

Learned Mutation Strategies in Genetic Programming
for Evolution and Adaptation of Simulated Snakebot

Ivan Tanev

Department of Information Systems Design, Doshisha University,
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0321, Japan

ATR Network Informatics Laboratories,
2-2-2 Hikaridai, “Keihanna Science City”, Kyoto 619-0288, Japan

itanev@mail.doshisha.ac.jp

ABSTRACT
In this work we propose an approach of incorporating learned
mutation strategies (LMS) in genetic programming (GP)
employed for evolution and adaptation of locomotion gaits of
simulated snake-like robot (Snakebot). In our approach the LMS
are implemented via learned probabilistic context-sensitive
grammar (LPCSG). The LPCSG is derived from the originally
defined context-free grammar, which usually expresses the
syntax of genetic programs in canonical GP. Applying LMS
implies that the probabilities of applying each of particular
production rules in LPCGS during the mutation depend on the
context. These probabilities are learned from the aggregated
reward values obtained from the parsed syntax of the evolved
best-of-generation Snakebots. Empirically obtained results
verify that LMS contributes to the improvement of
computational effort of both (i) the evolution of the fastest
possible locomotion gaits for various fitness conditions and (ii)
the adaptation of these locomotion gaits to challenging
environment and degraded mechanical abilities of Snakebot. In
all of the cases considered in this study, the locomotion gaits,
evolved and adapted employing GP with LMS feature higher
velocity and are obtained faster than with canonical GP.

Categories and Subject Descriptors
G.1.6–Global Optimization; J.2-Physics

General Terms: Algorithms, design
Keywords: Mutation strategies, genetic programming,
locomotion, Snakebot, context-sensitive grammar.

1. INTRODUCTION
Wheelless, limbless snake-like robots (Snakebots) feature
potential robustness characteristics beyond the capabilities of
most wheeled and legged vehicles – ability to traverse terrain
that would pose problems for traditional wheeled or legged

robots, and insignificant performance degradation when partial
damage is inflicted. Some useful features of Snakebots include
smaller size of the cross-sectional areas, stability, ability to
operate in difficult terrain, good traction, high redundancy, and
complete sealing of the internal mechanisms [4, 6].

Robots with these properties open up several critical
applications in exploration, reconnaissance, medicine and
inspection. However, compared to the wheeled and legged
vehicles, Snakebots feature (i) more difficult control of
locomotion gaits and (ii) inferior speed characteristics. In this
work we intend to address the following challenge: how to
automatically develop control sequences of Snakebot’s
actuators, which allow for achieving the fastest possible speed of
locomotion.

In principle, the task of designing the controlling code of robots
could be formalized and the formal mathematical models
incorporated into direct programmable control strategies [6, 15,
17]. However, the eventual models of the Snakebot would
feature enormous complexity and such models are not
recognized to have a known, analytically obtained exact optimal
solution. The complexity of the model stems from the
considerable amount of degrees of freedom of the Snakebot,
which cannot be treated independently of each other. The
locomotion of the Snakebot is viewed as an emergent property at
higher level of consideration of a complex hierarchical system,
comprising many relatively simply defined entities
(morphological segments). In such systems the higher-level
properties of the system and the lower-level properties of
comprising entities cannot be induced from each other.

The automated mechanisms for prompt generation of near-
optimal solutions to such complex, ill-posed problems are
usually based on various models of learning (ontogenesis) or
evolution (phylogenesis) of species in the Nature [7, 9, 16]. The
proposed approach of employing genetic programming (GP)
implies that the code, which controls the locomotion of the
Snakebot is automatically designed by a computer system via
simulated evolution through selection and survival of the fittest
in a way similar to the natural evolution of species [8]. GP (and
evolutionary algorithms in general) is considered as an efficient
way to tackle such difficult problems due to the ability to find a
near-optimal solution in a reasonable runtime.

The objectives of our work are (i) to explore the feasibility of
applying GP for efficient automatic design of the fastest possible
locomotion of realistically simulated Snakebot and (ii) to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

687

investigate the adaptation of such locomotion to challenging
environment and degraded abilities (due to partial damage) of
simulated Snakebot. We are especially interested in the
implications of the proposed incorporation of learned mutation
strategies (LMS) in GP on the efficiency of evolution and
adaptation of Snakebot.

Presented approach of incorporating LMS is implemented via
learning probabilistic context-sensitive grammar (LPCSG),
employed to express the preferable syntactical bias of mutation
operation in GP. The proposed approach is related to the
approach of grammatical evolution (GE) [10] in which the
evolved genotype encodes the sequence of grammar rules,
which should be applied during the simulated gene expression
phase in order to generate the phenotype. Our work is also
related to the incorporation of estimation of distribution
algorithms (EDA) for biased mutations in evolutionary
computations, mainly – in GA [5, 11, 12]. Motivated by the
demonstrated advantages of both the GE and the EDA in GA,
our work could be viewed as an attempt to fuse these two
approaches in a way which allows for the biased mutation in GP
(rather than GA, as in EDA) to be implemented via adjustable,
learned preferences (rather than “hard coded” in the
chromosome, as in GE) in applying the corresponding
alternative grammar rules. Although a few grammar-based
EDAs have been recently proposed [2, 13], in neither of these
methods the incorporation of LPCSG in GP has been explored.
Our interest in the feasibility of such approach additionally
motivated us in this work.

