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ABSTRACT 

In this paper, a genetic algorithm is introduced to generate 
variants of a choreographic sequence, which are then selected 
using different criteria. The mutation phase of the algorithm 
applies six types of mutations on single sequences, as well as four 
types of mutations on multiple sequences. Six different selection 
criteria are also distinguishable to assess the fitness of the 
sequences. An application of Choreogenetics is presented to 

illustrate the performance of the method for the generation of an 
aesthetic choreography.     

Categories and Subject Descriptors 

J.5  [Arts and Humanities]: Performing arts (dance)  

General Terms 

Algorithms, Experimentation. 

Keywords 

Aesthetics, choreography, dance, information theory, mutation 
models, sequence evolution, simulation. 

1. INTRODUCTION 
On several occasions, contemporary arts have been influenced 
by the field of genetics [7, 12], and probabilistic models have 
been used since the beginning of time to generate artistic pieces 
[17]. Indeed, modern choreographers and composers, such as 
Merce Cunningham and John Cage, have often applied 
permutations and chance operations in their creative process. 
However, in spite of the relationship between DNA and the 
combinatorial methods that Cunningham employed to produce 

random dances [16], genetic algorithms have never been used by 
choreographers to create variations in movement sequences. In 
this paper, I present a computer algorithm that generates 
choreographic variants through genetic mutations and selection. 
The Choreogenetics algorithm is then applied to simulate the 
evolution of a sequence of dance movements.  

2. THE ALGORITHM 
The Choreogenetics algorithm takes as input a choreographic 
sequence representing independent movements, and transforms it 
into a new sequence through different types of genetic mutations 

(the mutation phase). The new sequence is then compared to the 
previous sequence using different criteria, and the sequence with 
the best fitness value is selected (the selection phase). The process 
is repeated for a fixed number of generations, or until a 
choreographic sequence meeting a given aesthetic criterion is 
obtained.  

2.1 The Mutation Phase 
The input choreographic sequence is associated to an alphabet of 
letters representing independent movements. This sequence could 
be generated at random by sampling n movements with 
replacement from a fixed alphabet of m letters, or be provided by 
the choreographer. Based on parameters set by the user, several 
types of mutations, with different probabilities, are distinguishable 
to create movement sequence variations from one sequence to the 
next. These types of operations are similar to those currently 
applied by choreographers to modify movement sequences, or 

combine sequences together. 

2.1.1 Mutations on single sequences 
The algorithm distinguishes six types of mutations at each 

generation to make modifications from a single mother sequence 
to a single daughter sequence: substitution, insertion/deletion, 
inversion, translocation, repetition and conversion.  

Substitutions are obtained by replacing at random one or more 
movements from the mother sequence in the daughter sequence, 
whereas insertions and deletions are obtained by adding or 
eliminating movements at random to create a daughter sequence 
with less or more movements than the mother sequence. The 
probability of replacing a given movement by another is provided 
by a substitution matrix, which can take the form of any 
substitution matrix model used in molecular biology [6, 8]. The 

new movements (substituted or inserted) are sampled from the 
original alphabet with equal probabilities, or with respect to the 
frequency distribution of movements in the mother sequence. The 
relative probabilities of substitutions, insertions and deletions 
with respect to the other types of mutations are set respectively by 
the parameter ps, pi and pd. 

The other types of mutations on single sequences are generated by 
first selecting a segment of random length t (with t<n) from the 
mother sequence. Inversions, translocations and repetitions are 
then obtained by either inverting that segment, moving the 
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segment to a different position, or repeating the segment a given 
number of times in the daughter sequence. The breaking points 
of inversions, positions of the regions to be deleted from the 
mother sequence and inserted in the daughter sequence and 
number of repetitions are set at random, or fixed by the user 

(e.g. only allowing tandem repeats). The relative probabilities of 
inversions, translocations and repetitions with respect to the other 
types of mutations are set respectively by the parameters pv, pt 

and pr. 

