments indicate that mohBOA can solve
decomposable multiobjective problems in low-order polyno-
mial time, whereas other compared algorithms fail to scale
up well and become intractable for already relatively small
problems.
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