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ABSTRACT 
In this paper, we describe the use of a queue instead of a stack or 
a parse tree for the internal representation and genetic operations 
of a Genetic Programming system.  Specifically, implementation 
issues and application areas are discussed. 

Categories and Subject Descriptors 
E.1 [Data]: Data Structures – graphs and networks, lists, stacks 
and queues, trees. F.1.1 [Theory of Computation]: Models of 
Computation – push-down automata, self-modifying machines, 
probabilistic computation. I.2.6 [Artificial Intelligence]: Learn-
ing – connectionism and neural nets. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Genetic Programming, Tree, Stack, Queue. 

1. STACK-BASED GENETIC 
PROGRAMMING 
Genetic Programming, or GP, has traditionally used tree-based 
techniques for representation and reproduction.  The most widely 
used crossover method is subtree crossover, and the majority of 
the alternatives in published literature are variants thereof.  How-
ever, if the trees are manipulated in their prefix or postfix form, 
other approaches exist that preserve the syntactic integrity of the 
participating parent trees. Stack based Genetic programming, 
introduced by Perkis in [3], represents programs as lists of nodes 
of functions or terminals that consume their inputs from a stack 
and place their outputs on a stack.  These implementations, in-
cluding the early work of Bruce, Stoffel and Spector, [1], [5] and 
later [4], do not try to preserve the stack correctness of the indi-
viduals in the population, but rather rely on the evaluation frame-
work to identify any stack underflow or overflow. In contrast, in 
GP with stack-correct (Forth) crossover, introduced by Tchernev 
in [6] and [7], the crossover operators manipulate the post order 
representation of the program tree.  Because the crossover points 
are chosen to have compatible stack depths, no malformation is 

possible.  If the initial population is stack-correct (no individuals 
have underflow, and the final stack depth equals the desired num-
ber of outputs), it is guaranteed that all individuals produced by 
using stack-correct crossover will be stack-correct. 

2. QUEUE-BASED GENETIC 
PROGRAMMING 
A stack is a LIFO structure – the last item placed into it (on top) is 
the first to be removed by subsequent operations.  On the other 
hand, the queue, a FIFO structure, has almost the same properties.  
Like the stack, it can accept any number of items (up to its maxi-
mum capacity, of course), and they remain ordered the way they 
were received.  The only difference is that the extraction order is 
reversed – the first item placed into the queue, is the first to be 
removed.  Therefore, replacing the stack of a stack-based GP 
system with a queue requires very little change in order to pro-
duce a queue-based system.  The functions and terminals of the 
system need to be modified such that values are read from the 
queue, where they were popped from the stack before, and results 
are written into the queue, where they were pushed on the stack 
before.  Analogous to stack-correctness in stack-based GP, we can 
define queue-correctness for queue-based GP.  An evolved indi-
vidual is queue-correct, if at no point in it is there queue under-
flow (reading an empty queue), and at the end the queue contains 
the exact number of output values that the problem specifies 
(there are no extra values produced). 

3. PROPERTIES OF QUEUE-BASED GP 
3.1 Parse tree equivalence 
As shown in [6] and [7], in stack-based GP, the individuals with 
their corresponding stack-based execution sequences, represent 
postorder traversals of parse trees, and the stack depth diagrams 
preserve the topology of these trees.  Because of the stack ma-
chine's locality of scope, subtrees in stack-based representations 
are contained contiguously in the node list; subtree crossover can 
be performed by simple two-point cuts, provided the points are 
identified.  This is not the case in queue-based GP: except when 
trivially only one subtree exists, the locations of the subtree nodes 
in the node list are not contiguous.  In general, it is not possible to 
perform a two-point crossover operation whose effect is to swap 
subtrees in the corresponding infix expressions.  As can be seen 
on Figure 1, the semantic composition of a queue-based expres-
sion is highly context-dependent and non-local.  The operands to 
any function have been placed into the queue by a function or 
terminal at a distant location in the node list, and the result from 
the function's evaluation will be used by another function again 
further down the list.  The distance between nodes acting on re-

 

 



lated data, is, of course, the queue length; only after all earlier 
items are acted on, can a particular data item be modified. 

3.2 Crossover possibilities 
Since the queue, from a black-box perspective is equivalent to a 
stack (ignoring the order of items for a moment), it is possible to 
perform the same crossover operations as in stack-based GP, and 
obtain queue-correct individuals.  Using queue length instead of 
stack depth for crossover point choice, all the stack-correct cross-
over methods from [7] can be applied.  (They are One-Point, 
Two-Point, Subtree and Delta).  Their effects on the participating 
individuals' parse trees, however, are very different from the ef-
fects in Stack-based GP. 

Figure 1. A sequence of nodes, their corresponding queue 
picture and parse tree 

The rule for subtree crossover in stack-based GP can be mechani-
cally applied in queue-based GP, and will produce queue-correct 
individuals.  The effect on the parse-tree equivalents will defi-
nitely be different from exchanging subtrees.  Similarly, the ef-
fects of the other crossovers will be different from their effects in 
stack-based GP, as can be seen in Figure 2, Figure 3 and Figure 4. 

4. APPLICATION DOMAINS 
Crossover in queue-based GP is particularly disruptive.  In tradi-
tional tree- or stack-based GP, a sequence of nodes taken from 

one individual and placed into another, preserves its data cohesion 
to some extent.  Its function nodes can operate on data from leaf 
nodes that are contained in the same node sequence.  In queue-
based GP, the likelihood of this happening is much lower. 

Figure 2. Crossover point selection and result using the "sub-
tree" rule 

Guest functions operate on items in the queue that were most 
likely placed there by nodes in the host individual, and guest leaf 
nodes produce data to be used away from them, most likely by 
host functions.  In order to maintain some sort of data cohesion, 
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the crossover segment needs to be sufficiently long, and to be 
placed in a context with the same overall queue length.  There-
fore, the application of queue-based GP to evolve highly modular 
programs with short useful building blocks, for example any of 
the Parity problems, is not recommended. 

Figure 3. Crossover point selection and result using the "two-
point" rule 

A more suitable domain would be evolving complex functions 
with no repeated internal structure, or situations where the entire 
contents of the queue must be processed in some manner that is 
not local.  The second case is particularly matched to the structure 

of layered feed-forward neural networks.  If the items in the 
queue are activations from a previous layer, and a sequence of 
functions represents neural network nodes, then the processed 
results go to the other end of the queue, out of the way of the 
results from the previous layer that are still being processed. 

Figure 4. Crossover point selection and result using the 
"delta" rule 

This is much better than in stack-based GP for evolving neural 
networks, where the results from a node go to the top of the stack 
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and prevent easy access to older results.  A sample neural network 
realized with the queue paradigm can be seen in Figure 5. 

Figure 5. Feedforward Neural Network implemented using a 
queue 

5. CONCLUSION AND FUTURE WORK 
At the time of writing, trying to evolve small, structured and easy 
problems (the two boxes problem from [2]) with conservative 
population sizes were not successful, as expected.  Experiments 
are underway in applying queue-based GP to evolve layered neu-

ral networks; the outcome will show what crossover methods and 
settings (if any) produce results with specific desired properties. 
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