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ABSTRACT 

Among various optimization techniques in the literature, 
Genetic Algorithms (GA’s) have received significant attention in 
the engineering design optimization domain. This is often 
attributed to GA’s ability to handle problems with mixed discrete-
continuous design variables as well as its straightforward 
generalization to multi-objective optimization. As a result, 
researchers have developed a variety of Multi-Objective GA’s 
(MOGA’s) over the last few years, each claiming to perform 
better than others in one aspect or another. The relative 
performance of these MOGA’s in various engineering problem 
domains, however, remains for the most part understudied. 

As such, in this paper, we investigate the relative 
performance of several well-known Multi-Objective GA’s 
(MOGA’s) on a quantitative and objective basis. Two aspects of 
MOGA performance are studied and compared: 1) convergence 
rate to the Pareto frontier; and 2) diversity of solutions. Two 
quantitative measures (i.e. quality indices) are selected 
accordingly, each addressing one aspect of performance. To 
account for the stochastic nature of GA’s, multiple runs are 
performed for each MOGA to create samples of solution sets for 
statistical comparison. Based on the results of this study, we will 
observe several characteristics of the tested MOGA’s, which can 
be helpful in selecting an appropriate MOGA for a given multi-
objective optimization task.    

Categories and Subject Descriptors 
I.2 [Artificial Intelligence] 

General Terms 
Algorithms, Performance, Measurement. 

Keywords 
Multi-objective Genetic Algorithms; Design Optimization; 
Quality Indexes; Comparative Study. 

 

1. INTRODUCTION 
Since GA’s are population-based search techniques, they can 

be easily modified to find an estimate of the entire Pareto frontier 
in a single run (For a review of MOGA’s see for instance, 
Foneseca and Fleming 1993; Deb 2001; Coello Coello et al. 
2002). In fact, many researchers (e.g., Valenzuela-Rendon and 
Uresti-Charre 1997) suggest that multi-objective optimization is a 
problem area where GA’s perform better than other techniques. 
Although this statement is subjective and many conditions may 
have to hold (Wolpert and Macready 1997), nevertheless, Multi-
Objective GA’s (or MOGA’s) are becoming quite popular among 
researchers in engineering and other domains.  

A rapid growth in the complexity of modern day’s computer-
based engineering design problems has raised a need for more 
efficient MOGA’s. Recently developed MOGA’s are expected to 
converge faster and obtain a more diverse set of design solutions 
compared to earlier versions of these algorithms. Accordingly, 
researchers have developed a variety of different MOGA’s; each 
claiming to perform better than others in one aspect or another 
(see Foneseca and Fleming 1995; Horn 1997; Zitzler 1999; Van 
Veldhuizen and Lamont 2000; Deb 2001; Coello Coello et al. 
2002). While it is highly desirable to find a MOGA that performs 
better than others in all aspects and for all optimization problems, 
such a comprehensive technique has yet to be developed. In fact, 
Bosman and Thierens (2003) argue that a MOGA that performs 
well in a certain aspect such as fast convergence often tends to 
perform poorly in another aspect such as diversity of solutions. 
Therefore, a comparative study of different MOGA’s is extremely 
important for engineering optimization practice, since design 
optimization problems with different characteristics may require 
different MOGA techniques.  

In this paper, several recent as well as earlier versions of 
MOGA’s are chosen for a comparative study. A comparison 
scheme is devised to compare these MOGA’s in terms of: 1) fast 
convergence; and 2) maintaining diversity in the solution set. 
Since intuitive or visual comparison of solutions (i.e., Pareto 
frontier) from these MOGA’s is often misleading, the proposed 
comparison scheme utilizes two quality indexes (as defined in 
Section 2), each measuring one of the above aspects of 
performance on a quantitative basis. It is argued that using these 
two quality indexes reduces complexity of the comparative study 
while maintaining its comprehensiveness (with respect to both 
aspects of quality). To account for random nature of GA’s, a 



random sample of solution sets are obtained for each technique 
(from different random initial populations). The conclusions of 
this comparative study will be based on median and range of 
these statistical samples. Although in some instances the 
comparison of these MOGA’s remains inconclusive, several 
observations are made that can be used in selection of appropriate 
MOGA’s for a given design optimization task.    