The remainder of this document is organized as follows. Section
2 emphasizes the main features of GP proposed for evolution of
locomotion of the Snakebot. Section 3 introduces the proposed
approach of incorporating LPCSG in GP and discusses the
empirically obtained results of efficiency of evolution and
adaptation of Snakebot to challenging environment and partial
damage. Section 4 draws a conclusion.

2. GP FOR AUTOMATIC DESIGN OF
LOCOMOTION GAITS OF SNAKEBOT
2.1. Representation of Snakebot
Snakebot is simulated as a set of identical spherical
morphological segments (“vertebrae”), linked together via
universal joints. All joints feature identical (finite) angle limits
and each joint has two attached actuators (“muscles”). In the
initial, standstill position of Snakebot the rotation axes of the
actuators are oriented vertically (vertical actuator) and
horizontally (horizontal actuator) and perform rotation of the
joint in the horizontal and vertical planes respectively.
Considering the representation of Snakebot, the task of
designing the fastest locomotion can be rephrased as developing
temporal patterns of desired turning angles of horizontal and
vertical actuators of each segment, that result in fastest overall
locomotion of Snakebot. The proposed representation of
Snakebot as a homogeneous system comprising identical
morphological segments is intended to significantly reduce the
size of the search space of the GP. Moreover, because the size of
the search space does not necessarily increase with the increase
of the complexity of Snakebot (i.e. the number of morphological
segment), the proposed approach allows achievement of
favorable scalability characteristics of GP.

2.2 Algorithmic Paradigm
2.2.1 GP
GP [8] is a domain-independent problem-solving approach in
which a population of computer programs (individuals’
genotypes) is evolved to solve problems. The simulated
evolution in GP is based on the Darwinian principle of
reproduction and survival of the fittest. The fitness of each
individual is based on the quality with which the phenotype of
the simulated individual is performing in a given environment.

2.2.2 Function Set and Terminal Set
 In applying GP to evolution of Snakebot, the genotype is
associated with two algebraic expressions, which represent the
temporal patterns of desired turning angles of both the
horizontal and vertical actuators of each morphological segment.
Because locomotion gaits, by definition, are periodical, we
include the periodic functions sin and cos in the function set
of GP in addition to the basic algebraic functions. Terminal
symbols include the variables time, index of the segment of
Snakebot, and two constants: Pi, and random constant within
the range [0, 2]. The main parameters of the GP are shown in
Table 1.

2.2.3 Context-free Grammar for Canonical GP
The context-free grammar (CFG) G, usually employed to define
the allowed syntax of individuals in GP consists of (N, Σ, P, S)
where N is a finite set of nonterminal symbols, Σ is a finite set of
terminal symbols that is disjoint from N, S is a symbol in N that
is indicated as the start symbol, and P is a set of production
rules, where a rule is of the form

V -> w

where V is a non-terminal symbol and w is a string consisting of
terminals and/or non-terminals. The term "context-free" comes
from the feature that the variable V can always be replaced by w,
in no matter what context it occurs. The set of non-terminal
symbols of G of GP, is employed to develop the temporal
patterns of desired turning angles of horizontal and vertical
actuators of segments, that result in fastest overall locomotion of
Snakebot, is defined as follows:

N = {GP, STM, STM1, STM2, VAR, CONST_x10,
CONST_PI, OP1, OP2}

where STM is a generic algebraic statement, STM1 – a generic
unary (e.g., sin, cos, nop) algebraic statement, STM2 – a
generic binary (dyadic, e.g. +, -, *, and /) algebraic statement,
VAR – a variable, OP1 – an unary operation, OP2 – a binary
(dyadic) operation, CONST_x10 is a random constant within the
range [0..20], and CONST_PI equals either 3.1416 or 1.5708.
The set of terminal symbols is defined as:

Σ = {sin,cos,nop,+,-, *,/,time,segment_id}
where sin, cos, nop, +, -, * and / are terminals which
specify the functions in the generic algebraic statements. The
start symbol is GP, and the set of production rules expressed in
Backus-Naur form (BNF) are as shown in Figure 1. GP uses the
defined production rules of G to create the initial population and
to mutate genetic programs. In the canonical GP the production
rules with multiple alternative right-hand sides (such as rules 2,

688

4, 6, 7 and 9, shown in Figure 1) are usually chosen randomly
during these operations.

2.2.4 Fitness Evaluation
The fitness function is based on the velocity of Snakebot,
estimated from the distance, which the center of the mass of
Snakebot travels during the trial. Fitness of 100 (the one of
termination criteria shown in Table 1) is equivalent to a velocity,
which displaced Snakebot a distance equal to twice its length.