Finally, conversions are obtained by selecting one movement, or 
a segment of random length t (with t<n) from the mother 
sequence, and replacing it by new movement(s) in the daughter 
sequence. This type of mutation differs from substitution in that 
movements that were not in the original alphabet are introduced 
in the daughter sequence. The relative probability of a 
conversion is set by the parameter pc. 

2.1.2 Mutations on multiple sequences 
To deal with more than a single movement sequence at a time 
(more than one dancer), four other types of operations are also 
used in the mutation phase of the algorithm to create additional 
daughter sequences and generate interactions among dancers: 
duplication, extinction, horizontal transfer, and hybridization 

To create a single (or multiple) duplication event(s), the entire 
mother sequence is duplicated (or replicated), thus generating 
two (or more) identical daughter sequences to be performed by 

different dancers. On the other hand, an extinction event is 
obtained by eliminating one of the mother sequences at random 
to reduce the number of dancers. The relative probabilities of 
duplications and extinctions with respect to the other types of 
mutations are set by the parameters pl and pe respectively 

When multiple sequences are available, other types of mutations 
can be used to combine mother sequences with one another. 
Horizontal transfers are obtained by sampling movements from 
a single mother sequence to insert them in a new daughter 
sequence, whereas hybridization events are generated by 
sampling movements from a pair of mother sequences to create 
a hybrid daughter sequence. The positions of the regions 
sampled from the mother sequence(s) and copied into the 

daughter sequence are selected at random. The relative 
probabilities of horizontal transfers and hybridizations are set 
respectively by the parameters ph and pz. 

2.2 The Selection Phase 
Once a choreographic mutant (the daughter sequence) is 
generated, this new sequence is compared to the previous 
sequence (the mother sequence) to assess which one has the best 
fitness. If the daughter is the fittest of the two, the mother 
sequence is deleted. On the contrary, if the mother is the fittest, 
the daughter sequence is deleted and a new mutant is generated 
at the next generation. Thus, the algorithm only proceeds by 

comparing pairs of mother-daughter sequences, keeping in turn 
the one that maximizes the value of the selection criterion. 
When multiple mother sequences are available, each one is 
considered independently and compared with its corresponding 
daughter sequence. 

2.2.1 Selection criteria 
The algorithm implements five different selection criteria that are 
used to determine which of the mother or the daughter sequence 
has the best fitness value: the neutral model, user-defined and 
audience-mediated selection, information theory, aesthetics and 
coevolution.  

Under the neutral (or pan-neutral) model of evolution, the 
mutations are not selected and all daughter sequences have equal 
fitness. This implies that the mutation will accumulate constantly 
with generations and that daughter sequences will always replace 
the mother sequences, without selection. In visual arts and music, 

the majority of genetic algorithms rely instead on the user to 
select the best solution among possible outcomes [4, 11, 14]. This 
particular type of interactive genetic algorithm (IGA) could also 
be mediated by a critic or mentor who assesses at each generation 
whether the mother or the daughter sequence is more pleasing. 
The result is thus influenced by subjective taste or personal 
aesthetics. However, this problem is avoided by replacing a single 
critic by a group of critics, namely the audience [1]. Obviously, 

this approach can be difficult to implement for the selection of 
choreographic variants in real time, but an audience-mediated 
IGA may be used as a training algorithm to modify the 
probabilities of the mutation model.  

The information, entropy and complexity of a sequence of 
movements can be computed using the same methods as those 
employed for DNA sequences [15]. The mother and daughter 
sequences can then be compared with respect to these measures to 
select the fittest of the two. It is generally accepted that more 
complex and informative structures are more pleasing to the eye, 
and this rule applies to dance composition [5]. In his books on the 

mathematics of aesthetics [2], Birkhoff formally introduced a 
quantitative measure of beauty (B), defined as the O/C ratio, 
where O and C respectively represent order and complexity. 
Whereas complexity measures information content, order is a 
function of symmetry, repetition, or balance [9]. More recently, a 
neurological basis of aesthetics have also been proposed [13], and 
these criteria (e.g. peak shift, contrast) could also be used in the 
algorithm, assuming that we can quantify them. Using such 

measures, the daughter sequence will be selected only if it bears 
more information or is aesthetically more pleasing than its mother. 