The organization of the rest of this paper is as follows: 
Section 1.1 presents the terminology of the paper. We provide an 
overview of MOGA’s that are used in the study in Section 1.2. 
Section 2 explains the fundamentals of comparing MOGA’s using 
quality indexes. We introduce two quality indexes that will be 
used later in Section 3 as the basis of our comparative study. In 
Sections 3.1 and 3.2, we present our engineering design 
optimization test suite: design optimization of a vibrating 
platform and a speed-reducer gearbox. In Section 3.3, the two 
quality indexes are used to compare the tested MOGA’s. Several 
observations and recommendations are made accordingly. 
Finally, the concluding remarks of the paper are given in Section 
4.  

1.1 TERMINOLOGY 
A multi-objective optimization problem with m objective 

functions (m > 1) can be shown in the following minimization 
form. 
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where x is an n-dimensional design variable vector, and D is the 
set of all such vectors that satisfy the constraints: and 

 are the inequality and equality constraints, respectively.  
In the following, we define a few terms used in this paper.  
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Dominance: Let x1, x2 be two feasible design points. Then, x1 
dominates x2 iff fi(x1)  f≤ i(x2) for all i=1,…, m, with strict 
inequality for at least one i (Steuer, 1986).  

Pareto-Optimal Solution: A feasible solution point, namely 
x* , is Pareto optimal iff there does not exist another 
solution point, x , such that f

D∈
D∈ i(x)≤  fi(x*) for i=1,…,m, with 

strict inequality for at least one i (Steuer, 1986; Miettinen, 1999).  

Pareto Frontier: The set of all Pareto optimal solutions to multi-
objective optimization problem of Equation 1 is referred to as the 
Pareto frontier.  

Normalization of Objectives: The objective functions of a 
multi-objective optimization problem are usually 
incommensurable in the sense that they have different units and 
therefore any comparison or aggregation among them is 
meaningless. To address this issue, the objectives are often 
normalized (Miettinen, 1999) with respect to two reference 
points: The ideal and nadir points, as defined in the following. 

Ideal/good point: The ideal point is defined as a point in the 
objective space, whose components are obtained by constrained 

minimization of each of the objective functions individually, that 
is: 

Minimize  )(xif
    subject to: D∈x ;  for i=1,…, m      (2) 

In practice, however, performing several optimization 
routines to obtain the ideal point is time-consuming. In most 
cases, an experienced engineer is able to estimate this ideal point 
even without optimizing the objectives. In this paper we refer to 
the ideal point or its best estimate as a good point. The good point 
is basically a lower bound for all objectives and should be 
selected such that it dominates all solution points.  

Nadir/bad point: The nadir point is the opposite of the ideal 
point, i.e., the upper bounds of the Pareto frontier (Miettinen, 
1999). Finding the nadir point is still an open research problem in 
general. There are a few attempts in the literature to further 
improve the estimation of the nadir point, but most of them 
require several optimization routines (see, for instance, Korhonen 
and Steuer, 1997). Instead, in this paper, we arbitrarily 
overestimate the ranges of objectives such that no design point is 
encountered that violates the estimated upper bounds. These 
estimated upper bounds for the objective functions constitute a 
point in the objective space that is referred to as the bad point. All 
solution points are normalized in the objective space with respect 
to these two good and bad reference points. 

Non-Dominated Set (NDS): As shown in Figure 1, population-
based multi-objective optimization techniques usually generate a 
finite set of design points to the optimization problem of 
Equation 1. If we denote the population of all feasible design 
points by S, then an NDS is defined as the set of all S∈x  such 
that there does not exist another design point in S that dominates 
x. Note that a design solution point in an NDS is not necessarily 
Pareto optimal. However, a good optimization algorithm will 
provide an NDS that approximates the Pareto frontier as closely 
as possible.  

 

f1 
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Figure 1: A typical population of solutions generated by a 
MOGA for a two-objective minimization problem. Hollow 

circles mark the Non-Dominated Set (NDS). 