Table 1. Main parameters of GP

Category Value
Function set {sin, cos, nop, +, -, *, /}
Terminal set {time, segment_ID, Pi, random constant}
Population size 200 individuals

Selection Binary tournament, selection ratio 0.1,
reproduction ratio 0.9

Elitism Best 4 individuals
Mutation Random subtree mutation, ratio 0.01

Fitness Velocity of simulated Snakebot during the
trial

Trial interval 180 time steps, each time step account for
50ms of “real” time

Termination
criterion

(Fitness >100) or (Generations>40)

(1) GP ——► STM
(2.1-2.5) STM ——► STM1|STM2|VAR|CONST_x10|CONST_PI
(3) STM1 ——► OP1 STM
(4.1-4.6) OP1 ——► sin|cos|nop|–|sqr|sqrt
(5) STM2 ——► OP2 STM STM
(6.1-6.4) OP2 ——► +|-|*|/
(7.1-7.2) VAR ——► time|segment_id
(8) CONST_x10 ——► 0..20
(9.1-9.2) CONST_PI ——► 3.1416|1.5708

Figure 1. BNF of production rules of the context free
grammar G of GP, employed for automatic design of
locomotion gaits of Snakebot. The following abbreviations
are used: STM – generic algebraic statement, STM1 – unary
algebraic statement, STM2 – binary (dyadic) algebraic
statement, VAR – variable, OP1 – unary operation, and OP2
– binary operation

2.2.5 Representation of Genotype
Inspired by its flexibility, and the recently emerged widespread
adoption of document object model (DOM) and extensible
markup language (XML) [18], we represent the evolved
genotypes of the Snakebot as DOM-parse trees featuring
equivalent flat XML-text. Both (i) the calculation of the desired
turning angles during fitness evaluation and (ii) the genetic
operations are performed on DOM-parse trees via API of the
off-the shelf DOM-parser.

2.2.6 Genetic Operations
Selection is a binary tournament. Crossover is defined in a
strongly typed way in that only the DOM-nodes (and
corresponding DOM-subtrees) of the same data type (i.e. labeled
with the same tag) from parents can be swapped. The sub-tree

mutation is allowed in strongly typed way in that a random node
in genetic program is replaced by syntactically correct sub-tree.
The mutation routine refers to the data type of currently altered
node and applies the chosen rule from the set of applicable
rewriting rules as defined in the grammar of GP. The selection
of the grammar rule, which should be applied to the currently
altered tree node during the mutation is random in the canonical
implementation of GP; and biased in the proposed approach of
applying LMS as shall be elaborated in the following Section 3.

2.2.7 Open Dynamics Engine
We have chosen Open Dynamics Engine (ODE) [14] to provide
a realistic simulation of physics in applying forces to phenotypic
segments of the Snakebot. ODE is a free, industrial quality
software library for simulating articulated rigid body dynamics.
It is fast, flexible and robust, and it has built-in collision
detection.

3. INCORPORATING LMS IN GP
3.1 Learning Probabilistic Context-Sensitive

Grammar
The proposed approach is based on the idea of introducing bias
in applying the most preferable rule from the grammar rules
with multiple, alternative right-hand sides (RHS). We presume
that the preferences of applying certain production rules depend
on the surrounding grammatical context, defining which rules
have been applied before. The initial probability distributions
(PD) pi1, pi2, …piN for each contexti for each grammar
rule with multiple is RHS is even (equal) and then learned
(tuned) incrementally at each generation from the subset of the
best performing Snakebots. The learned PD is then used as a
bias to steer the mutation of Snakebots.

In the proposed approach, the learning probabilistic context-
sensitive grammar (LPCSG) G* is proposed as a formal model
describing such mutation. G* is introduced as a set of the same
attributes (N*, ∑*, P*, S*) as the CFG G defined in Section 2.2.
The attributes N*, ∑*, and S* are identical to the corresponding
attributes N, ∑, and S of G. The set of production rules P* of G*
are derived from P of G as follows:
(i) Production rules of PS (PS ⊂ P) of G which have a single

right-hand side are defined in the same way in P* as in P,
and

(ii) Production rules in PM (PM ⊂ P) of G, which feature
multiple right-hand side alternatives V → w1|w2|...|wN
are re-defined for each instance i of the context as follows:

contexti V → contexti w1 (pi1)
contexti V → contexti w2 (pi2)
...
contexti V → contexti wN (piN)

where pi1, pi2, …piN (∑pin = 1, n=1,2..N.) are
the probabilities of applying each alternative rule with the left-
hand side non-terminal V for the given contexti.

Applying the IF-THEN stimulus-response paradigm, which
usually expresses the reactive behavioral strategies of intelligent
entities in AI (e.g., software agents, robots, etc.) to such biased
mutation operations in GP, and viewing the evolved genotype
not only as an evolving, but also as a learning intelligent entity,

689

the above considered sample rule of G* could be modeled by the
following behavioral IF-THEN statement:

IF (Context_of_[V] is [contexti]))
THEN Apply_Rules_With_Probabilities(pi1,p

i
2,

…piN)

The LMS strategy in our approach comprises the dynamic set of
IF-THEN rules created and tuned by parsing the syntax of the
best performing Snakebots of the current generation. A sample
of biased application of production rules of G* according to the
learned PD and the corresponding IF-THEN rule of LMS for the
considered leftmost non-terminal and the context are shown in
Figure 2.