With a coevolution criterion, a daughter sequence can be selected 

over its mother sequence with respect to its similarity to a third 
sequence. This type of selection is used to match sequences and 
create (partial) unison among dancers interpreting different 
movements. The basis for choosing the daughter sequence over its 
mother is the score of the alignment of the competing sequences 
with respect to a target sequence, which could be provided by the 
user, or selected among other mother sequences.  

2.2.2 Stopping Rules 
The Choreogenetics algorithm can run forever unless some rules 
are defined to stop the generative process. One simple way of 
doing so is to fix a priori the number of generations. Another 
option is to let the user decide when the sequence meets certain 
aesthetic criteria. Finally, a quantitative optimum (maximum 
fitness) may be set to stop the program when this value is reached. 

Obviously, different solutions will be obtained using different 
stopping rules and optimality criteria. 



3. APPLICATION   
The input sequence of five movements represented in Figure 1a 

was used to create choreographic variants with the 
Choreogenetics algorithm. This original sequence was generated 
at random from an alphabet of four letters {A, T, C, G}. At the 
first generation, a repetition of the movements CG was generated 
(Figure 1b). Then, AT was translocated from the beginning of the 
sequence to the end of the sequence (Figure 1c). Finally, the last 
A was transformed by conversion to a U, a new movement that 
was not included in the original alphabet of four letters (Figure 

1d). At each step, the daughter sequence was selected over the 
mother sequence, with a user-defined aesthetic criterion. 
Interestingly, complexity also increased from one generation to 
the next. 

 

Figure 1: The (a) input sequence and variants of the 

Choreogenetics algorithm, generated by (b) repetition, (c) 

translocation, and (d) conversion (original movements from 

[3]). The sequences were selected based on aesthetic criteria. 

4. DISCUSSION 
The Choreogenetics algorithm proceeds by iteratively creating 
movements sequence variants at each generation, using a defined 
mutation model. Depending on the relative probabilities of the 
different types of mutations, multiple solutions are equally likely. 
However, the selection of variants by objective (or subjective) 
criteria determines which sequences are to be eliminated or 
selected. Contrary to most genetic algorithms, the proposed 
method does not rely on a large population of organisms 

(sequences) that reproduce sexually to create variation. On the 
contrary, a simple sequence transmitted asexually from the mother 
to its daughter is employed, and mutations represent the only 
source of variation at each generation.  

The proposed genetic algorithm could easily be modified to 
investigate different aspects of the choreographic process. For 
one, a grammar-based genetic programming system may be 
defined to encode the rules of a particular type of dance. Also, the 

use of automated fitness functions would improve the 
performance of the algorithm, namely by the determination of 
metrics that correlate to aesthetically pleasing dance sequences. 

Finally, the idea of continuity of motion from one movement to 
the next could be taken into account by using a transition matrix 
representing the probabilities that each movement is followed by 
any other movement. Under the current model, every movement is 
equally likely to occur anywhere in the sequence, but some 

constraints could be set to avoid certain combinations. 

For the time being, this very simple algorithm is appropriate for 
the generation and selection of movement sequences, because it 
essentially mimics the creative process of choreographers. As 
such, it also differs from purely random [10] or chaotic [3] models 
that have been proposed to create choreographic variants. Indeed, 
a genetic algorithm not only generates new movement sequences, 
it also selects among possible outcomes those that maximize the 

value of the selection criterion.  When a choreographer is used for 
fitness determination, the Choreogenetics algorithm is nothing 
more than a tool for generating new movement sequences. 
However, when objective aesthetic or information-theoretic 
criteria are used, the role of the choreographer is entirely assumed 
by the genetic algorithm and the result is affected only by the 
parameters of the mutation model. The final sequences may then 
be assembled to create a full dance, or be used as mother 

sequences to produce further variants, using different models 
and/or selection criteria.  
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