1.2 OVERVIEW OF MOGA’S 
In general, MOGA’s can be categorized into two main 

categories: weighting approaches, and population-based 
approaches (Wu and Azarm, 2001). In the first category, all 
objectives are combined into a single objective form using a set 
of weights and then a single-objective GA is applied to find a 
Pareto-optimal solution. Despite the simplicity of this approach, 
its applications are limited since the appropriate objective-
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weights are not known prior to the optimization process. 
Moreover, the weighted approach does not necessarily yield the 
entire Pareto-optimal solutions for non-convex problems. In the 
population-based approach, in contrast, a population of solutions 
is evolved simultaneously throughout the process to create a set 
of Pareto optimal solutions. Vector Evaluated GA (VEGA) 
developed by Schaffer (1985) is perhaps the most well-known 
technique in this category. Goldberg (1989) suggested another 
population-based approach by assigning a Pareto fitness value to 
the individual solutions from a multi-objective GA according to 
their dominance number. This approach soon became widely 
accepted and many MOGA’s were developed based on this idea 
(e.g., Fonseca and Fleming 1993, Narayanan and Azarm 1999, 
among many others). Unlike classical techniques that require 
weighting, ε-constraint or other methods to transform multiple 
objectives into a single scalar, MOGAs are capable of handling 
multiple objectives, in most cases only by redefining the fitness 
criteria.  

We selected several well-known or relatively recent 
MOGA’s for the comparative study of this paper1:  

• Vector Evaluated GA (VEGA; Schaffer 1985) 

• Fonseca and Fleming’s MOGA (denoted by FF-MOGA in this 
paper; Fonseca and Fleming 1993) 

• Narayanan & Azarm’s MOGA (MOGA-NA; Narayanan and 
Azarm 1999) 

• Non-dominated Sorting Genetic Algorithm (NSGA; Deb 2001) 

• Strength Pareto Evolutionary Algorithm (SPEA; Zitzler and 
Thiele, 1999) 

• Entropy-based MOGA (E-MOGA, Farhang-Mehr and Azarm 
2002) 

Note that other than the above mentioned approaches, many 
other successful implementations of MOGA’s are reported in the 
literature (e.g., Foneseca and Fleming 1995; Horn 1997; Zitzler 
1999; Deb 2001; Van Veldhuizen and Lamont 2000; Coello 
Coello et al. 2002). The general goal of all of these MOGA’s, 
however, is the same: To find a finite solution set that 
approximates the Pareto frontier as closely as possible. 
Nevetheless, obtaining the ‘best possible’ solution set is not 
always a trivial or objectively-defined task. Researchers have 
developed a myriad of MOGA’s in the past few years that aim at 
improving the quality of the obtained solution sets in one way or 
another. However, it is often very difficult to determine how 
much these techniques have been successful in achieving this 
task. As such, quantitative measures of quality, referred to as 
quality indexes, have been developed that can be used to assess 
and compare the performance of MOGA’s on a quantitative basis. 
The next section is devoted to this issue.  

2. COMPARATIVE STUDY OF MOGA’S 
Along with advances in the development of more 

sophisticated MOGA’s, performance assessment and comparative 
study of such techniques also gained much attention (see, for 

                                                           
1 These MOGA’s are implemented by the author of this paper, based on 
the descriptions given in the corresponding references.  

instance, Zitzler and Thiele 1989; Van Veldhuizen 1999; Sayin 
2000; Wu and Azarm 2001; Knowles and Corne 2002; and 
Zitzler et al. 2003). The most common way to compare different 
MOGA’s is to simply visualize the NDS obtained from each 
technique and accordingly judge the superiority of one technique 
to another. As discussed by Van Valdhuizen and Lamont (2000), 
however, visual assessment is not a reliable tool for comparison 
of different multi-objective optimization techniques. Particularly, 
for problems with three or more design objectives, visual 
judgment is either impossible or quite misleading. A quality 
index, on the other hand, assigns an absolute or relative value to a 
non-dominated solution set to determine whether it is a ‘good’ 
representation of the Pareto frontier: 

Quality Index: If A and B are two NDS’s obtained from two 
different MOGA’s, then a quality index, Q(A,B), provides a scalar 
that  reflects how much better set A is than set B with respect to a 
certain aspect of quality.  