Figure 2. Sample of biased application of production rules of
G*: the current leftmost non-terminal, as shown in (a) is
STM, which requires applying one of the production rules
2.1-2.5 (refer to Figure 2). For the considered context (a), the
LMS of applying rules 2.1-2.5 (b) suggests a highest
probability for applying the production rule 2.4, yielding the
genetic program as shown in (c).

3.2 Algorithm of GP Incorporating LMS
The principal steps of algorithm of GP incorporating LMS via
LPCSG are shown in Figure 3. As figure illustrates, additional
Steps 6 and 9 are introduced in the canonical algorithm of
GP. The LMS is updated on Step 6, and the new offspring,
created applying the proposed biased mutation via LPCSG on
Step 9 are inserted into already reproduced via canonical
crossover (Step 7) and mutation (Step 8), growing new
population of Snakebots. The parameter KLMS defines the ratio of
the number of offspring #NLMS created via biased mutation using
LMS and the number of offspring #NCO created via canonical
crossover. KLMS is dynamically tuned on Step 6 based on the
stagnation counter CS, which maintains the number of most
recent generations without improvement of the fitness value. In

our implementation, KLMS is kept within the range [0, 5]. It is
defined according to the following rule:
 KLMS = 5 - smaller_of(5,CS)

The lower values of KLMS in stagnated population (i.e., for CS>0)
favor the reproduction via canonical random genetic operations
over the reproduction using biased mutation via LMS. As we
empirically investigated, the low values of KLMS facilitate
avoiding premature convergence by increasing the diversity of
population and consequently, accelerating the escape from the
(most likely) local optimal solutions, discovered by the steering
bias of the current LMS. Conversely, replacing the usually
random genetic operations of canonical GP with the proposed
biased mutation when KLMS is close to its maximum value (i.e.,
for CS=0) can be viewed as a mechanism for growing and
preserving the proven to be beneficial building blocks in
evolved solutions rather than destroying them by usually random
crossover and mutation.

Step 0:Creating Initial Population and Clearing PDD;
Step 1:While (true) do begin
Step 2: Evaluating Population;
Step 3: Ranking Population;
Step 4: if TerminationCriteria then Go to Step 10;
Step 5: Selecting the Mating Pool;
Step 6: Updating LMS and KLMS;
Step 7: Creating #NCO offspring via canonical crossover;
Step 8: Mutating current population via canonical
 mutation;
Step 9: Creating #NLMS offspring via mutation
 of mating pool using LMS;
Step10:end;

Figure 3. Algorithm of GP incorporating LMS. Steps 6 and
9 are specific for the proposed approach. Steps 0, 2-5, 7
and 8 are common principal steps of canonical GP.

Updating (Figure 3, Step 6) and applying LMS during the
biased mutation (Figure 3, Step 9) implies maintaining a
table, which represents the set of learned IF-THEN rules. Each
entry in the table stores the context, the left-hand side non-
terminal, the list of right-hand side symbols, the aggregated
reward values and the calculated probability of applying the
given production rule for the given context. A new entry is
added or the aggregated reward value of existing entry is
updated by extracting the syntactic features of the best
performing genetic programs (the mating pool) of the current
generation. The outdated entries, added 4 or more generations
before are deleted, keeping the total number of entries in the
table between 300 and 500. The string of characters, comprising
the right-hand side RHS of given production rule that should be
applied to the current leftmost non-terminal (i.e. the
corresponding left-hand symbol in production rule, LHS) for the
given context C is obtained by the function
GetProduction([in] C, [in] LHS, [out] RHS)
which operates on LMS table as shown in Figure 4.

4. EMPIRICAL RESULTS
This section discusses empirically obtained results verifying the
effects of incorporating LMS on the efficiency of GP applied for
the following two tasks: (i) evolution of the fastest possible
locomotion gaits of Snakebot for various fitness conditions and
(ii) adaptation of these locomotion gaits to challenging

2.1

3

4.6

2.2

5

6.1

2.5

9.2

.

.

.

Context of
<STM>:

The 1st sibling,
the 2nd sibling,
and the parent

a)

IF-THEN Rule of the LMS

IF (Context_of_[STM] is [1.57, +, sqrt])
THEN Apply_Rules_With_Probabilities [0.34, 0, 0.07, 0.43, 0.16]

Rule in LPCSG Probability For the Context
--- ----------------- ------------- ----------------
2.1 STM ——> STM1 0.34 [1.57, +, sqrt]
2.2 STM ——> STM2 0 [1.57, +, sqrt]
2.3 STM ——> VAR 0.07 [1.57, +, sqrt]
2.4 STM ——> CONST_x10 0.43 [1.57, +, sqrt]
2.5 STM ——> CONST_PI 0.16 [1.57, +, sqrt]

Rule #2.4

.

.

.

?

