
Addressing the Even-n-parity problem using Compressed
Linear Genetic Programming

Johan Parent
Vrije Universiteit Brussel

Faculty of Engineering, ETRO
Pleinlaan 2

1050 Brussel, BELGIUM

johan@info.vub.ac.be

Ann Nowé
Vrije Universiteit Brussel

Faculty of Science, COMO
Pleinlaan 2

1050 Brussel, BELGIUM

asnowe@info.vub.ac.be

Anne Defaweux
Vrije Universiteit Brussel

Faculty of Science, COMO
Pleinlaan 2

1050 Brussel, BELGIUM

adefaweu@vub.ac.be

ABSTRACT
Compressed Linear Genetic Programming (cl-GP) uses sub-
string compression as a modularization scheme. Despite the
fact that the compression of substrings assumes a tight link-
age between alleles, this approach improves the GP search
process. The compression of the genotype, which is a form
of linkage learning, provides both a protection mechanism
and a form of genetic code reuse. This text presents the
results obtained with the cl-GP on the Even-n-parity prob-
lem. Results indicate that the modularization of the cl-GP
performs better than a normal l-GP as it allows the cl-GP to
preserve useful gene combinations. Additionally the cl-GP
modularization is well suited for problems where the prob-
lem size is adjusted in a co-evolutionary setup, the problem
size increases each time a solution is found.

Categories and Subject Descriptors
[Genetic Programming]

Keywords
representation, linear GP, genotype, substitution

1. INTRODUCTION
Genetic algorithms (GA) and genetic programming (GP)
search the space of possible solutions by manipulating the
solution representation using genetic operators like crossover
and mutation. Variable length representations allow the
structure of the solution to evolve but are still restricted
to the genetic primitives used to build the solutions. If GA
and GP are to address more complex problems it becomes
necessary to automatically adapt the representation to the
problem. Modularization adapts the representation by ex-
tending the set of genetic primitives with problem specific
functionalities. In this text we present a low level modular-
ization technique for linear GP system based on compres-
sion. The presented compressed linear GP (cl-GP) attempts

to identify usefull combinations of genes in the population
and makes these available as new primitives. The search
process benefit from these new functionalities to progress
more quickly through the search space.

The assumption of tight linkage between individual genes
(cfr substrings) was made with the use of a linear represen-
tation in mind. The representation of a linear GP system is
similar to that used by a GA [4][11]. Following the approach
used by [11] the cl-GP loop consists of a standard (genera-
tional) GA on top of which a problem specific evaluator is
placed to simulate the program execution.

This paper is structured as follows Section 2 describes re-
lated work, In Section 3 the compression/substitution scheme
is presented in detail. In Section 4 the experiments used to
evaluate the impact different parameter settings of our al-
gorithm is presented. Results are presented in Section 5.

2. RELATED WORK
The benefits of modularization for the GP search process
are well known [9][1][7]. Modularization fosters code reuse
on one hand, and on the other hand allows the GP system
to identify and use high level functionalities. Different mod-
ularization strategies for tree based GP have been explored.
Automatically Defined Functions (ADF) is the most promi-
nent approach. It consists of a main tree which evolves to-
gether with a predefined number of additional trees. Those
additional trees can be called from the main tree and, as
such, complement the set of primitives available to the GP
system. An alternative method is encapsulation. It replaces
a subtree by a new symbol, this symbol is added to the prim-
itive set of the system [6][9]. The symbol created in this way
corresponds to a terminal/leaf node as it does not have any
arguments. A third method, module acquisition, works in a
similar fashion, but can create both function nodes (mod-
ules) and leaf nodes. If the depth of the selected subtree
exceeds a certain threshold module acquisition removes the
subtrees below this level. In this case a function node will
be created by adding an argument for each removed subtree
[2][3]. Although modularization has mainly been of interest
to the GP community it is of course related to the search
of building blocks in a GA. In [5] a module acquisition algo-

rithm is presented which exploits modularity and hierarchy.
Despite the use of a variable length representation, the prob-
lem of modularity is approached purely from a GA point of

0. Choose initial population
1. Evaluate each individual’s fitness
2. Repeat
3. Compress individuals
4. Select best-ranking individuals to reproduce
5. Mate pairs at random
6. Apply crossover operator
7. Apply mutation operator
8. Decompress individuals
9. Evaluate each individual’s fitness
10. Until terminating condition