Since quality of an NDS set is not a well-defined or well-
understood concept, the common trend among researchers is to 
decompose the general notion of quality into several aspects and 
develop quality indexes accordingly. For instance, Deb (1998) 
states that MOGA’s must perform well in two aspects: 

1) convergence to the Pareto frontier 
2) maintaining diversity of solutions 

Bosman and Thierens (2003) also suggested similar 
decomposition and stated that there is a tradeoff between these 
two aspects in most cases, although MOGA’s that perform better 
with respect to both are feasible. Several quality indexes have 
been developed to address each of the above aspects of 
performance.  Examples  of diversity quality indexes include: 
‘spacing index’ (Schott, 1995); ‘overall non-dominated vector 
generation’, ‘overall non-dominated vector generation ratio’ (Van 
Veldhuizen 1999); ‘coverage’, ‘uniformity’, ‘cardinality’ (Sayin 
2000); ‘number of distinct choices’, ‘Pareto spread’, and ‘cluster’ 
(Wu and Azarm 2001). In a similar fashion, researchers 
developed numerous indexes to assess the closeness of solution 
sets to the Pareto frontier (see Knowles 2002, for examples of 
these indexes).  

Obviously, many of indexes that address a common aspect 
of quality are correlated in one way or another, introducing 
redundancy in the comparison study of MOGAs. Therefore, 
selecting too many of these indexes is not only confusing but also 
transforms the quality assessment of MOGAs into unnecessary 
and complex tradeoffs among different indexes. In fact, it is often 
impossible to find a situation in which a MOGA outperforms 
other MOGAs in terms of all existing quality indexes. That is, 
one algorithm for example may produce more distinct solutions 
while the other distributes the solutions more uniformly and a 
third one performs better in terms of having no gaps among the 
solution points. Having the correlation among different quality 
indexes in mind, Farhang-Mehr and Azarm (2003a) proposed 
using only two quality indexes: one representing the convergence 
to the Pareto frontier, and the other representing the diversity of 
solution points. For the former, they suggested using Size of the 
Dominated Space (S index, Zitzler 1999), and for the latter they 
formulated a new quality index, referred to as the Entropy Index 
(H index, Farhang-Mehr and Azarm 2003b). They showed that 
these two indexes (described briefly in the following) have 
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negligible statistical correlation and add minimum redundancy in 
the comparative study.  

Size of Dominated Space (S index): This quality index provides a 
measure of convergence (or optimality) of a given NDS: the 
closer the solution set gets to the Pareto frontier, the lower the 
value of S index becomes (Fonseca and Fleming 1995; Zitzler 
1999). Consider a non-dominated minimization solution set: 
A={x1,…,xi,…} in a normalized design objective space (with the 
ideal point transformed to the origin). The size of the dominated 
space by set A, denoted by S(A), is defined as the volume of the 
union of hypercubes {C1,…,Ci,…}, where Ci is a hypercube 
whose two opposite vertices are xi and the origin of the objective 
space. Figure 2, for instance, shows the two hypercubes 
generated by the non-dominated set A={x1, x2}. The volume of 
the union of these two hypercubes measures S(A).  

 

1f

3f
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2x
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Figure 2: Size of dominated space, S index, for the set {x1, x2}. 

(A lower S value indicates a better convergence.) 

Entropy (H index): Just as it is important to converge to the 
Pareto frontier, it is equally important to maintain diversity in the 
solution set. In MOGA’s, in particular, the solutions tend to 
converge into clusters leaving the rest of the Pareto frontier 
empty or sparsely populated, a phenomenon known as genetic 
drift (Goldberg, 1989). Farhang-Mehr and Azarm (2003b) 
developed an entropy-based quality index that can be used to 
assess the ‘diversity’ of a NDS. The basic idea behind the entropy 
index is that each solution point provides some information about 
its neighborhood that can be modeled as a function, called an 
influence function. Figure 3, for instance, shows several solution 
points along a line segment. The impact of each solution point on 
its neighborhood is modeled by a Gaussian influence function. 
The influence function of the i-th solution point is maximum at 
that point and decreases gradually with the distance. Now, the 
density function, d, is defined as the aggregation of the influence 
functions from all solution points. 

 
 

 

Density function 

Feasible line segment 

Influence function 

 
Figure 3: A set of solution points in a one-dimensional feasible 
space with the corresponding influence and density functions. 