The leftmost non-terminal

b)

c)

690

environment and degraded mechanical abilities of Snakebot.
These tasks, considered as relevant for successful
accomplishment of anticipated exploration, reconnaissance,
medicine or inspection missions, feature different fitness
landscapes. Therefore, the experiments discussed in this section
are intended to verify the versatility and the scope of
applicability of the proposed approach.

Figure 4. Obtaining the most preferable right-hand side
(RHS) of production rule of LPCSG that should be applied
to the left-most non-terminal (i.e. left-hand symbol, LHS),
and the context (C) according to a sample IF-THEN rule of
the current LMS: (1) Selecting the set of entries associated
with the entries featuring the given LHS and C, (2)
Choosing an entry from the obtained result set with a
probability, proportional to the learned PD, and (3)
returning the RHS of the chosen production rule. The sample
IF-THEN rule of the LMS, shown in this Figure is the same
as in Figure 2.

In all of the cases considered, the fitness of Snakebot reflects the
low-level objective (i.e. what is required to be achieved) of
Snakebot in these missions, namely, to be able to move fast
regardless of environmental challenges or degraded abilities.
The experiments discussed illustrate the ability of the evolving
Snakebot to learn how (e.g. by discovering beneficial
locomotion traits) to accomplish the required objective without
being explicitly taught about the means to do so. Such know-
how acquired by Snakebot automatically and autonomously can
be viewed as a demonstration of emergent intelligence [1], in
that the task-specific knowledge of how to accomplish the task
emerges in the Snakebot from the interaction of the problem
solver and the fitness function.

4.1 Evolution of Fastest Locomotion Gaits
Figure 5 shows the results of evolution of locomotion gaits for
cases where fitness is measured as velocity in any direction.
Despite the fact that fitness is unconstrained and measured as
velocity in any direction, sidewinding locomotion (defined as

locomotion predominantly perpendicular to the long axis of
Snakebot) emerged in all 10 independent runs of GP, suggesting
that it provides superior speed characteristics for considered
morphology of Snakebot. As Figure 5c illustrates, incorporating
LMS in GP is associated with computational effort (required to
achieve probability of success 0.9) of about 20 generations,
which is about 1.6 times faster than canonical GP with CFG.
Sample snapshots of evolved best-of-run sidewinding
locomotion gaits are shown in Figures 5d-5g.

In order to verify the superiority of velocity characteristics of
sidewinding we compared the fitness convergence
characteristics of evolution in unconstrained environment for the
following two cases: (i) unconstrained fitness measured as
velocity in any direction (as discussed above and illustrated in
Figure 5), and (ii) fitness, measured as velocity in forward
direction only. The results of evolution of forward (rectilinear)
locomotion, shown in Figure 6 indicate that non-sidewinding
motion, compared to sidewinding, features much inferior
velocity characteristics. The results also demonstrate that GP
with LMS in average converges almost 4 times faster and to
higher values than canonical GP. Snapshots taken during the
motion of a sample evolved best-of-run sidewinding Snakebot
are shown in Figures 6c and 6d.

Figure 5. Evolution of locomotion gaits for cases where
fitness is measured as velocity in any direction: fitness
convergence characteristics of 10 independent runs of GP
with LMS (a), canonical GP (b), probability of success (c),
and snapshots of sample evolved via GP with LMS best-of-
run sidewinding Snakebots (d), (e), (f) and (g). The dark
trailing circles in (d), (e), (f) and (g) depict the trajectory of
the center of the mass of Snakebot.

The results of evolution of rectilinear locomotion of simulated
Snakebot confined in narrow “tunnel” are shown in Figure 7. As
the fitness convergence characteristics of 10 independent runs
(Figure 7a and Figure 7b) illustrate, GP with LMS is almost
twice faster than canonical GP. Compared to forward
locomotion in unconstrained environment (Figure 6), the
velocity in this experiment is superior, and even comparable to
the velocity of sidewinding (Figure 5). This, seemingly
anomalous phenomenon demonstrates a case of emergent
intelligence – i.e. an ability of evolution to discover a way to
utilize the walls of “tunnel” as (i) a source of extra grip and as
(ii) an additional mechanical support for fast yet unbalanced
locomotion gaits (e.g., vertical undulation) in an eventual
unconstrained environment.

Context
(C)

Left-hand
side (LHS)

Right-hand side
(RHS)

Aggregated
Reward Value

(ARV)

Probability
Distribution

(PD)
...

[1.57,+,sqrt] ‘STM’ ‘STM1’ 19 0.34

[1.57,+,sqrt] ‘STM’ ‘STM2’ 0 0.00

[1.57,+,sqrt] ‘STM’ ‘VAR’ 4 0.07

[1.57,+,sqrt] ‘STM’ ‘CONST_x10’ 24 0.43

[1.57,+,sqrt] ‘STM’ ‘CONST_PI’ 9 0.16

...