Figure 1: The pseudo code of a standard GA with
2 extra steps. Step 3 adds the compression of the
individual prior to the creation of the next gener-
ation. Step 8 decompresses the individuals so that
their fitness can be evaluated.

view. A module is defined as a combination of gene values
that maximize the fitness. For example, if for the genes g1

and g2 the combination g1 = v8 and g2 = v3 dominates
all other combinations of genes value, then it is considered
a module. As in the work of [5] our algorithm relies on a
substitution scheme but with notable differences in the sub-
stitution strategy. Another difference is that the compressed
genotype scheme of the cl-GP was imagined to be used in
a linear GP system. The linear encoding of a GP program
exhibits a much tighter linkage than is the case for standard
GA problems. This assumption is important as it justifies
the use of the simple compression scheme which supposes a
strong dependency between adjacent values.

3. COMPRESSED LINEAR GP
Our cl-GP algorithm consist of the compressed genetic al-
gorithm (cGA) together with problem specific evaluator.
This section presents the cGA which consists of a GA ex-
tended with a substitution/compression based modulariza-
tion mechanism. Figure 1 contains the pseudo code for cGA
loop. The cGA adds compression and decompression steps
in the GA loop. Compression is applied to the genotype
of individuals in the population prior to the creation of the
next generation. As a result the search process occurs using
a compressed representation. After the creation of the next
generation the individuals are decompressed so that their
fitness can be evaluated.

The schema theory models the probability of disruption by
crossover is proportional to the defining length of the build-
ing block. Compression can shorten the representation of
the building blocks thus reduce the chance of disruption by
crossover. The cGA uses a substitution coder to compress
the genotype in an attempt to protect substrings that rep-
resent building blocks. Protecting the building blocks guar-
antees the preservation of good allele combinations and is
beneficial to the search process. In Subsection 3.1 the ba-
sics of the substitution coder used by the cGA are presented.
The compression of the individuals is a two stage stochastic
process: build a dictionary and select individuals for com-
pression. Subsection 3.2 explains how the dictionary used
for the compression is built. Subsection 3.4 describes how
compression is applied to the population of the cGA.

0. D = build dictionary();
1. current = in; /* in input string */
2. out = ””; /* Empty output */
3. For e in D /* Loop A */
4. For pos = 1 to |in| /* Loop B */
5. If match(pos, current, e.str) Then
6. out[pos] = current[pos];
7. Else
8. out[pos] = e.ref;
9. pos = pos + |e.str|;
10. End;
11. End
12. current = out;
13.End

Figure 2: The pseudo code for the substitution step
of the coder used in the cGA. Given are the dictio-
nary D and the input string in. The coder searches
for a match for each dictionary entry (loop A). If a
match is found the reference is placed in the output,
otherwise the original symbol. The inner loop (loop
B) can be replaced by the more efficient KMP string
matching algorithm with a linear runtime complex-
ity.

3.1 Substitution coder
A substitution coder is a lossless1 compression algorithm.
Compression is obtained by replacing substrings in the input
by a shorter reference. A substitution coder uses a dictio-

nary which contains the substrings that need to be substi-
tuted and associates a placeholder symbol with each entry.
Compression involves two phases: 1) building a dictionary
and 2) performing the substitutions. Figure 2 represents the
pseudo code of a substitution coder. The content of the dic-
tionary is critical for the compression performance. Much of
the research in data compression concerns the development
of algorithms to build the dictionary. Section 3.2 describes
how the dictionary is built in the cGA. The substitution
step is computationally expensive as it involves searching
for a match for each dictionary entry in the input string. If
a match for substring s is found its placeholder symbol is
placed in the output instead of the original symbols. The de-
compression step involves the replacing the placeholder sym-
bols by the original strings. Decompression is much faster
since it does not involve any search.

Suppose a dictionary D = {”101” → α, ”00” → β, ”11” →
γ} then a substitution coder would compress the individual
”1010001011101” to ”αβ0α1α”. One can observe that the
order in which the dictionary entries are ordered is impor-
tant. If the opposite order had been used the result would
have been {αβ010γα}.