The density curve of Figure 3 (or density hyper-surface for 
multiple dimensions) consists of peaks and valleys. The peaks 
correspond to dense areas with many solution points in the 
vicinity and the valleys correspond to sparse areas with few 
adjacent points. A desirable solution set must have a ‘flat’ density 
surface. To quantify this flatness, one may take advantage of the 
similarities between this problem and the Shannon’s entropy in 
information theory, which also measures the flatness of a 
distribution. This can by done by constructing a mesh in the 
solution hyper-plane and normalizing the values of density 
function, measured at the nodes:  

∑
=

i
i

i
i

d

d
ρ     (3) 

where di represents the density function at the i-th node. Now we 
have: 

1=∑
i

iρ  ; 0≥                (4) iρ

The entropy of such a distribution can then be defined as: 

( )∑−=
i

ii ρlnρH             (5) 

A set of uniformly distributed solutions yields a relatively 
even surface without significant peaks and valleys. This 
corresponds to a high entropy index H. In contrast, if the solution 
points are grouped into one or more clusters, leaving the rest of 
the area sparsely populated, the density function contains sharp 
peaks and deep valleys, which corresponds to a lower entropy 
index. This provides a quantitative measure for the spread of a 
NDS over the Pareto frontier: higher H value indicates better 
diversity (See Farhang-Mehr 2003b). 

In the following section, two engineering design 
optimization problems are introduced: 1) a vibrating platform; 
and 2) a speed reducer gearbox. The performance of the selected 
MOGA’s (recall Section 2) are tested for these problems using S 
and H indexes. As discussed before, these quality indexes 
measure the performance with respect to two aspects of quality: 
convergence and diversity, respectively.  

3. COMPARATIVE STUDY USING 
ENGINEERING TEST PROBLEMS 

Sections 3.1 and 3.2 introduce vibrating platform and speed 
reducer gearbox design problems. The H and S quality indexes 
are used in Section 3.3 to compare the performance of the tested 
MOGA’s.  

3.1 DESIGN OF A VIBRATING PLATFORM 
This design problem was originally taken from Messac 

(1996) but modified to form a multi-objective optimization 
problem. The design consists of a pinned-pinned sandwich beam 
with a vibrating motor on its top. As shown in Figure 4, the beam 
has five layers of three different materials. There is a middle 
layer and two sandwiched layers. The distance from the center of 
the beam to the outer edge of each layer comprises three of the 
sizing design variables, d1, d2, and d3. The width of the beam, b, 
and the length of the beam, L, are the other two sizing design 
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variables. There are also three combinatorial variables for the 
material type Mi, where i=1,2,3, for the different materials that 
can be used for each layer. Hence, there are 8 design variables, 3 
combinatorial variables for the material type of the 3 layers, and 
5 sizing variables.  

 

d1 d2
d3L

   b

Vibrating
    Motor

 
Figure 4: Vibrating platform design problem. 

The problem has two design objectives: 1) Maximize the 
fundamental frequency of the beam, and 2) Minimize the material 
cost. The maximization of the first objective is converted to a 
minimization form by adding a negative sign to it. Therefore, the 
problem can be formulated as follows: 

 
Minimize   f1(d1,d2,d3,b,L,Mi) = - (π/2L2)(EI/µ)0.5  

Minimize  f2(d1,d2,d3,b, Mi) = 2b[c1 d1 + c2(d2 – d1) + c3(d3 – d2)] 
 

subject to:              µL – 2800 ≤ 0     (6) 
           d2 – d1 – 0.15 ≤ 0 

             d3 – d2 – 0.01 ≤ 0 
             0.05 ≤ d1 ≤ 0.5 
             0.2 ≤ d2 ≤ 0.5 
             0.2 ≤ d3 ≤ 0.6 
             0.35 ≤ b ≤ 0.5 

           3 ≤ L ≤ 6                    
where,            (7) 

(EI) = (2b/3)[E1d1
3 + E2(d2

3-d1
3)+E3(d3

3-d2
3)]            

(µ) = 2b[ρ1d1 + ρ2(d2 – d1) + ρ3(d3 – d2)]  

Here, Ei is the modulus of elasticity of material Mi, while ρi is the 
density, and ci is the cost. According to the material type variable 
Mi, the value of the parameters Ei, ρi, and ci is different for 
different layer material, as given in Table 1. It is assumed that the 
material types for the three layers are mutually exclusive. In other 
words, the same material cannot be used for more than one layer.  
However, the layers are allowed to have zero thickness.  The first 
three constraints refer to upper bounds on the mass of the beam, 
thickness of layer 2, and thickness of layer 3, respectively.  The 
last 5 constraints are the set constraints on the sizing variables. 