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40
Generation #

Pr
ob

ab
ilit

y o
f S

uc
ce

ss

LPCSG
CFG0

20
40
60
80

100

0 10 20 30 40
Generation #

Fit
ne

ss
0

20
40
60
80

100

0 10 20 30 40
Generation #

Fit
ne

ss b) a) c)

d) e) g)f)

GetProduction([in] C, [in] LHS, [out] RHS)

[1.57,+, sqrt],‘STM’ ‘CONST x10’

1

2

3

691

Figure 7. Evolution of locomotion gaits of Snakebot confined
in narrow “tunnel”: fitness convergence characteristics of 10
independent runs of GP with LMS (a), canonical GP (b), and
snapshots of sample evolved best-of-run gaits at the
intermediate (c) and final stages of the trial (d)

4.2 Adaptation of Sidewinding to
Challenging Environment. Generality of
Adapted Gaits

Adaptation in Nature is viewed as an ability of species to
discover the best phenotypic (i.e. pertaining to biochemistry,
morphology, physiology, and behavior) traits for survival in
continuously changing fitness landscape. The adaptive
phenotypic traits are result of beneficial genetic changes
occurred during the course of evolution (phylogenesis) and/or
phenotypic plasticity (ontogenesis – learning, polymorphism,
polyphenism, immune response, adaptive metabolism, etc.)
occurring during the lifetime of the individuals. In our approach
we employ GP with LMS for adaptation of Snakebot to changes
in the fitness landscape caused by (i) challenging environment
and (ii) partial damage to 1, 2, 4 and 8 (out of 15) morphological
segments. In all of the cases of adaptation, GP is initialized with
a population comprising 20 best-of-run genetic programs,
obtained from 10 independent runs of evolution of Snakebot in
unconstrained environment, plus additional 180 randomly
created individuals.

The challenging environment is modeled by the
introduction of immobile obstacles comprising 40 small,
randomly scattered boxes, a wall with height equal to the 0.5
diameters of the cross-section of Snakebot, and a flight of 3
stairs, each with height equal to the 0.33 diameters of the cross-
section of Snakebot. The results of adaptation of Snakebot,
shown in Figure 8 demonstrate that the computational effort
(required to reach fitness values of 100 with probability of
success 0.9) of GP with LMS is about 20 generations.
Conversely, only half of all runs of canonical GP achieve the
targeted fitness value, implying that the corresponding

probability of success converges to the value of 0.5. Snapshots
illustrating the performance of Snakebot initially evolved in
unconstrained environment, before and after the adaptation (via
GP with LMS) to challenging environment are shown in Figure
9. The additional elevation of the body, required to faster
negotiate the obstacles represents the emergent know-how in the
adapting Snakebot. As Figure 10 illustrates, the trajectory of the
central segment around the center of the mass of sample adapted
Snakebot (Figure 10b) is twice higher than before the adaptation
(Figure 10a).

Figure 8. Adaptation of sidewinding locomotion to
challenging environment: fitness convergence characteristics
of 10 independent runs of GP with LMS (a), canonical GP
(b), and probability of success (c).

Figure 9. Snapshots illustrating the sidewinding Snakebot,
initially evolved in unconstrained environment, before the
adaptation – initial (a), intermediate (b and c) and final
stages of the trial (d), and after the adaptation to challenging
environment via GP with LMS - initial (e), intermediate (f)
and final stages of the trial (g).

The generality of the evolved via GP with LMS robust
sidewinding gaits is demonstrated by the ease with which
Snakebot, evolved in known challenging terrain overcomes
various types of unanticipated obstacles such as a pile of boxes,

0
20
40
60
80

100

0 10 20 30 40
Generation #

0
20
40
60
80

100

0 10 20 30 40
Generation #

Fit
ne

ss

a) b) c) d)

0

20

40

60
80

100

0 10 20 30 40
Generation #

0

20

40
60

80

100

0 10 20 30 40
Generation #

Fit
ne

ss

a) b) c) d)
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40Generation #

Pr
ob

ab
ilit

y o
f S

uc
ce

ss

LM S
CFG60

70

80

90

100

0 5 10 15 20 25 30
Generation #

60

70

80

90

100

0 5 10 15 2025 30
Generation #

Fit
ne

ss

a) b) c)

- 0 .4

- 0 .2

0

0.2

0.4

- 0 .8 - 0 .6 - 0 .4 - 0 .2 0 0.2 0.4 0 .6 0.8

Lateral dis plac ement, Xc s -Xc m

El
ev

at
ion

, Z
cs

-Z
cm

6cm

3cm

0

-3cm
12cm 6cm 0 6cm

-0.4
-0.2

0
0.2
0.4

-0
.8

-0
.6

-0
.4

-0
.2

0 0.
2

0.
4

0.
6

0.
8

Lateral displacement, Xcs-
Xcm

El
ev

ati
on

, Z
cs

-Z
cm

a) b)
6cm
3cm

0
-3cm
-6cm
 -12cm -6cm 0 6cm 12cm -12cm -6cm 0 6cm 12cm

Lateral displacement, XCS-XCM
Figure 10. Trajectory of the central segment (cs) around the
center of mass (cm) of Snakebot for sample best-of-run
sidewinding locomotion before (a) and after the adaptation
(b) to challenging environment.