3.2 Building the dictionary
This section explains the stochastic algorithm used in the
cGA to build the dictionary as it differs from the algo-
rithm(s) used for pure data compression applications. We
considered other criteria to build the dictionary since reduc-
ing the memory needed to represent the individuals is not
our goal. We seek to build a dictionary containing building

1Lossless compression means that the original data is re-
stored after compression.

blocks. The problem of identifying building blocks is recur-
rent for all the modularization algorithms. In [5] the iden-
tification of a set of alleles as a module involves additional
fitness evaluations. These are used to determine whether
an alternative substring with a better fitness exists. If no
such string can be found then the substring will be used as
a module. Another approach, used by [10], uses a separate
block fitness function to evaluate the merits of a subpart
of a genetic program. This function is presented as scaled
down version of the fitness function for a smaller version of
the original problem. The strategy adopted in this work is
to see a GA as the building block discovery process. Since
by definition building blocks are contributing in a positive
way to the fitness of an individual, they are bound to be
present in the better individuals of a population. We be-
lieve that this approach is more general as it 1) relies on
the information already present in the population, 2) avoids
additional computations and 3) does not require additional
fitness functions to be engineered. Especially the latter two
unacceptable when it comes to real world applications.

The cGA builds its dictionary in two stages. First, a pool
of M individuals is selected stochastically from the popula-
tion. The genotype of these individual will be used to create
the dictionary in the second stage. These individuals are se-
lected using fitness proportional selection. The pool consist
mainly of above average individuals, yet with a minimum of
diversity. Once the pool has been created every substring of
length l of each individual is added to the dictionary. The
dictionary only contains strings of the same length2. For
example, suppose a non-binary alphabet {a, b, c, d} and the
substring length l equal to 3. In this case the individual
”abccdabc” would add the substring (and their respective
placeholder) ”abc” → α, ”bcc” → β, ”ccd” → γ, ”cda” → δ

and ”dab” → σ to the dictionary. The cGA dictionary con-
tains next to the substrings and their placeholder symbol
a counter of the occurrence of every substring in the pool.
This counter is used to order entries of the dictionary. We
have chosen to sort the dictionary entries based on the oc-
currence of each substring, the most frequently occurring
substring(s) will be substituted first.

The cGA rebuilds the dictionary for each generation. This
allows to update the content of the dictionary with infor-
mation that reflects the evolution of the population. This
differs from [5] where the module formation algorithm is ap-
plied periodically. This also excludes the presence of dictio-
nary entries containing references to other entries.

3.3 Modularization
Applying compression to the genotype can protect build-
ing block. But it does not by itself provide modularization
comparable to that of ADFs, encapsulation or module acqui-
sition. Modularization implies that a somehow code reuse
should be present. Code reuse is achieved by the cGA by
adhering to several conditions. First of all, the represen-
tation used by the cGA is adapted during the search. A
new symbol is added to the alphabet of the genetic sys-
tem for each potential building block identified by the cGA.
Second, the genetic operator must be unrestricted: no dis-

2In traditional substitution coders the dictionary can con-
tain entries of different lengths

tinction is made between compressed symbols and symbols
of the original alphabet. Mutation for instance can replace
a compressed symbol by an original symbol and vice versa.
The third condition is that no distinction is made between
individuals with and without compressed genotype. As will
be explained in section 3.4, all the individuals are not nec-
essarily subjected to compression. By not discriminating
between original genes and compressed genes, the cGA can
make full use of the genetic combinations that where iden-
tified as possible building blocks. It then becomes possible
for the cGA to address problems where repetition is present.
Crossover and mutation operators serve as natural mecha-
nism to obtain this form of translocation of genetic informa-
tion. Translocation occurs when a part of a chromosome is
detached and reattached at a position different from the its
original position in the chromosome.

3.4 Compressing the population
Once the dictionary has been built the substitution coder
(Subsection 3.1) can be used to compress the individuals in
the population. The cGA applies compression in a stochas-
tic fashion to a part of the population. A fraction κ (∈ [0, 1])
of the population will be compressed. This fraction κ of in-
dividuals are selected using tournament selection. Since the
compression setup is repeated anew for each generation this
means that the cGA does not systematically compress the
same individuals. This makes it possible to explore the ben-
efit of the different modules (dictionary entries) in different
contexts (i.e.. allele combinations).