Table 1: Material properties of the vibrating platform 
Material Mi ρi (Kg/m3) Ei (N/m2) Ci ($/volume) 

1 100 1.6 × 109 500 

2 2,770 70 × 109 1,500 

3 7,780 200 × 109 800 
 

Table 2 below lists the GA parameters used in this paper.  
 
 

Table 2: GA parameters. 
Parameter Value 
Population size 100 
Replacement per generation 10 
Function calls 550 
Crossover type 2-point 
Crossover probability 0.8 
Mutation probability  0.05 
Bits per variable 10 
Selection type Stochastic universal selection 

 
Since GA is a stochastic process by nature, each MOGA is 

executed 50 times (with different randomly-generated initial 
populations and random seeds) and the final NDS’s are stored for 
comparison. The best, the worst, and the median of each quality 
index (in the sample of 50 NDS’s for each technique) are shown 
in Charts 1(a) and 1(b). Some observations and recommendations 
are made in Section 3.3 based on the results shown in Charts 1(a) 
and 1(b). 
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Chart 1: Median, minimum, and maximum values of the (a) S 
index, and (b) H index, for the tested multi-objective GA’s 

(design of a vibrating platform). 
 
3.2 SPEED REDUCER GEARBOX 
This example is a modified version of a problem originally 
formulated by Golinski (1970) as a single objective optimization 
problem.  Here, it has been converted to a three-objective 
optimization. The example represents the design of a simple 
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gearbox, as shown in Figure 5. The seven design variables in the 
formulation are: gear face width (x1), teeth module (x2), number 
of teeth of pinion (x3 – integer variable), distance between 
bearings 1 (x4), distance between bearings 2 (x5), diameter of 
shaft 1 (x6), and diameter of shaft 2 (x7).  The first design 
objective, f1, is to minimize the volume.  The other two 
objectives, f2 and f3, are to minimize the stress in the first and 
second shafts, respectively. 
 

x7 x5 

x6 

x4 

bearings 1

shaft 1 
shaft 2 

bearings 2 

 
Figure 5: Speed gear reducer 

 
The optimization formulation of the gear reducer has a 

number of constraints due to the gear and shaft design practices. 
These 11 inequality constraints are as follows: g1 is an upper 
bound of the bending stress of the gear tooth; g2: upper bound of 
the contact stress of the gear tooth; g3, g4 are upper bounds of the 
transverse deflection of the shafts; g5-g7 are dimensional 
restrictions based on space and/or experience; g8, g9 are design 
requirements on the shaft based on experience; and g10 , g11 are 
constraints on stress in the gear shafts.  Additionally, upper and 
lower limits are imposed on each of the seven design variables.  
The optimization formulation is:  
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The lower and upper limits on the seven variables are: 
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Charts 2(a) and 2(b) demonstrate the best, the worst, and the 
median values for each tested MOGA in this example. Some 
observations and recommendations are made based on these 
results in the next section.  
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Charts 2: Median, minimum, and maximum values of the (a) 
S index, and (b) H index, for the tested multi-objective GA’s 

(design of a speed-reducer gearbox). 
 
3.3 OBSERVATIONS 

Charts 1(a) and 1(b) summarize the range of S and H 
indexes obtained for the vibrating platform design problem. 
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Similarly, Charts 2(a) and 2(b) show the ranges for the speed-
reducer gearbox problem. These charts can be used to make the 
following observations about the performance of the tested 
MOGA’s in terms of convergence and diversity: 
   
In terms of convergence: The medians of the S index for the 
tested MOGA’s in Charts 1(a) and 2(b) show that the more recent 
MOGA’s, i.e., NSGA, SPEA, and E-MOGA outperform other 
approaches by yielding lower S values in most cases. (Note that a 
lower S value indicates a better convergence.) Furthermore:  

• SPEA in Chart 1(a) conclusively outperforms MOGA-NA 
and FF-MOGA (i.e., the entire range of S index from SPEA 
lies below the minimum value of S index from the other two 
approaches.).  

• For gearbox design problem (Chart 2(a)), SPEA 
conclusively outperforms VEGA (i.e., the ranges of S index 
do not overlap).  