Figure 6. Evolution of locomotion gaits for cases where
fitness is measured as velocity in forward direction only.
Fitness convergence characteristics of 10 independent runs
of GP with LMS (a), canonical GP (b), and snapshots of
sample evolved via GP with LMS best-of-run forward
locomotion (c and d).

Timeline
t=1s t=5s t=9s t=13s

Before Adaptation
b) c) d)a) b)

After Adaptation via GP with LMS

f) e) g)

692

a burial under boxes, and small walls, as illustrated in Figures
11, 12, and 13.

4.3 Adaptation to Partial Damage
The adaptation of sidewinding Snakebot to partial damage to 1,
2, 4 and 8 (out of 15) segments by gradually improving its
velocity is shown in Figure 14. Demonstrated results are
averaged over 10 independent runs for each case of partial
damage to 1, 2, 4 and 8 segments. The damaged segments are
evenly distributed along the body of Snakebot. Damage inflicted
to a particular segment implies a complete loss of functionality
of both horizontal and vertical actuators of the corresponding
joint.

As Figure 14 depicts, Snakebot recovers completely from the
damage to single segment attaining its previous velocity in 25
generations with canonical GP, and only in 7 generations with
GP with LMS, resulting in a mean real-time of adaptation of a

few hours of runtime on PC featuring Intel® 3GHz Pentium® 4
microprocessor and 2GB RAM under Microsoft Windows NT
OS. Snakebots recovers to average of 94% (Canonical GP) and
100% (GP with LMS) of its previous velocity in the case where
2 segments are damaged. With 4 and 8 damaged segments the
degree of recovery is 77% (Canonical GP) and 92% (GP with
LMS), and 68% (Canonical GP) and 72% (GP with LMS)
respectively. In all of the cases considered incorporating LMS
contributes to faster adaptation of Snakebot, and in all cases the
Snakebot recovers to higher values of velocity of locomotion.
The snapshots of sidewinding Snakebot immediately after
damage, and after having recovered from the damage of 1, 2 , 4
and 8 segments are shown in Figure 15.

5. CONCLUSION
In this work we propose an approach of incorporating LMS
implemented via LPCSG in GP and verified it on the efficiency
of evolution and adaptation of locomotion gaits of simulated
Snakebot. We introduced a biased mutation in which the
probabilities of applying each of particular production rules with
multiple right-hand side alternatives in the LPCSG depend on
the context, and these probabilities are “learned” from the
aggregated reward values obtained from the evolved best-of-
generation Snakebots. Empirically obtained results verify that
employing LMS contributes to the improvement of
computational effort of both (i) the evolution of the fastest
possible locomotion gaits for various fitness conditions and (ii)
adaptation of these locomotion gaits to challenging environment
and degraded mechanical abilities of Snakebot.

20
40
60
80

100

0 10 20 30 40
Generation #

Fd
/F

o,
%

20
40
60
80

100

0 10 20 30 40
Generation #

Fd
/F

o,
%

20
40
60
80

100

0 10 20 30 40
Generation #

Fd
/F

o,
%

20
40
60
80

100

0 10 20 30 40
Generation #

Fd
/F

o,
%

a) b) c) d)

 GP with LMS Canonical GP

Figure 14. Adaptation of Snakebot to damage of 1 (a), 2 (b), 4
(c) and 8 (d) segments. Fd is the best fitness in evolving
population of damaged snakebots, and Fh is the best fitness
of 20 best-of-run healthy sidewinding Snakebots.

Figure 13. Snapshots illustrating the generality of
sidewinding Snakebot adapted to the known challenging
environment as depicted in Figure 9. Before the adaptation
to the known challenging environment the Snakebot clears
an unanticipated walls forming pen slower (a, b, c and d)
than after the adaptation (e, f, and g). The walls are twice
higher than in the know challenging terrain, and their
height is equal to the diameter of the cross-section of
Snakebot.

Timeline
t=1s t=6s t=9st=4s

After Adaptation via GP with LMS

f) e) g)

Before Adaptation
c)b) a) d)

Timeline

After Adaptation via GP with LMS

t=2s t=6s t=9s

f)e) d)

Before Adaptation

c)b) a)

Figure 11. Snapshots illustrating the generality of
sidewinding Snakebot adapted to the known challenging
environment as depicted in Figure 9. Before the adaptation
to the known challenging environment the Snakebot
overcomes an unanticipated pile of boxes slower (a, b and c)
than after the adaptation (d, e, and f) via GP with LMS.

Figure 12. Snapshots illustrating the generality of
sidewinding Snakebot adapted to the known challenging
environment as depicted in Figure 9. Before the adaptation
to the known challenging environment the Snakebot
emerges from an unanticipated burial under pile of boxes
slower (a, b and c) than after the adaptation (d, e, and f)
via GP with LMS.