3.5 Lossless and stochastic
The cGA applies a deterministic transformation, compres-
sion, to some of the individuals in the population. Since
the compression is lossless the (genetic) information present
in the population of the cGA or a GA is exactly the same.
Yet, as described above, a stochastic component has been
added to the overall population compression process. The
creation of the dictionary and the selection of the individ-
uals for compression are non-deterministic processes. This
stochastic component is meant to counter balance the ef-
fect of the substitutions on the search process. The pro-
tection against crossover provided by the compression has
a negative impact on the population diversity. Several fac-
tors explain this phenomenon. First the search efficiency
of the crossover operator is reduced by the compression of
the genotype. Second, the compression of the individuals is
detrimental for the sampling of schemata. A last reason is
that the dictionary entries are not guaranteed to correspond
to building blocks. This situation is especially exacerbated
during the first generation as the population still needs to
discover promising gene combinations. This was illustrated
by experiments where the entire population underwent com-
pression. These experiments have invariably lead to prema-
ture convergence and consequently suboptimal results. The
parameter κ is a way to limit the decrease in the population
diversity. The other non-deterministic steps were introduced
for the same reason as they maintain a minimum of diversity
at the substring level.

3.6 Further changes
Although the cGA is meant to be a minimal extension to
the standard GA a few extra modification were required.

The biggest difference is an unavoidable transition to a vari-
able length linear representation. This change is due to the
compression scheme.

3.6.1 Variable length
Despite the use of a lossless compression algorithm and the
fact that the cGA, like a standard GA, starts with a popu-
lation of individuals of identical size, individuals of different
sizes quickly emerge. This phenomenon, due to the use of
compression, occurs through several mechanisms:

1. not all the individual are compressed

2. different individuals compress to different sizes

3. the genetic operators can create individuals of very
different sizes

Since the cGA does not discriminate between placeholder
symbols and original symbols, recombination and mutation
can add or remove symbols representing a substring and vice
versa. This can result in an important change in length. De-
pending on the situation individuals can exceed the initial
individual size or be shorter. Consider the following exam-
ple. Suppose the dictionary D = {”xy” → α, ”zz” → β}
over the alphabet {x, y, z}. Mutating the second gene of the
individual with genotype ”xx” from x to α creates ”xα”.
The decompressed version of this individual’s genotype is
now ”xxy”. Similar scenarios exists for the crossover.

3.6.2 Recombination and mutation
As illustrated above the genetic operators can create indi-
viduals of very different sizes. As a result a maximum indi-
vidual length has to be enforced to avoid bloat. Individuals
created by crossover that exceed the maximum length are
truncated. Yet in the case of both mutation and crossover
one problem remains. As illustrated in the previous para-
graph it is possible for an individual to exceed the maxi-
mum once it has been decompressed. In this case the cGA
truncates the genotype after decompression. The mutation
operator was modified to be able to cope with a variable
alphabet sizes.

4. EXPERIMENT
The advantage of the modularization of the cl-GP, provided
by the cGA, has been illustrated in different GP problems:
symbolic regression, classification and a real world data ap-
plication. This text presents the experiments using the
Even-n-parity problem. This problem has been chosen since
it is a standard GP problem. Furthermore the difficulty of
this problem can be adjusted by modifying the number of
input bits n. We performed two type of experiments.

The first experiments were intended to assess impact of the
modularization of the cl-GP on the search process. The re-
sults of the l-GP and cl-GP are compared on the problem
instances of different sizes. These experiments serve to illus-
trate the ability of the cl-GP to identify and reuse building
block present in the population.

In a second set of experiments the size of the Even-n-parity
problem was allowed to evolve. Each time a solution was

found by the GP system the problem size was incremented
making the problem increasingly more difficult. The ap-
proach inspired by co-evolutionary models provides a sim-
ple mechanism for increase the problem size. These experi-
ments illustrate whether the cl-GP has to ability to generate
increasingly complex solutions in a top-down fashion. Build-
ing blocks discovered while solving simpler problems can be
reused to address larger problem.

4.1 Even-n-parity
The Even-n-Parity problem requires the correct classifica-
tion of bit strings of length n having an even number of
1’s. This classification is formulated as a boolean func-
tion returning the value true for an even number of 1’s and
false otherwise. The terminals and function set are T =
{b0, b1, · · · , bn} and F = {NOOP, AND, OR, NAND, NOR}.
The NOOP instruction is not executed during the evolution.
This instruction allows to represent programmas of variable
length using a fixed length representation [11]. We believe
the inclusion of this instruction is necessary in order to com-
pare the l-GP, driven by a GA (fixed length), and the cl-GP
driven by the cGA (variable length). The raw fitness (fraw)
is the ratio of correct classifications over the entire data set:
fraw = 1− #errors

2n
. The standard fitness is equal to the raw

fitness for this problem. The evaluator used for this problem
is described in the next section.