• Other than the above conclusive comparisons, SPEA yields 
a lower median than any other MOGA in both cases. 
Nevertheless, the conclusions are not conclusive (since the 
ranges overlap).  

In addition, since the median of S index from SPEA is less 
than the minimum S values from MOGA-NA, FF-MOGA, and 
VEGA in both Charts 1(a) and 2(a), it can be concluded that: 

• SPEA converged better than MOGA-NA, FF-MOGA, and 
VEGA in more than 50% of cases.  

Also, 

• Although the median of SPEA is slightly lower than that of 
E-MOGA or NSGA, the comparison is inconclusive. 

 
In terms of maintaining diversity: Again, the three more recent 
MOGA’s, i.e., NSGA, SPEA, and E-MOGA obtained more 
diverse solution sets in most cases by yielding higher median H 
values. (Note that a higher H value indicates better diversity.)  
Furthermore, 

• E-MOGA conclusively outperforms MOGA-NA, FF-
MOGA, and VEGA in both problems (in terms of diversity).  

E-MOGA conclusively outperforms SPEA in Chart 2(b). For 
the first test problem (Chart 1(b)), E-MOGA outperforms SPEA 
in more than 50% of the cases (since the median of the H index 
from E-MOGA is higher than maximum H value from SPEA. 
The comparison between E-MOGA and NSGA is inconclusive in 
both cases (although E-MOGA yields a higher median H value) 

In addition, from comparing the median of H index from 
NSGA and SPEA with maximum H values from MOGA-NA, FF-
MOGA, and VEGA, it can be concluded that:  

• For both test problems (Charts 1(b) and 2(b)), NSGA 
resulted in a better diversity than MOGA-NA, FF-MOGA, 
and VEGA in more than 50% of the cases.  

• Similarly, SPEA performed better than FF-MOGA, and 
VEGA in more than 50% of the cases. The comparison 
between SPEA and MOGA-NA remains inconclusive in 
Chart 2(b).  

Recommendations: For both test problems, the more recent 
MOGA’s, i.e., NSGA, SPEA, and E-MOGA, resulted in better 
median index values than older versions, i.e., MOGA-NA, FF-
MOGA, and VEGA, in terms of both convergence and diversity. 
Among the more recent MOGA’s, SPEA resulted in the best 
median S index for both test problems (faster convergence), while 
E-MOGA performed better in terms of achieving a higher median 
H value (better diversity). Based on these observations, it is 
recommended to employ SPEA where a faster rate of 
convergence is needed; while E-MOGA may be used for 
problems with features that hinder maximizing diversity in the 
solution set. NSGA, on the other hand, shows a balance between 
the above two tasks.  

Finally, note that the above comparative study is based on 
the assumption that decision maker is interested in two aspects of 
quality, convergence and diversity. Obviously, different quality 
indexes must be chosen to address different issues of interest. The 
result of the above comparative study, therefore, depends on the 
decision-maker’s notion of the concept of quality and may vary 
based on the selected quality indexes and test examples. 

4. CONCLUDING REMARKS 
In this paper, a comparative study was conducted to assess 

the relative performance of several MOGA’s. The proposed study 
evaluated the tested MOGA’s in two aspects: 1) convergence; and 
2) maintaining diversity in the solution set. Two quality indexes 
were used to address each of the above two issues: S index, and H 
index, respectively. To account for the stochastic nature of 
MOGA’s, we performed 50 runs for each tested MOGA (per each 
test problem) and cataloged the obtained NDS’s. S and H indexes 
were evaluated for these NDS’s. For each tested MOGA, 
minimum, maximum, and median index values were obtained. 
These ranges are then compared to observe the relative 
performance of the tested MOGA’s. This comparison scheme has 
the following advantages:  

• It is quantitative in the sense that it utilizes indexes 
instead of visual assessment.  

• A separate quality index is used for each desired aspect 
of quality. This ensures a comprehensive assessment of 
the relative performances according to the index. 

• It accounts for the stochastic nature of MOGA’s by 
performing multiple runs (from different initial random 
populations).  

In some instances, the statistical comparison of the tested 
MOGA’s remained inconclusive. Nevertheless, several helpful 
observations were made that could be used to recommend an 
appropriate MOGA for a given design optimization task.  
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