Timeline
t=1s t=2s t=9s

After Adaptation via GP with LMS

Before Adaptation

c)b) a)

f)e) d)

693

The recent discoveries in molecular biology and genetics
suggest that mutations do not happen randomly in the Nature.
Instead, some fragments of DNA tend to repel the mutations
away, while other fragments seem to attract it [3]. It is assumed
that the former fragments are related to the very basics of life,
(and therefore, any mutation within them can be potentially fatal
to the species), while the latter fragments are relevant for the
adaptability (and consequently, for the survival) of the
organisms. The proposed approach of LMS incorporated in GP
implies focusing the mutation operation toward the proven
beneficial mutation points (i.e. the points with even distribution
of the learned probabilities for the right-hand side alternatives of
rules in LPCSG). In addition, the approach of LMS facilitates
keeping the mutation away from the genotypic points which do
not have a proven beneficial effect on the performance of
genetic programs by always choosing the same right-hand side
alternative (in case of highly uneven distribution of learned
probabilities) and thus following with fidelity the syntactical
trends which prevail in the best performing individuals. Within
the context considered, the proposed incorporation of LMS in
GP can be viewed as a biologically plausible attempt (i) to
mimic the Natural mechanisms of genomic control over the
mutation operations and (ii) to investigate the computational
implication of these mechanisms on the efficiency of the
simulated evolution and adaptation of engineering artifacts.

REFERENCES
[1] Angeline, P. J. Genetic Programming and Emergent

Intelligence. In Kinnear, K.E. Jr., editor, Advances in
Genetic Programming, MIT Press, 1994, 75-98

[2] Bosman, P. and de Jong, E., Learning Probabilistic Tree
Grammars for Genetic Programming, In Proceedings of the
8th International Conference on Parallel Problem Solving
from Nature PPSN-04, 2004, 192-201.

[3] Caporale, L. H. Darwin In the Genome: Molecular
Strategies in Biological Evolution, 2002, McGraw-
Hill/Contemporary Books

[4] Dowling, K. Limbless Locomotion: Learning to Crawl with
a Snake Robot, doctoral dissertation, tech. report CMU-RI-

TR-97-48, Robotics Institute, Carnegie Mellon University,
1997.

[5] Goldberg D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning, Addision-Wesley,
1989

[6] Hirose, S. Biologically Inspired Robots: Snake-like
Locomotors and Manipulators, Oxford University Press,
1993.

[7] Kimura, H., Yamashita, T., and Kobayashi, S.
Reinforcement Learning of Walking Behavior for a Four-
Legged Robot, In Proceedings of 40th IEEE Conference
on Decision and Control, 2 001, 411-416

[8] Koza, J. R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Cambridge,
MA, MIT Press, 1992.

[9] Mahdavi, S., Bentley, P.J. Evolving Motion of Robots with
Muscles. In Proc. of EvoROB2003, the 2nd European
Workshop on Evolutionary Robotic (EuroGP 2003), 2003
655-664.

[10] O'Neill, M. and Ryan, C. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language, Series: Genetic Programming, Vol. 4, Springer,
2003.

[11] Pelikan M., Goldberg D. E., and Cantú-Paz, E. BOA: The
Bayesian optimization algorithm. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-99), I, 1999, 525-532.

[12] Salustowicz, R. and Schmidhuber, J Probabilistic
Incremental Program Evolution. Evolutionary
Computation, Vol.5 No.2, 1997, 123-141.

[13] Shan Y., McKay, R.I, and Baxter R. Grammar Model-
based Program Evolution, In Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, 20-23 June, 2004,
Portland, Oregon, 478-485.

[14] Smith, R. Open Dynamics Engine, 2001-2003,
URL: http://q12.org/od

[15] Stoy, K., Shen, W.-M. and Will, P.M. A Simple Approach
to the Control of Locomotion in Self-reconfigurable
Robots, Robotics and Autonomous Systems, Vol.44 , No.3,
2003, pp.191-200.

[16] Takamura, S., Hornby, G. S., Yamamoto, T. , Yokono, J.
and Fujita, M. Evolution of Dynamic Gaits for a Robot, In
Proceedings of the IEEE International Conference on
Consumer Electronics, 2000, 192-193.

[17] Zhang, Y., Yim, M. H., Eldershaw, C., Duff, D. G. and
Roufas, K. D. Phase automata: a programming model of
locomotion gaits for scalable chain-type modular robots, In
Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), October 27 -
31; Las Vegas, NV, 2003.

[18] W3C, Extensible Markup Language (XML) 1.0, Second
Edition, W3C Recommendation (2000), URL:
http://www.w3.org/TR/REC-xml/

Figure 15. Snapshots of the sidewinding Snakebot,
immediately after damage to 1 (a), 2 (c), 4 (e), and 8 (g)
segments, and after having recovered from the damage (b, d,
f, and h) by adaptation via GP with LMS.

After adaptation

After adaptation

Before adaptation

Before adaptation

After adaptation

After adaptation

Before adaptation

Before adaptation

98% of original
velocity

d)

70% of original
velocity

h)

64% of original
velocity

c)

40% of original
velocity

g)

107% of original
velocity

b)

90% of original
velocity

f)

72% of original
velocity

a)

55% of original
velocity

e)

694