4.1.1 Boolean evaluator
The Even-n-parity individuals are postfix encoded and eval-
uated by a stack based virtual machine as described in [8].
Its instruction set provides the four boolean operators3 and
five terminals. The operations take their 2 operands from
the stack and push their result onto it. The terminal in-
structions correspond to a push of the individual input bits
on the stack. As for the numerical evaluator the result of
the program is the value of the top of the stack after evalua-
tion. The individual [b0, NOR, NAND, b0, b4, OR, AND, b2,
OR, b2, NOOP, NOR, NAND] corresponds to the boolean
expression (b0 OR b4) NAND (b2 NOR b2).

5. RESULTS
All the results presented here are the average of 100 indepen-
dent runs, using randomly seeded initial populations of 500
individuals. The genotype length is 32. Other settings were:
crossover rate 80%, mutation rate 5% and the top 5% of the
population was kept at every generation. Individuals were
selection with tournament selection (size=2). Every experi-
ment lasted 50 generations if not mentioned otherwise.

The following values were used for the runs using the cl-GP:
κ = 0.33 (tournament size 4) and the length of the dictio-
nary entries equals two. A pool of 10 individuals (fitness
proportional selected) is used to build the dictionary.

5.1 cl-GP vs l-GP
This subsection compares the results for different Even-n-
parity problem instances. The problem size n is fix during
each experiment. Table 1 compares the fitness of the best
of the population and the number of successful runs, be-
tween brackets, after 200 generations for different problem

3Following the observations of [8] the lazy version of the
operators was implemented.

Problem size n l-GP cl-GP
5 0.905 (31) 0.996 (93)
6 0.818 (19) 0.963 (60)
7 0.724 (10) 0.962 (56)
8 0.666 (2) 0.926 (43)
9 0.598 (0) 0.758 (16)

Table 1: The raw fitness of the best of population
and the number of successful runs for different prob-
lem sizes.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

l-GP (n=5)
cl-GP (n=5)
l-GP (n=8)

cl-GP (n=8)

Figure 3: An example run for the Even-5-parity and
Even-8-parity problem for population size of 500.
The linear GP system driven by the cGA (cl-GP)
outperforms the same system using the GA (l-GP).

instances. The use of substitution has a positive effect on
the performance of the GP system. The unpaired Wilcoxon-
Mann-Whitney test has been used to confirm that the differ-
ence in performance is indeed significant for all the presented
problems.

Both the average score of the best of population and num-
ber of solved instances of cl-GP are higher than for the l-GP.
This means that the cl-GP preforms better on average than
the l-GP. But also that the cl-GP is able to find a solu-
tion more often than the l-GP. The linear GP driven by the
GA (i.e. the l-GP) achieves a 31% probability of success
after 200 generations. The same setup but using the cGA,
the cl-GP, obtains a probability of success of 93%. For the
Even-6-parity problem these numbers become 19% and 60%
respectively.

Figure 3 illustrates the evolution the fitness of the best of
population of both algorithms for the Even-5-Parity and
Even-8-Parity problem. During the first 15 generations (on
average) there is no significant difference in performance be-
tween the cl-GP and the l-GP. As the GP system discovers
good combinations of genes the modularization of the cl-GP
is enables it to reuse them. From that point on the cl-GP
start to outperform the l-GP.

5.2 Co-evolving the problem size
In these experiments the problem size has been adjusted
as soon as the GP system found a solution. Each experi-
ment starts with a problem size of 3. Figure 4 illustrates
the ability of the cl-GP to solve problems of increasing com-

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 20 40 60 80 100 120 140 160 180 200

P
ro

bl
em

 s
iz

e

Generations

l-GP
cl-GP

Figure 4: The evolution of the problem size start-
ing from an initial problem size of 5. The cl-GP is
able to solve problems of increasing size. The modu-
larization allows gene combinations discovered while
solving smaller problem instance to be reused.

cl-GP F=3 4 5 6 7 8 9 10
I=3 1 8 11 33 32 14 1 0
5 10 20 28 22 2 0
7 24 23 11 3
9 16 0

Table 2: cl-GP: the number of runs that solved prob-
lems of size F after 200 generations as a function of
the initial problem size I.

plexity. The modularization allows gene combinations dis-
covered while solving smaller problem instances to be reused
to solve larger problems. After 100 generations 4 the cl-GP
successfully solves problems of size 5 and of size 6 after 160
generations. In a similar setup the l-GP manages to solve
problems of size 4 but then stagnates.

To illustrate the influence of the initial problem size these
experiments have been repeated, this time different initial
problems sizes were compared. Tables 2 and 3 contain the
number of runs that solved problem instances of size F (hor-
izontally) after 200 generations starting from a problem in-
stance of size I (vertically). One can see in table 2 that
using 100 independent runs the cl-GP was able to solve 3
instances of the Even-10-parity when starting from a initial
problem size of 7 (I=7, F=10).

4Averaged over 100 independent runs
4The size F corresponds to the biggest instance successfully
solved.

l-GP F=3 4 5 6 7 8 9 10
I=3 37 33 16 5 7 2 0 0
5 20 8 2 0 0 0
7 4 3 0 0
9 0 0

Table 3: l-GP: the number of runs that solved prob-
lems of size F after 200 generations as a function of
the initial problem size I.

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

#e
nt

rie
s

Generations

Even-5-parity
Even-7-parity
Even-9-parity

Figure 5: The evolution of the number of dictionary
entries for different problem sizes.

Comparing the tables 2 and 3 with table 1 reveals that
both the l-GP and the cl-GP benefit from the progressive
increase of the problem difficulty. Both algorithms were
able to find solutions for the Even-8-parity problem start-
ing from smaller problems. The cl-GP benefits most from
this approach since its modularization mechanism allows it
to preserve building blocks. Building block discovered while
solving smaller instances can be reused to addressed larger
problems. In this setup the cl-GP was able to solve 61
(24+23+11+3) instances of size 7 or more. When keeping
the problem size fixed the cl-GP only solved 56 instance of
size 7. Using a larger initial, size 9, problem size does not
allow the modularization of the cl-GP to be exploited (see
section 6). For a problem size 9 the performance of th cl-GP
is even lower than when using an initial size of 7.

5.3 Dictionary size of cl-GP
The size of the dictionary used by the cl-GP corresponds
to the number of automatically created modules. Figure 5
depicts the evolution of the dictionary size for three prob-
lem instances for experiments using a fixed problem size. In
the beginning of the search the dictionaries contain most
entries. In the first generation the population still has to
discover good genes combinations. Differences in the fitness
between individuals are then mostly random. The individ-
uals selected to form the pool used to build the dictionary
at that point thus contains very different substrings. Each
string will be added to the dictionary which explains why
it is relatively large in the beginning of the search process.
As the search progresses and the cl-GP discovers building
blocks the number of entries starts to decrease quickly at
first. At the end of the run the dictionary size(s) stabilize.

Interesting is the fact that for the smallest problem instances
(size 5 and 7) the dictionary sizes at the end the run are ap-
proximately the same. This can indicate the presence of
structure in the solutions of Even-n-parity problem. Build-
ing blocks used to solve the smaller instances can be reused
to solve bigger ones. The evolution of the dictionary size for
hardest problem instance (size 9) does not follow the same
steep decrease as the other instances. This problem instance
is more difficult to solve for both the l-GP and the cl-GP.
The slow convergence to a good solutions makes it hard for
the dictionary building algorithm of the cGA (used by the

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

#e
nt

rie
s

Generations

Fix
Co-evo

Figure 6: Comparison of the evolution of the num-
ber of dictionary entries for the fixed problem size
and co-evolutionary approach (initial problem size
7).

cl-GP) to identify good substrings.

Figure 6 compares the evolution of the dictionary size of the
fixed and co-evolutionary problem instances of size 7. There
is no significant difference for the two experiments despite
the fact in the co-evolutionary setup the cl-GP is able to
solve larger problem instances (up to Even-9-parity).

6. DISCUSSION
The cl-GP uses the cGA presented in this paper. The cGA
provides a low level modularization mechanism based on
compression. The benefit of the compression based modu-
larization has been illustrated in the previous sections with
two different experiments. It is important to point out that
the presented results are averaged of 100 runs. The despite
its generally better performance the cl-GP can fail to im-
prove upon the l-GP. The analysis of such unsuccessful runs
has revealed that in these cases the cl-GP did not identify
any modules. This can be explained by the fact that the
cGA, being an extension to the standard GA, capitalizes on
the GA’s ability to find good combinations. When the GA
fails to identify building blocks it becomes impossible for the
cGA to reuse these combinations to its advantage.

7. CONCLUSIONS
This paper explores the cl-GP algorithm in an co-evolutionary
setup. The compression based modularization mechanism of
the cl-GP implies a tight linkage between the genes in the
representation which allows it to replace substrings in the
genotype with a shorter reference. We performed an em-
pirical study using several Even-n-parity problem instances
in two different setups. In a first setup the problem size
was fixed and was used to illustrate the advantage of the cl-
GP over the l-GP which does not use modularization. The
second co-evolutionary setup allowed the problem size to in-
crease. In this setup the modularization of the cl-GP makes
it possible to address larger problem instances by reusing
previously acquired gene combinations. It is however im-
portant in this setting not to start the search using large
problem instances as the cl-GP would then fail to discover
any modules.

8. FUTURE WORK
Although substrings of length 2 seem to be best at this point,
it may be interesting to allow this size to change during the
course of evolution. One way to achieve this would be to al-
low recursive entries in the dictionary, i.e. entries containing
references to other entries.

9. REFERENCES
[1] M. Ahluwalia and L. Bull. Coevolving functions in

genetic programming. Journal of Systems

Architecture, 47(7):573–585, July 2001.

[2] P. J. Angeline and J. B. Pollack. The evolutionary
induction of subroutines. In Proceedings of the

Fourteenth Annual Conference of the Cognitive

Science Society, Bloomington, Indiana, USA, 1992.
Lawrence Erlbaum.

[3] P. J. Angeline and J. B. Pollack. Coevolving high-level
representations. In C. G. Langton, editor, Artificial

Life III, volume XVII of SFI Studies in the Sciences

of Complexity, pages 55–71, Santa Fe, New Mexico,
15-19 June 1992 1994. Addison-Wesley.

[4] M. Brameier and W. Banzhaf. Effective linear genetic
programming. Technical report, Department of
Computer Science, University of Dortmund, 44221
Dortmund, Germany, 2001.

[5] E. D. de Jong and D. Thierens. Exploiting modularity,
hierarchy, and repetition in variable-length problems.
In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer,
E. Burke, P. Darwen, D. Dasgupta, D. Floreano,
J. Foster, M. Harman, O. Holland, P. L. Lanzi,
L. Spector, A. Tettamanzi, D. Thierens, and
A. Tyrrell, editors, Genetic and Evolutionary

Computation – GECCO-2004, Part I, volume 3102 of
Lecture Notes in Computer Science, pages 1030–1041,
Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

[6] D. Howard. Modularization by multi-run frequency
driven subtree encapsulation. In R. L. Riolo and
B. Worzel, editors, Genetic Programming Theory and

Practise, chapter 10, pages 155–172. Kluwer, 2003.

[7] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors. Genetic Programming 1996:

Proceedings of the First Annual Conference, Stanford
University, CA, USA, 28–31 July 1996. MIT Press.

[8] T. Perkis. Stack-based genetic programming. In
Proceedings of the 1994 IEEE World Congress on

Computational Intelligence, volume 1, pages 148–153,
Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[9] S. C. Roberts, D. Howard, and J. R. Koza. Evolving
modules in genetic programming by subtree
encapsulation. In J. F. Miller, M. Tomassini, P. L.
Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B.
Langdon, editors, Genetic Programming, Proceedings

of EuroGP’2001, volume 2038 of LNCS, pages
160–175, Lake Como, Italy, 18-20 Apr. 2001.
Springer-Verlag.

[10] J. P. Rosca and D. H. Ballard. Hierarchical
self-organization in genetic programming. In
Proceedings of the Eleventh International Conference

on Machine Learning. Morgan Kaufmann, 1994.

[11] K. Stoffel and L. Spector. High-performance, parallel,
stack-based genetic programming. In J. R. Koza,
D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First

Annual Conference, pages 224–229, Stanford
University, CA, USA, 28–31 July 1996. MIT Press.

